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Abstract

This paper focuses on the problem of unsu-
pervised alignment of hierarchical data such
as ontologies or lexical databases. This prob-
lem arises across areas, from natural language
processing to bioinformatics, and is typically
solved by appeal to outside knowledge bases
and label-textual similarity. In contrast, we
approach the problem from a purely geomet-
ric perspective: given only a vector-space rep-
resentation of the items in the two hierar-
chies, we seek to infer correspondences across
them. Our work derives from and interweaves
hyperbolic-space representations for hierar-
chical data, on one hand, and unsupervised
word-alignment methods, on the other. We
first provide a set of negative results showing
how and why Euclidean methods fail in this
hyperbolic setting. We then propose a novel
approach based on optimal transport over hy-
perbolic spaces, and show that it outperforms
standard embedding alignment techniques in
various experiments on cross-lingual WordNet
alignment and ontology matching tasks.

1 Introduction

Hierarchical structures are ubiquitous in various do-
mains, such as natural language processing and bioin-
formatics. For example, structured lexical databases
like WordNet (Miller, 1995) are widely used in compu-
tational linguistics as an additional resource in various
downstream tasks (Moldovan and Rus, 2001; Shi and
Mihalcea, 2005; Bordes et al., 2012). On the other
hand, ontologies are often used to store and organize
relational data. Building such datasets is expensive and
requires expert knowledge, so there is great interest in
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methods to merge, extend and extrapolate across them.
A fundamental ingredient in all of these tasks is match-
ing' different datasets, i.e., finding correspondences
between their entities. For example, the problem of
ontology alignment is an active area of research, with
important implications for integrating heterogeneous
resources, across domains or languages (Spohr et al.,
2011). We refer the reader to (Euzenat and Shvaiko,
2013) for a thorough survey on the state of this prob-
lem. On the other hand, there is a long line of work
focusing on automatic WordNet construction that seeks
to leverage existing large WordNets (e.g., in English)
to automatically build WordNets in other low-resource
languages (Lee et al., 2000; Saveski and Trajkovski,
2010; Pradet et al., 2014; Khodak et al., 2017).

Euzenat and Shvaiko (2013) recognize three dimensions
to similarity in ontology matching: semantic, syntac-
tic and external. A similar argument can be made
for other types of hierarchical structures. Most cur-
rent methods for aligning such types of data rely on
a combination of these three, i.e., in addition to the
relations between entities they exploit lexical similar-
ity and external knowledge. For example, automatic
WordNet construction methods often rely on access to
machine translation systems (Pradet et al., 2014), and
state-of-the-art ontology matching systems commonly
assume large external knowledge bases. Unsurprisingly,
these methods perform poorly when no such additional
resources are available (Shvaiko and Euzenat, 2013).
Thus, effective fully-unsupervised alignment of hierar-
chical datasets remains largely an open problem.

Our work builds upon two recent trends in machine
learning to derive a new approach to this problem. On
one hand, there is mounting theoretical and empirical
evidence of the advantage of embedding hierarchical
structures in hyperbolic (rather than Euclidean) spaces
(Nickel and Kiela, 2018; Ganea et al., 2018b; De Sa
et al., 2018). On the other hand, various fully un-
supervised geometric approaches have recently shown
remarkable success in unsupervised word translation

!Throughout this work, we interchangeably use matching
and alignment to refer to this task.
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(Conneau et al., 2018; Artetxe et al., 2018; Alvarez-
Melis and Jaakkola, 2018; Grave et al., 2019; Alvarez-
Melis et al., 2019). We seek to combine these two recent
developments by extending the latter to non-Euclidean
settings, and using them to find correspondences be-
tween datasets by relying solely on their geometric
structure, as captured by their hyperbolic-embedded
representations. The end goal is a fully unsupervised
approach to the problem of hierarchy matching.

In this work, we focus on the second step of this
pipeline —the matching— and assume the embeddings
of the hierarchies are already learned and fixed. Our ap-
proach proceeds by simultaneous registration of the two
manifolds and point-wise entity alignment using opti-
mal transport distances. After introducing the building
blocks of our approach, we begin our analysis with a set
of negative results. We show that state-of-the-art meth-
ods for unsupervised (Euclidean) embedding alignment
perform very poorly on hyperbolic embeddings, even af-
ter modifying them to account for this geometry. This
failure is caused by a type of invariance —not exhibited
by Euclidean embeddings— that we refer to as branch
permutation. At a high level, this phenomenon is char-
acterized by a lack of consistent ordering of branches
in the representations of a dataset across different runs
of the embedding algorithm (Fig. 1a), and is akin to
the node order invariance in trees.

In response to this challenge, we further generalize our
approach by learning a flexible nonlinear registration
function between the spaces with a hyperbolic neural
network (Ganea et al., 2018a). This nonlinear map
is complex enough to register one of the hyperbolic
spaces (Fig. 1b), and is learned by minimizing an op-
timal transport problem over hyperbolic space, which
provides both a gradient signal for training and a point-
wise (soft) matching between the embedded entities.
The resulting method (illustrated in Fig. 3) is capable
of aligning embeddings in spite of severe branch per-
mutation, which we demonstrate with applications in
WordNet translation and biological ontology matching.

In summary, we make the following contributions:

Formulating the problem of unsupervised hierarchy
matching from a geometric perspective, casting it as
a correspondence problem between hyperbolic spaces

Showing that state-of-the-art methods for unsuper-
vised embedding alignment fail in this task, and find
the cause of this to be a unique type of invariance
found in popular hyperbolic embeddings

Proposing a novel framework for Riemannian nonlin-
ear registration based on hyperbolic neural networks,
which might be of independent interest

Empirically validating this approach with experi-
ments on WordNet hierarchies and ontologies

Notation and Conventions Let P(X) be the set
of probability distributions over a metric space X. For
a continuous map ¥ : X ¥ Y we note by f1: P(X) 1
P (Y) its associated push-forward operator, i.e., for any

2PX) = () is ghe push-forward measure
satisfying |, h(y)d (y) =  h(f(x))d (x)8h 2 C(Y).
The image of T is denoted as F[X] = fF(X) j x 2 Xg.
Finally, O(n) and SO(n) are the orthogonal and special
orthogonal groups of order n.

2 Related Work

Ontology Matching Ontology matching is an im-
portant problem in various bio-medical applications,
e.g., to find correspondences between disease and pheno-
type ontologies (Algergawy et al., 2018, and references
therein). Techniques in ontology matching are usually
rule-based, and often rely on entity label similarity
and external knowledge bases, making them unfit for
unsupervised settings. Here instead we do not assume
any additional information nor textual similarity.

Hyperbolic Embeddings Since their introduction
(Chamberlain et al., 2017; Nickel and Kiela, 2017),
research on automatic embedding of hierarchical struc-
tures in hyperbolic spaces has gained significant trac-
tion (Ganea et al., 2018b; De Sa et al., 2018; Tay et al.,
2018). The main appeal of this approach is that hy-
perbolic geometry captures several important aspects
of hierarchies and other structured data (Nickel and
Kiela, 2017). We rely on these embeddings to represent
the hierarchies of interest.

Unsupervised Word Embedding Alignment
Word translation based on word embeddings has re-
cently gained significant attention after the successful
fully-unsupervised approach of Conneau et al. (2018).
Their method finds a mapping between embedding
spaces with adversarial training, after which a refine-
ment procedure based on the Procrustes problem pro-
duces the final alignment. Various non-adversarial
approaches have been proposed since, such as robust-
self learning (Artetxe et al., 2018). On the other hand,
Optimal transport —e.g., Wasserstein— distances have
been recently shown to provide a robust and effec-
tive approach to the problem of unsupervised embed-
ding alignment (Zhang et al., 2017; Alvarez-Melis and
Jaakkola, 2018; Grave et al., 2019; Alvarez-Melis et al.,
2019). For example, Alvarez-Melis et al. (2019) and
Grave et al. (2019) use a hybrid optimization objective
over orthogonal transformations between the spaces
(i.e., an Orthogonal Procrustes problem) and Wasser-
stein couplings between the samples. These works
consider only Euclidean settings. Alternatively, this
problem can be successfully approached (Alvarez-Melis
and Jaakkola, 2018) with a generalized version of opti-
mal transport, the Gromov-Wasserstein (GW) distance
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(Mémoli, 2011), which relies on comparing distances
between points rather than the points themselves. The
recently proposed Fused Gromov-Wasserstein distance
(Vayer et al., 2018) extends this to structured domains
such as graphs, but as opposed to our approach, as-
sumes node features and knowledge of the full graph
structure. While the GW distance provides a stepping
stone towards alignment of more general embedding
spaces, it cannot account for the type of invariances
encountered in practice when operating on hyperbolic
embeddings, as we will in Section 5.

Correspondence Analysis Finding correspon-
dences between shapes is at the heart of many problems
in computer graphics. One of the classic approaches
to this problem is the Iterative Closest Point method
(Chen and Medioni, 1992; Besl and McKay, 1992) (and
its various generalizations, e.g., by Rusinkiewicz and
Levoy (2001)), which alternates between finding (hard)
correspondences through nearest-neighbor pairing
and finding the best rigid transformation based on
those correspondences (i.e., solving a Orthogonal
Procrustes problem). The framework we propose
can be understood as generalizing ICP in various
ways: allowing for Riemannian Manifolds (beyond
Euclidean spaces), going beyond rigid (orthogonal)
registration and relaxing the problem by allowing for
soft correspondences, which the framework of optimal
transport naturally provides.

3 Hyperbolic Space Embeddings

A fundamental question when dealing with any type of
symbolic data is how to represent it. As the advent of
representation learning has proven, finding the right fea-
ture representation is as —and often more— important
than the algorithm used on it. Naturally, the goal of
such representations is to capture relevant properties of
the data. For our problem, this is particularly impor-
tant. Since our goal is to find correspondences between
datasets based purely on their relational structure, it
is crucial that the representation capture the semantics
of these relations as precisely as possible.

Traditional representation learning methods embed
symbolic objects into low-dimensional Euclidean spaces.
These approaches have proven very successful for em-
bedding large-scale co-occurrence statistics, like lin-
guistic corpora for word embeddings (Mikolov et al.,
2013; Pennington et al., 2014). However, recent work
has shown that data for which semantics are given in
the form of hierarchical structures is best represented
in hyperbolic spaces, i.e., Riemannian manifolds with
negative curvature (Chamberlain et al., 2017; Nickel
and Kiela, 2017; Ganea et al., 2018b). Among the argu-
ments in favor of these spaces is the fact that any tree

can be embedded into finite hyperbolic spaces with
arbitrary precision (Gromov, 1987). This stands in
stark contrast with Euclidean spaces, for which the
dependence on dimension grows exponentially. In prac-
tice, this means that very low-dimensional hyperbolic
embeddings often perform on-par or above their high-
dimensional Euclidean counter parts in various down-
stream tasks (Nickel and Kiela, 2017; Ganea et al.,
2018b; Tay et al., 2018). This too is an appealing
argument in our application, as we are interested in
matching very large datasets, making computational
efficiency crucial.

Working with hyperbolic geometry requires a model to
represent it and operate on it. Recent computational
approaches have mostly focused on the Poincaré Disk —
or Ball, in higher dimensions— model. This model is
defined by the manifold DY = fx 2 R" j kxk < 1g,
equipped with the metric tensor g = 2gF, where

x :=1=(1 kxk3) is the conformal factor and gF is
the Euclidean metric tensor. With this, (DY;g2) has
a Riemannian manifold structure, with the induced
Riemannian distance given by:

1
ku vk?

do(u;Vv) = arcosh 1+ 2(1 KUY (L KvId)

(1)

which yields the following norm on the Poincaré Ball:
kukp = dp(0; u) = 2 arctanh(kuk): (2)

It can be seen from this expression that the magnitude
of points in the Poincaré Ball tends to infinity towards
its boundary. This phenomenon intuitively illustrates
the tree-like structure of hyperbolic space: starting
from the origin, the space becomes increasingly —in
fact, exponentially more— densely packed towards the
boundaries, akin to how the width of a tree grows
exponentially with its depth.

Hyperbolic embedding methods find representations
in the Poincaré Ball by constrained optimization (i.e.,
by imposing kxk < 1) of a loss function that is often
problem-dependent. For datasets in the form of entail-
ment relations D = f(u;v)g, where (u;v) 2 D means
that u is a subconcept of v, Nickel and Kiela (2017)
propose to minimize the following soft-ranking loss:

e d(u;v)
d(u;v®) ; (3)

L( )=

(u;v)2D

log P
V02N (u) €

where = fug are the embeddings and N(u) =
fvj (u;v) 8 Dg is a set of negative examples for u.

Transformations in the Poincaré Ball will play a promi-
nent role in the development of our approach in Sec-
tion 6, so we discuss them briefly here. Since the
Poincaré Ball is bounded, any meaningful operation on
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it must map DY onto itself. Furthermore, for registra-
tion we are primarily interested in isometric transforma-
tions on the disk, i.e., we seek analogues of Euclidean
vector translation, rotation and refection. In this model,
translations are given by Mdbius addition, de ned as

(1+2hu;vi + kvk)u + (1 k ukd)v

¢V 1+2hu;vi + kukskvks

4)

This de nition conforms to our intuition of translation,
e.g., if the origin of the disk is translated to v, then
X is translated to v x. Note that this addition is
neither commutative nor associative. More generally,
it can be shown that all isometries in the Poincaré
Ball have the form T(x) = P(v  x), wherev 2 D¢
and P 2 SO(d), i.e., it is an orientation-preserving
isometry in RY. Two other important operations are
the logarithmic log, () and exponential exp, () maps
on a Riemannian manifold, which map between the
manifold and its tangent spaceT, X at a given point p.
For the Poincaré Ball, these maps can be expressed as

exp,(u)=p  tanh(3 pkuk) e

vk (p) v .

log, (v) = %arctanh k( p) oV

4 Matching via Optimal Transport

4.1 Optimal Transport Distances

Optimal transport (OT) distances provide a powerful
and principled approach to nd correspondences across
distributions, shapes, and point clouds (Villani, 2008;
Peyré and Cuturi, 2018). In its usual formulation,
OT considers complete and separable metric spaces
X;Y, along with probability measures 2 P (X) and

2 P(Y). These can be continuous or discrete mea-
sures, the latter often used in practice as empirical
approximations of the former whenever working in the
nite-sample regime. Kantorovitch (1942) formulated
the transportation problem as:

VA

min

oT(:
G 2(;

) cx;y)d (xy)  (5)
wherec(;) : X Y ! R* is a cost function (the
ground cost), and the set of couplings ( ; ) consists
of joint probability distributions over the product space

X Y with marginals and ,i.e.,
(5 g, (6)

where P1(x;y) = x and Pa(x;y) = y. Whenever X ;Y

are equipped with a metric d, it is natural to use it

as ground cost, e.g.c(x;y) = d(x;y)P for somep 1.
In such case Wy(; ), OT(; )¥"is called the p-
Wasserstein distance. The cas@ =1 is also known as
the Earth Mover's Distance (Rubner et al., 2000).

), f 2P(X Y)jPl =P} =

In applications, the measures and are often un-
known, and are accessible only through nite sam-
plesfx(Vg 2 X;fyl)g 2 Y. In that casg these can
be takenFto be discrete measures = inzl iy
and = I b yu), wherea, b are vectors in the
probability simplex, and the pairwise costs can be
compactly represented as anrn  m matrix C, i.e.,
Cj = c(xM;y0)). In this case, Equation (5) becomes
a linear program. Solving this problem scales cubi-
cally on the sample sizes, which is often prohibitive in
practice. Adding an er%tropy regularization, namely

OT-(; ), _min c(x;y)d +"H( j ) (1)
2( 5 ) xvy

X

where H( | ) = Rlog(d: d d)d, leads to
a problem that can be solved much more e ciently
(Altschuler et al., 2017) and which has better sample
complexity (Genevay et al., 2019) than the unregular-
ized problem. In the discrete case, Problem(7) can
be solved with the Sinkhorn algorithm (Cuturi, 2013;
Peyré and Cuturi, 2018), which iteratively updates
u a Kvandv b K>u,whereK , expf iCg
and the division and exponential are entry-wise.

4.2 Unsupervised Matching with OT

Besides providing a principled geometric approach to
compare distributions, OT has the advantage of produc-
ing, as an intrinsic part of its computation, a realization
of the optimal way to match the two distributions. Any
feasible coupling 2 ( ; ) inproblem (5) or (7)
can be interpreted as a soft (multivalued) matching
between and Therefore, the optimal corre-
sponds to the minimum-cost way to match them. In
the case where the distributions are discrete (e.g., point
clouds) is a matrix of soft correspondences. When-
ever OT is used with the goal oftransportation (as
opposed to justcomparison), having guarantees on the
solution of the problem takes particular importance.
Obtaining such guarantees is an active area of research,
and a full exposition falls beyond the scope of this
work. We provide a brief summary of these in Ap-
pendix E, but refer the interested reader to the survey
by Ambrosio and Gigli (2013). For our purposes, is
su ces to mention that for the quadratic cost (i.e.,
the 2-Wasserstein distance), the optimal coupling

is guaranteed to exist, be unique, and correspond to a
deterministic map (i.e., a hard matching).?

It is tempting to directly apply OT to unsupervised
embedding alignment. But note that Problem (5) cru-
cially requires that the metric d be congruent across the
two spaces (in the Wasserstein case), or more generally,
that a meaningful cost function ¢ between them be

ZNote that (;
can be expressed as (; )=(Id

) includes allmaps T : X 'Y , which

T)!
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Figure 1. Invariance and Registration in the Poincaré Disk

Besides rotation invariance, hyperbolic

embeddings can exhibitbranch permutation invariance, characterized by changes in the relative position of
branches (e.g., green and blue here) across embedding instances despite their shape being preserved. The two
embeddingsX, Y shown here were produced by the method of Nickel and Kiela (2018) on the same simple
hierarchy, using the same hyperparmeters but di erent random seeds. To allow for unsupervised correspondences
between the embeddings to be inferred, the target space must be warped with a registration functioh (learnt

as part of our method), which is highly non-linear, as shown by the density plots on the right.

speci ed. When the embedding spaces are estimated
in a data-driven way, as is usually the case in machine
learning, even if these spaces are compatible (e.g., have
the same dimensionality) there is no guarantee that the
usual metric d(x;y) is meaningful. This could be, for
example, because the spaces are de ned up to rotations
and re ections, creating a class of invariants that the
ground metric does not take into account.

A natural approach to deal with this lack of registration
between the two spaces is to simultaneously nd a
global transformation that corrects for this and an
optimal coupling that minimizes the transportation
cost between the distributions. Formally, in addition
to the optimal coupling, we now also seek a mapping
f 1Y I X which realizes
z
min
f2F; 2( 5 ) xv

dix:f(ynd (xf(y): (8)

whereF is some function class encoding the invariances.

As before, we can additionally de ne an entropy-
regularized version of this problem too. Variations
of this problem for particular cases of (X;Y);d( ;)
and F have been proposed in various contexts, partic-
ularly for image registration (e.g., Rangarajan et al.,
1997; Cohen and Guibas, 1999), and more recently,
for word embedding alignment (Zhang et al., 2017;
Alvarez-Melis et al., 2019; Grave et al., 2019). Vir-
tually all these approaches instantiateF as the class
of orthogonal transformations O(d), or slightly more
general classes of linear mappings (Alvarez-Melis et al.,
2019). In such cases, minimization with respect tdf is
easy to compute, as it corresponds to an Orthogonal
Procrustes problem, which has a closed form solution
(Gower and Dijksterhuis, 2004). Thus, Problem (8) is
commonly solved by alternating minimization.

5 Hyperbolic Optimal Transport

In the previous section, we discussed how Wasserstein
distances can be used to nd correspondences between
two embedding spaces in a fully unsupervised manner.
However, all the methods we mentioned there have
been applied exclusively to Euclidean settings. One
might be hopeful that naive application of those ap-
proaches on hyperbolic embeddings might just work,
but unsurprisingly it does not (cf. Table 1b). In-
deed, ignoring the special geometry of these spaces
leads to poor alignment. Thus, we now investigate how
to adapt such a framework to non-Euclidean settings.

The rst fundamental question towards this goal is
whether OT extends to more general Riemannian man-
ifolds. The answer is mostly positive. Again, limited
space prohibits a nuanced discussion of this matter,
but for our purposes it su ces to say that for hyper-
bolic spaces, under mild regularity assumptions, it can
be shown that: (i) OT is well-de ned (Villani, 2008),
(ii) its solution is guaranteed to exist, be unique and
be induced by a transport map (McCann, 2001); and
(i) this map is not guaranteed to be smooth for the
usual costdp(x;y)?, but it is for variations of it (e.qg.,

cosh dp) (Lee and Li, 2012). Further details on why
this is the case are provided in Appendix F. These prop-
erties justify the use of Wasserstein distances for nding
correspondences in the hyperbolic setting of interest.
Furthermore, Theorem F.2 provides various Rieman-
nian cost functions with strong theoretical foundations
and potential for better empirical performance.

The second step towards generalizing Problen(8) to
hyperbolic spaces involves the transformationf 2 F .
First, we note that using orthogonal matrices as in the
Euclidean case is still valid because, as discussed in
Section 3, these map the unit disk into itself. Therefore,
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Figure 2: The branch permutation invariance occurs
across hyperbolic embedding methods, even in high
dimensions. Here we show the discrepancy (mean

1 s.d. error bar) over 5 repetitions between pairwise
distance matrices of embeddings obtained with di erent
random seeds on the same datasetvordnet-mammals.
Truly isometric embeddings would yield O discrepancy.

we can now solve a generalized (hyperbolic) version of
the Orthogonal Procrustes problem as before. However,
this approach performs surprisingly bad in practice too
(see results forHyperOT +Orthogonal P in Table 1b).

To understand this failure, recall that orthogonality was
a natural choice of invariance for embedding spaces that
were assumed to di er at most by a rigid transforma-
tion, but be otherwise compatible. However, Poincaré
embeddings exhibit another, more complex, type of
invariance, which to the best of our knowledge has not
been reported before. It is abranch permutation invari-
ance, whereby the relative positions of branches in the
hierarchy might change abruptly across di erent runs
of the embedding algorithm, even for the exact same
data and hyperparameters. This phenomenon is shown
for a simple hierarchy embedded in the Poincaré Disk in
Figure 1. While actual discrete trees are indeed invari-
ant to node ordering, a priori it is not obvious why this
property would be inherited by the embedded space
obtained with objective (3), where non-ancestrally-
related nodes do indeed interact (as negative pairs) in
the objective. Figure 2 shows that this phenomenon
occurs across hyperbolic embedding methods, such as
those of Nickel and Kiela (2017) (Poincaré), Ganea
et al. (2018b) (Hyperbolic Cones) and Sala et al. (2018)
(Principal Geodesic Analysis), and that, although less
prominent, it is still present in high dimensions.

We conjecture that the cause of this invariance is the
use of negative sampling in the embedding objectives,
which prioritizes distance preservation between enti-
ties that are ancestrally related in the hierarchy, at
the cost of downweighting distances between unrelated
entities. A formal explanation of this phenomenon is
left for future work. Here, instead, we develop a frame-
work to account and correct these invariances while
simultaneously aligning the two embeddings.

6 A Framework for Correspondence
across Hyperbolic Spaces

The failure of the baseline Euclidean alignment meth-
ods (and their hyperbolic versions), combined with the
underlying branch permutability invariance responsible

for it, make it clear that the space of registration trans-

formations F in Problem (8) has to be generalized not
only beyond orthogonality but beyond linearity too.

Ideally we would search among all continuous mappings
betweenY and X, i.e, taking F = ff : Y IXj f 2
C(Y)g. To make this search computationally tractable,
we can instead approximate this function class with
deep neural networksf parametrized by 2 . While
an alternating minimization approach is still possible,
solving for to completion in each iteration is undesir-
able. Instead, we reverse the order of optimization and
rewrite our objective ming o W-(;f ] ) as

Z

min " dogf (y)d OGf (y)+ "H(C ] )

SinceW.- (; f ] ) is di erentiable with respectto , we
can use gradient-based methods to optimize it. Wasser-
stein distances have been used as loss functions before,
particularly in deep generative modeling (Arjovsky et
al., 2017; Genevay et al., 2018; Salimans et al., 2018).
When used as a loss function, the entropy-regularized
version (Eqg. (7)) has the undesirable property that
W-.(; ) 60, in addition to having biased sample gra-
dients (Bellemare et al., 2017). Following Genevay et al.
(2018), we instead consider theSinkhorn Divergence

). We(s ) 2 (9)

Besides being a true divergence and providing unbi-
ased gradients, this function is convex, smooth and
positive-de nite (Feydy et al., 2019), and its sample

complexity is well characterized (Genevay et al., 2019),
all of which make it an appealing loss function. Using
this divergence in place of the Wasserstein distance
above yields our nal objective:

SD-( ; = Wa(; FW-(; )

min  SD-(;f ! ):

f [D4] Dd (10)

The last remaining challenge is that we need to con-
struct a class of neural networks that parametrizes
F:=ff jf (DY) DY, i.e., functions that map D¢
onto itself. In recent work, Ganea et al. (2018b) propose
a class of hyperbolic neural networks that do precisely
this. As they point out, the basic operations in hy-
perbolic space that we introduced in Section 3 su ce
to de ne analogues of various di erentiable building
blocks of traditional neural networks. For example, a
hyperbolic linear layer can be de ned as

frypr (X; W b)), (W X) b =expg(W logyg(x)) b:



David Alvarez-Melis, Youssef Mroueh, Tommi Jaakkola

Figure 3: Schematic representation of the proposed approach. A deep network globally registers the two
hyperbolic embedding spacesX and Y) by correcting for non-linear branch permutations, so that source and
mapped target points can be aligned using a hyperbolic variant of Wasserstein distance. Training is done
end-to-end in a fully unsupervised way no prior known correspondences between the hierarchies are assumed.

Analogously, applying a nonlinearity () in the hyper-
bolic sense can be de ned asp (X) , expy( logy(X)).
Here, we also consideMobius Transformation layers,
fumobius (X) = P(v  x), with P 2 SO(d) and v 2 D.
With these building blocks, we can parametrize highly
nonlinear mapsf : D" ! D" as a sequence of such
hyperbolic layers, i.e.,h() = (WO hi 1 p)y,
Note that the hyperbolic linear but not the Modbius
layers allow for intermediate vectorsh(!) that are of
di erent size as the input and output, i.e., we can use
rectangular weight matrices W to map intermediate
states to Poincaré balls of di erent dimensionality.

The overall approach is summarized in Figure 3.

Optimization Evaluation of the loss function in (10)
is itself an optimization problem, i.e., solving instances
of regularized optimal transport. We backpropagate
through this objective as proposed by Genevay et al.
(2018), using thegeomloss toolbox for e ciency. For
the outer-level optimization, we rely on Riemannian gra-
dient descent (Zhang et al., 2016; Wilson and Leimeis
ter, 2018). We found that the adaptive methods of
Bécigneul and Ganea (2019) worked best, particularly
Radam. Note that for the HyperLinear layers only
the bias term is constrained (on the Poincaré Ball),
while for our Mdbius layers the weight matrix is also
constrained (in the Stiefel manifold), hence for these
we optimize over the product of these two manifolds.
Additional details are provided in the Appendix.

Avoiding poor local minima The loss function
(10) is highly non-convex with respect to , a conse-
quence of both the objective itself and the nature of
hyperbolic neural networks (Ganea et al., 2018b). As a
result, we found that initialization plays a crucial role
in this problem, since it is very hard to overcome a poor
initial local minimum. Even suitable layer-wise random
initialization of weights and biases proved futile. As
a solution, we experimented with three pre-training
initialization schemes, that roughly ensure (in di erent

ways) that f does not initially collapse the spaceY
(details provided in Appendix A). In addition, we use
an annealing scheme on the entropy-regularization pa-
rameter " (Kosowsky and Yuille, 1994; Alvarez-Melis
et al., 2019). Starting from an aggressive regularization
(large "), we gradually decrease it with a xed decay
rate"; = "{ 1. We use =0:99in all experiments.

7 Experiments

Datasets  For our rst set of experiments, we extract
subsets of WordNet (Miller, 1995) in ve languages. For
this, we consider only nouns and compute their transi-
tive closure according to hypernym relations. Then, for
each collection we generate embeddings in the Poincaré
Ball of dimension 10 using the method of Nickel and
Kiela (2018) with default parameters. We release the
multi-lingual WordNet dataset along with our code-
base. In Section 7.2, we perform synthetic experiments
on the cs-phd network dataset (Rossi and Ahmed,
2015) again embedded with same algorithm. In ad-
dition, we consider two subtasks of the OAEI 2018
ontology matching challenge (Algergawy et al., 2018):
Anatomy , which consists of two ontologies; ancbio-
div, consisting of four. Additional details on all the
datasets are provided in Table 3 in the Appendix.

Methods  We rst compare ablated versions of our
Hyperbolic-OT  model (Table 4 in the Appendix),
and then we compare against three state-of-the-art un-
supervised word embedding alignment modelsMuse
(Conneau et al., 2018),Self-Learn  (Artetxe et al.,
2018) andInvarOt  (Alvarez-Melis et al., 2019), using
their recommended con gurations and settings.

Metrics  All the baseline methods return transformed
embeddings. Using these, we retrieve nearest neighbors
and report precision-at-k, i.e., P@k = if the true
match is within the top k retrieved candidate matches
for percent of the test examples.



