Appendices

Appendix A Laundry List of Convergent Algorithms

We outline the general proof recipe, which will be re-using for the following examples.

Proof strategy

(P1) Let $\mu^{(1)}, \mu^{(2)}$ be initial distributions and $\left(f_{0}^{(1)}, f_{0}^{(2)}\right)$ be the optimal coupling which minimizes $\mathcal{W}\left(\mu^{(1)}, \mu^{(2)}\right)$;
(P2) Define an appropriate coupling $f_{1}^{(1)} \sim \mu^{(1)} K, f_{1}^{(2)} \sim \mu^{(2)} K-$ e.g. by defining them to follow the same trajectories if the updates sample from the same distributions;
(P3) Use the upper bound $\mathcal{W}\left(\mu^{(1)} K, \mu^{(2)} K\right) \leq \mathbb{E}\left[\left\|f_{1}^{(1)}-f_{2}^{(2)}\right\|\right]$ and bound $\mathbb{E}\left[\left\|f_{1}^{(1)}-f_{1}^{(2)}\right\|\right] \leq$ $\rho \mathbb{E}\left[\left\|f_{0}^{(1)}-f_{0}^{(2)}\right\|\right]$ for some $\rho<1$ (usually follows from the recursive nature of the updates) to show that $\mu \mapsto \mu K$ is a contraction.

A. 1 Convergence of synchronous Monte Carlo Evaluation with constant step-sizes

We prove that Monte Carlo Evaluation with synchronous updates \& constant step-size converges to a stationary distribution. The algorithm aims to evaluate the value function of a given policy π using Monte Carlo returns. The update rule is given by:

$$
\begin{equation*}
\forall s \in \mathcal{S}: \quad V_{n+1}(s)=(1-\alpha) V_{n}(s)+\alpha \mathcal{G}_{n}^{\pi}(s) \tag{MCE}
\end{equation*}
$$

where $\mathcal{G}_{n}^{\pi}(s)=\sum_{n \geq 0} \gamma^{n} r_{n}\left(s_{n}, a_{n}\right)$ is the return of a random trajectory $\left(s_{n}, a_{n}, r_{n}\right)_{n \geq 0}$ starting from s, following $a_{n} \sim \pi\left(\cdot \mid s_{n}\right), r_{n} \sim \overline{\mathcal{R}}\left(\cdot \mid s_{n}, a_{n}\right)$, and $s_{n+1} \sim \mathcal{P}\left(\cdot \mid s_{n}, a_{n}\right)$.
Theorem A.1. For any constant step size $0<\alpha \leq 1$ and initialization $V_{0} \sim \mu_{0} \in \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}|}\right)$, the sequence of random variables $\left(V_{n}\right)_{n \geq 0}$ defined by the recursion $(M C E)$ converges in distribution to a unique stationary distribution $\varphi_{\alpha} \in$ $\mathcal{M}\left(\mathbb{R}^{|\mathcal{S}|}\right)$.

Proof. Following the proof strategy outlined above, we skip to step (P2) of the proof. We define the coupling of the updates $\left(V_{1}^{(1)}, V_{1}^{(2)}\right)$ to sample the same trajectories:

$$
\left.\begin{array}{l}
V_{1}^{(1)}(s)=(1-\alpha) V_{0}^{(1)}(s)+\alpha \mathcal{G}_{k}^{\pi}(s) \tag{11}\\
V_{1}^{(2)}(s)=(1-\alpha) V_{0}^{(2)}(s)+\alpha \mathcal{G}_{k}^{\pi}(s) .
\end{array}\right\} \text { for the same } \mathcal{G}_{k}^{\pi}(s)
$$

Note that this is a valid coupling of $\left(\mu^{(1)} K_{\alpha}, \mu^{(2)} K_{\alpha}\right)$, since $V_{1}^{(1)}(s)$ and $V_{1}^{(2)}(s)$ have access to the same sampling distributions. We upper bound $\mathcal{W}\left(\mu^{(1)} K_{\alpha}, \mu^{(2)} K_{\alpha}\right)$ by the coupling defined in Equation (11). This gives:

$$
\begin{aligned}
\mathcal{W}\left(\mu^{(1)} K_{\alpha}, \mu^{(2)} K_{\alpha}\right) & \leq \mathbb{E}\left[\left\|V_{1}^{(1)}-V_{1}^{(2)}\right\|\right] \\
& =\mathbb{E}\left[\left\|(1-\alpha) V_{0}^{(1)}+\alpha \mathcal{G}_{1}^{\pi}-\left((1-\alpha) V_{0}^{(2)}+\alpha \mathcal{G}_{1}^{\pi}\right)\right\|\right] \\
& =\mathbb{E}\left[\left\|(1-\alpha)\left(V_{0}^{(1)}-V_{0}^{(2)}\right)\right\|\right] \\
& =(1-\alpha) \mathbb{E}\left[\left\|V_{0}^{(1)}-V_{0}^{(2)}\right\|\right]=(1-\alpha) \mathcal{W}\left(\mu^{(1)}, \mu^{(2)}\right)
\end{aligned}
$$

Since $1-\alpha<1, K_{\alpha}$ is a contraction mapping and we are done.

A. 2 Convergence of synchronous Q-Learning with constant step-sizes

We prove that Q-Learning with synchronous updates \& constant step-sizes converges to a stationary distribution. The algorithm aims to learn the optimal action-value function Q^{\star}. The updates are given by:

$$
\begin{equation*}
\forall(s, a) \in \mathcal{S} \times \mathcal{A}: \quad Q_{n+1}(s, a)=(1-\alpha) Q_{n}(s, a)+\alpha\left(r+\gamma \max _{a^{\prime}} Q_{n}\left(s^{\prime}, a^{\prime}\right)\right), \tag{QL}
\end{equation*}
$$

where $r \sim \mathcal{R}(\cdot \mid s, a), s^{\prime} \sim \mathcal{P}(\cdot \mid s, a)$, and $\alpha>0$.
Theorem A.2. For any constant step size $0<\alpha \leq 1$ and initialization $Q_{0} \sim \mu_{0} \in \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|}\right)$, the sequence of random variables $\left(Q_{n}\right)_{n \geq 0}$ defined by the recursion $(Q L)$ converges in distribution to a unique stationary distribution $\xi_{\alpha} \in \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}|}\right)$.

Proof. We use the proof outline given above, and jump straight to step (P2). We witness the same-sampling coupling again:

$$
\left.\begin{array}{l}
Q_{1}^{(1)}(s, a)=(1-\alpha) Q_{0}^{(1)}(s, a)+\alpha\left(r+\gamma \max _{a^{\prime}} Q_{0}^{(1)}\left(s^{\prime}, a^{\prime}\right)\right) \\
Q_{1}^{(2)}(s . a)=(1-\alpha) Q_{0}^{(2)}(s, a)+\alpha\left(r+\gamma \max _{a^{\prime}} Q_{0}^{(2)}\left(s^{\prime}, a^{\prime}\right)\right)
\end{array}\right\} \text { for the same } \begin{array}{r}
r \sim \mathcal{R}(s, a) \\
s^{\prime} \sim \mathcal{P}(\cdot \mid s, a)
\end{array}
$$

The bound follows similarly, but with one additional step. Again we write $\widehat{\mathcal{T}}(Q)(s, a)=r+\gamma \max _{a^{\prime}} Q\left(s_{(s, a)}^{\prime}, a^{\prime}\right)$ for the empirical Bellman (optimality) operator.

$$
\begin{aligned}
\mathbb{E}\left[\left\|\widehat{\mathcal{T}}\left(Q^{(1)}\right)-\widehat{\mathcal{T}}\left(Q^{(2)}\right)\right\|\right. & =\mathbb{E}\left[\max _{s, a}\left|r-r+\gamma\left(\max _{a^{\prime}} Q^{(1)}\left(s_{(s, a)}^{\prime}, a^{\prime}\right)-\max _{a^{\prime}} Q^{(2)}\left(s_{(s, a)}^{\prime}, a^{\prime}\right)\right)\right|\right] \\
& =\gamma \mathbb{E}\left[\max _{s, a}\left|\max _{a^{\prime}} Q^{(1)}\left(s_{(s, a)}^{\prime}, a^{\prime}\right)-\max _{a^{\prime}} Q^{(2)}\left(s_{(s, a)}^{\prime}, a^{\prime}\right)\right|\right] \\
& \leq \gamma \mathbb{E}\left[\max _{s, a} \max _{a^{\prime}}\left|Q^{(1)}\left(s_{(s, a)}^{\prime}, a^{\prime}\right)-Q^{(2)}\left(s_{(s, a)}^{\prime}, a^{\prime}\right)\right|\right] \\
& \leq \gamma \mathbb{E}\left[\max _{s, a}\left|Q^{(1)}(s, a)-Q^{(2)}(s, a)\right|\right]=\gamma \mathbb{E}\left[\left\|Q^{(1)}-Q^{(2)}\right\|\right]
\end{aligned}
$$

The first inequality follows from $\left|\max _{a^{\prime}} Q_{1}\left(s, a^{\prime}\right)-\max _{a^{\prime}} Q_{2}\left(s, a^{\prime}\right)\right| \leq \max _{a^{\prime}}\left|Q_{1}\left(s, a^{\prime}\right)-Q_{2}\left(s, a^{\prime}\right)\right|$, and the second inequality follows since $Q^{(1)}$ and $Q^{(2)}$ sampled the same s^{\prime}. Concluding the proof as before we see that the kernel is contractive with Lipschitz constant $1+\alpha-\alpha \gamma<1$, and we are done.

A. $3 \mathrm{TD}(\lambda)$

We prove that $\operatorname{TD}(\lambda)$ with synchronous updates \& constant step-size converges to a stationary distribution. The algorithm aims to evaluate the value function of a given policy π using a convex combination of n-step returns. The update rule is given by:

$$
\forall s: V_{n+1}(s)=(1-\alpha) V_{n}(s, a)+\alpha(1-\lambda) \sum_{k=1}^{\infty} \lambda^{k-1}\left(\sum_{i=0}^{k} \gamma^{i} r\left(s_{i}, a_{i}\right)+\gamma^{k} V_{n}\left(s_{k}\right)\right)
$$

where each n-step trajectory is sampled starting from s and following policy π.
Theorem A.3. For any constant step size $0<\alpha \leq 1$ and initialization $V_{0} \sim \mu_{0} \in \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}|}\right)$, the sequence of random variables $\left(V_{n}\right)_{n \geq 0}$ defined by the recursion $(T D(\lambda))$ converges in distribution to a unique stationary distribution $\zeta_{\alpha} \in$ $\mathcal{M}\left(\mathbb{R}^{|\mathcal{S}|}\right)$.

Proof. Again, we jump straight to step (P2) of the template given above. We couple every n-step trajectory to sample the same n rewards, actions, and successors states.

$$
\left.\begin{array}{l}
V_{k+1}^{(1)}(s)=(1-\alpha) V_{k}^{(1)}(s)+\alpha(1-\lambda) \sum_{n=1}^{\infty} \lambda^{n-1}\left(\sum_{i=0}^{n-1} \gamma^{i} r_{i}\left(s_{i}, a_{i}\right)+\gamma^{n} V_{k}^{(1)}\left(s_{n}\right)\right) \\
V_{k+1}^{(2)}(s)=(1-\alpha) V_{k}^{(2)}(s)+\alpha(1-\lambda) \sum_{n=1}^{\infty} \lambda^{n-1}\left(\sum_{i=0}^{n-1} \gamma^{i} r_{i}\left(s_{i}, a_{i}\right)+\gamma^{n} V_{k}^{(2)}\left(s_{n}\right)\right)
\end{array}\right\} \begin{aligned}
& \frac{\text { same }}{\left(s_{i}, a_{i}, r_{i}\right)_{i=0}^{n}}
\end{aligned}
$$

By the coupling, the reward terms will cancel in every n-step trajectory. We write $R_{n}^{(i)}=\sum_{i=0}^{n-1} \gamma^{i} r_{i}\left(s_{i}, a_{i}\right)+$ $\gamma^{n} V_{k}^{(i)}\left(s_{n}\right)$ for the n-step return and $\hat{\mathcal{T}}(V)(s)=\sum_{k=1}^{\infty} \lambda^{k-1}\left(\sum_{i=0}^{k} \gamma^{i} r\left(s_{i}, a_{i}\right)+\gamma^{k} V_{n}\left(s_{k}\right)\right)$ for the empirical Bell-
man operator of $\mathrm{TD}(\lambda)$.

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathcal{T}}\left(V^{(1)}\right)-\hat{\mathcal{T}}\left(V^{(2)}\right)\right\|\right] & =\mathbb{E}\left[\max _{s}\left|\sum_{n=1}^{\infty} \lambda^{n-1} R_{n}^{(1)}-\sum_{n=1}^{\infty} \lambda^{n-1} R_{n}^{(2)}\right|\right] \\
& =\mathbb{E}\left[\max _{s}\left|\sum_{n=1}^{\infty} \lambda^{n-1}\left(R_{n}^{(1)}-R_{n}^{(2)}\right)\right|\right] \\
& =\mathbb{E}\left[\max _{s}\left|\sum_{n=1}^{\infty} \lambda^{n-1} \gamma^{n}\left(V^{(1)}\left(s_{n}\right)-V^{(2)}\left(s_{n}\right)\right)\right|\right] \quad \text { (reward terms cancel) } \\
& \leq \mathbb{E}\left[\sum_{n=1}^{\infty} \lambda^{n-1} \gamma^{n} \max _{s}\left|\left(V^{(1)}\left(s_{n}\right)-V^{(2)}\left(s_{n}\right)\right)\right|\right] \quad \quad \text { (triangle inequality) } \\
& \leq \sum_{n=1}^{\infty} \lambda^{n-1} \gamma^{n} \mathbb{E}\left[\max _{s}\left|V^{(1)}(s)-V^{(2)}(s)\right|\right] \quad \quad \text { (by the coupling) } \\
& =\sum_{n=1}^{\infty} \lambda^{n-1} \gamma^{n} \mathbb{E}\left[\left\|V^{(1)}-V^{(2)}\right\|\right]=\gamma \frac{1}{1-\lambda \gamma} \mathbb{E}\left[\left\|V^{(1)}-V^{(2)}\right\|\right]
\end{aligned}
$$

Concluding the proof as before, we have $\mathcal{W}\left(\mu^{(1)} K, \mu^{(2)} K\right) \leq\left(1-\alpha+\alpha \gamma \frac{1-\lambda}{1-\lambda \gamma}\right) \mathcal{W}\left(\mu^{(1)}, \mu^{(2)}\right)$. Since $1-\alpha+\alpha \gamma \frac{1-\lambda}{1-\lambda \gamma}$; 1 we are done.

A. 4 SARSA with ε-greedy policies

In this example we will example the use of ε-greedy policies for control. In particular, we examine SARSA updates with ε-greedy policies. Let $\pi(\cdot \mid s)$ be some base policy. The updates are as follow:

$$
Q_{k+1}(s, a)= \begin{cases}(1-\alpha) Q_{k}(s, a)+\alpha\left(r(s, a)+\gamma Q_{k}\left(s^{\prime}, a^{\prime}\right)\right) & \text { w.p. } \varepsilon \tag{SARSA}\\ (1-\alpha) Q_{k}(s, a)+\alpha\left(r(s, a)+\gamma \max _{a^{\prime}} Q_{k}\left(s^{\prime}, a^{\prime}\right)\right) & \text { w.p. } 1-\varepsilon\end{cases}
$$

where $r \sim \mathcal{R}(\cdot \mid s, a)$ and $s^{\prime} \sim \mathcal{P}(\cdot \mid s, a)$ in both cases and $a^{\prime} \sim \pi\left(\cdot \mid s^{\prime}\right)$ in the first case.
Theorem A.4. For any constant step size $0<\alpha \leq 1$ and initialization $Q_{0} \sim \mu_{0} \in \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|}\right)$, the sequence of random variables $\left(Q_{n}\right)_{n \geq 0}$ defined by the recursion (SARSA) converges in distribution to a unique stationary distribution $\theta_{\alpha} \in \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|}\right)$.

Proof. We jump straight to step (P2) of the proof template. We use the same-sampling coupling, where $Q_{1}^{(1)}$ takes the greedy action if and only if $Q_{1}^{(2)}$ does. In the non-greedy case, they sample the same $a^{\prime} \sim \pi\left(\cdot \mid s^{\prime}\right)$. In all cases, both functions sample the same $r(s, a)$ and s^{\prime}.

We write $\hat{\mathcal{T}}(Q)(s, a)=\left\{\begin{array}{l}r+\gamma Q\left(s^{\prime}, a^{\prime}\right) \text { w.p. } \varepsilon \\ r+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right) \text { w.p. } 1-\varepsilon\end{array}\right.$
The bound follows similarly to the examples of Q-learning and $\operatorname{TD}(0)$. We omit the subscripts on the Q functions.

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathcal{T}}\left(Q^{(1)}\right)-\hat{\mathcal{T}}\left(Q^{(2)}\right)\right\|\right]= & \mathbb{P}\{\text { greedy action chosen }\} \mathbb{E}\left[\max _{s, a} \gamma \mid\left(\max _{a^{\prime}} Q^{(1)}\left(s^{\prime}, a^{\prime}\right)-\max _{a^{\prime}} Q^{(2)}\left(s^{\prime}, a^{\prime}\right) \mid\right]\right. \\
& +\mathbb{P}\{\text { non-greedy action chosen }\} \mathbb{E}\left[\max _{s, a}\left|\gamma\left(Q^{(1)}\left(s^{\prime}, a^{\prime}\right)-Q^{(2)}\left(s^{\prime}, a^{\prime}\right)\right)\right|\right] \\
\leq & \varepsilon \gamma \mathbb{E}\left[\left\|Q^{(1)}-Q^{(2)}\right\|\right]+(1-\varepsilon) \gamma \mathbb{E}\left[\left\|Q^{(1)}-Q^{(2)}\right\|\right] \\
= & \gamma \mathbb{E}\left[\left\|Q^{(1)}-Q^{(2)}\right\|\right]
\end{aligned}
$$

The bound $\mathbb{E}\left[\max _{s, a} \gamma \mid\left(\max _{a^{\prime}} Q^{(1)}\left(s^{\prime}, a^{\prime}\right)-\max _{a^{\prime}} Q^{(2)}\left(s^{\prime}, a^{\prime}\right) \mid\right] \leq \gamma \mathbb{E}\left[\left\|Q^{(1)}-Q^{(2)}\right\|\right]\right.$ follows from $\left|\max _{a^{\prime}} Q_{1}\left(s, a^{\prime}\right)-\max _{a^{\prime}} Q_{2}\left(s, a^{\prime}\right)\right| \leq \max _{a^{\prime}}\left|Q_{1}\left(s, a^{\prime}\right)-Q_{2}\left(s, a^{\prime}\right)\right|$, and since $Q^{(1)}$ and $Q^{(2)}$ sampled the
same s^{\prime} in the greedy case. The bound $\mathbb{E}\left[\max _{s, a}\left|\gamma\left(Q^{(1)}\left(s^{\prime}, a^{\prime}\right)-Q^{(2)}\left(s^{\prime}, a^{\prime}\right)\right)\right|\right] \leq \mathbb{E}\left[\left\|Q^{(1)}-Q^{(2)}\right\|\right]$ follows since $Q^{(1)}$ and $Q^{(2)}$ sampled the same state-action pair in the non-greedy case. Concluding the proof as before, we have that $\mathbb{E}\left[\left\|Q_{1}^{(1)}-Q_{1}^{(2)}\right\|\right] \leq(1-\alpha+\alpha \gamma) \mathbb{E}\left[\left\|Q_{0}^{(1)}-Q_{0}^{(2)}\right\|\right]$, and thus the kernel is a contraction.

A. 5 Expected SARSA with ε-greedy policies

In this example we examine the Expected SARSA updates with ε-greedy policies. Let $\pi(\cdot \mid s)$ be some base policy. Define $\pi_{\varepsilon}(\cdot \mid s)$ as the ε-greedy policy which takes the greedy action with probability $1-\varepsilon$ and π otherwise. The updates are as follow:

$$
Q_{k+1}(s, a)=(1-\alpha) Q_{k}(s, a)+\alpha\left(r(s, a)+\gamma \sum_{a^{\prime}} \pi_{\varepsilon}\left(a^{\prime} \mid s\right) Q_{k}\left(s^{\prime}, a^{\prime}\right)\right)
$$

(Expected-SARSA)
where $r \sim \mathcal{R}(\cdot \mid s, a)$ and $s^{\prime} \sim \mathcal{P}(\cdot \mid s, a)$ in both cases and $a^{\prime} \sim \pi\left(\cdot \mid s^{\prime}\right)$ in the first case.
Theorem A.5. For any constant step size $0<\alpha \leq 1$ and initialization $Q_{0} \sim \mu_{0} \in \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|}\right)$, the sequence of random variables $\left(Q_{n}\right)_{n \geq 0}$ defined by the recursion (Expected-SARSA) converges in distribution to a unique stationary distribution $\beta_{\alpha} \in \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|}\right)$.

Proof. We jump straight to step ($\mathbf{P 2}$) of the proof template. We use the same-sampling coupling.
We write $\hat{\mathcal{T}}(Q)(s, a)=r+\gamma \sum_{a^{\prime}} \pi\left(a^{\prime} \mid s\right) Q\left(s^{\prime}, a^{\prime}\right)$. The bound follows similarly to the examples of Q-learning and $\mathrm{TD}(0)$. We omit the subscripts on the Q-functions.

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{\mathcal{T}}\left(Q^{(1)}\right)-\hat{\mathcal{T}}\left(Q^{(2)}\right)\right\|\right] & =\mathbb{E}\left[\max _{s, a} \gamma\left|\sum_{a^{\prime}} \pi_{\varepsilon}\left(a^{\prime}\right) Q^{(1)}\left(s^{\prime}, a^{\prime}\right)-\sum_{a^{\prime}} \pi_{\varepsilon}\left(a^{\prime}\right) Q^{(2)}\left(s^{\prime}, a^{\prime}\right)\right|\right] \\
& \leq \mathbb{E}\left[\max _{s, a} \gamma \sum_{a^{\prime}} \pi_{\varepsilon}\left(a^{\prime}\right)\left|Q^{(1)}\left(s^{\prime}, a^{\prime}\right)-Q^{(2)}\left(s^{\prime}, a^{\prime}\right)\right|\right] \\
& \leq \mathbb{E}\left[\max _{s, a} \gamma \sum_{a^{\prime}} \pi_{\varepsilon}\left(a^{\prime}\right)\left\|Q^{(1)}\left(s^{\prime}, a^{\prime}\right)-Q^{(2)}\left(s^{\prime}, a^{\prime}\right)\right\|\right] \\
& \leq \gamma \mathbb{E}\left[\left\|Q^{(1)}-Q^{(2)}\right\|\right]
\end{aligned}
$$

Concluding the proof as before, we have that $\mathbb{E}\left[\left\|Q_{1}^{(1)}-Q_{1}^{(2)}\right\|\right] \leq(1-\alpha+\alpha \gamma) \mathbb{E}\left[\left\|Q_{0}^{(1)}-Q_{0}^{(2)}\right\|\right]$, and thus the kernel is a contraction.

A. 6 Double Q-Learning

In this example we will have to modify our state-space and introduce a new metric on pairs of Q-functions. The Double Q-Learning algorithm (Hasselt, 2010) ${ }^{1}$ maintains two random estimates (Q^{A}, Q^{B}) and updates Q^{A} with probability p and Q^{B} with probability $1-p$. Should Q^{A} be chosen to be updated, the update is:

$$
Q_{n+1}^{A}(s, a)=(1-\alpha) Q_{n}^{A}(s, a)+\alpha\left(r(s, a)+\gamma Q_{n}^{B}\left(s, \operatorname{argmax}_{a^{\prime}} Q_{n}^{A}\left(s^{\prime}, a^{\prime}\right)\right)\right) .
$$

Analogously, the update for Q^{B} is:

$$
Q_{n+1}^{B}(s, a)=(1-\alpha) Q_{n}^{B}(s, a)+\alpha\left(r(s, a)+\gamma Q_{n}^{A}\left(s, \operatorname{argmax}_{a^{\prime}} Q_{n}^{B}\left(s^{\prime}, a^{\prime}\right)\right)\right) .
$$

In both cases, we have $s^{\prime} \sim \mathcal{P}(\cdot \mid s, a)$. For this algorithm, the updates are Markovian on pairs of action-value functions. Thus we set the state space to be $\mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|} \times \mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|}$. We choose the product metric defined by $d_{1}\left(\left(Q^{A}, Q^{B}\right),\left(R^{A}, R^{B}\right)\right)=\left\|Q^{A}-R^{A}\right\|+\left\|Q^{B}-R^{B}\right\|$.

[^0]Theorem A.6. For any constant step size $0<\alpha \leq 1$ and initialization $\left(Q_{0}^{A}, Q_{0}^{B}\right) \sim \mu_{0} \in \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|} \times \mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|}\right)$, the sequence of random variables $\left(Q_{n}^{A}, Q_{n}^{B}\right)_{n \geq 0}$ defined by the Double Q-Learning recursion converges in distribution to a unique stationary distribution $\chi_{\alpha} \in \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|} \times \mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|}\right)$.

Proof. As before, let $\mu^{(1)}, \mu^{(2)} \mathcal{M}\left(\mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|} \times \mathbb{R}^{|\mathcal{S}| \times|\mathcal{A}|}\right)$ be arbitrary initializations and $\left(Q_{0}^{A}, Q_{0}^{B}\right)$ and $\left(R_{0}^{A}, R_{0}^{B}\right)$ be the optimal coupling of $\mathcal{W}\left(\mu^{(1)}, \mu^{(2)}\right)$. We couple $\left(Q_{1}^{A}, Q_{1}^{B}\right)$ and $\left(R_{1}^{A}, R_{1}^{B}\right)$ to sample the same function to be updated and the same s^{\prime}. Assume for a moment that Q^{A} and R^{A} are chosen to be updated. Proceeding as in the proof of Q-Learning (cf. Theorem A.2), we find that

$$
\mathbb{E}\left[\left\|Q_{1}^{A}-R_{1}^{A}\right\|\right] \leq(1-\alpha) \mathbb{E}\left[\left\|Q_{0}^{A}-R_{0}^{A}\right\|\right]+\alpha \gamma \mathbb{E}\left[\left\|Q_{0}^{B}-R_{0}^{B}\right\|\right]
$$

Analogously, if Q^{B} and R^{B} are chosen to updated, we have:

$$
\mathbb{E}\left[\left\|Q_{1}^{B}-R_{1}^{B}\right\|\right] \leq(1-\alpha) \mathbb{E}\left[\left\|Q_{0}^{B}-R_{0}^{B}\right\|\right]+\alpha \gamma \mathbb{E}\left[\left\|Q_{0}^{A}-R_{0}^{A}\right\|\right]
$$

Putting everything together, the full expectation is:

$$
\begin{aligned}
\mathbb{E}\left[d\left(\left(Q_{1}^{A}, Q_{1}^{B}\right),\left(R_{1}^{A}, R_{1}^{B}\right)\right)\right]= & \mathbb{E}\left[\left\|Q_{1}^{A}-R_{1}^{A}\right\|+\left\|Q_{1}^{B}-R_{1}^{B}\right\|\right] \\
= & \mathbb{P}\{\text { A is updated }\} \mathbb{E}\left[\left\|Q_{1}^{A}-R_{1}^{A}\right\|+\left\|Q_{1}^{B}-R_{1}^{B}\right\|\right] \\
& +\mathbb{P}\{\text { B is updated }\} \mathbb{E}\left[\left\|Q_{1}^{A}-R_{1}^{A}\right\|+\left\|Q_{1}^{B}-R_{1}^{B}\right\|\right] \\
= & p \mathbb{E}\left[\left\|Q_{1}^{A}-R_{1}^{A}\right\|+\left\|Q_{0}^{B}-R_{0}^{B}\right\|\right] \\
& +(1-p) \mathbb{E}\left[\left\|Q_{0}^{A}-R_{0}^{A}\right\|+\left\|Q_{1}^{B}-R_{1}^{B}\right\|\right] \\
\leq & p\left((1-\alpha) \mathbb{E}\left[\left\|Q_{0}^{A}-R_{0}^{A}\right\|\right]+(1+\alpha \gamma) \mathbb{E}\left[\left\|Q_{0}^{B}-R_{0}^{B}\right\|\right]\right) \\
& +(1-p)\left((1+\alpha \gamma) \mathbb{E}\left[\left\|Q_{0}^{A}-R_{0}^{A}\right\|\right]+(1-\alpha) \mathbb{E}\left[\left\|Q_{0}^{B}-R_{0}^{B}\right\|\right]\right) \\
\leq & \frac{1}{2}(2+\alpha \gamma-\alpha)\left(\mathbb{E}\left[\left\|Q_{0}^{A}-R_{0}^{A}\right\|\right]+\mathbb{E}\left[\left\|Q_{0}^{B}-R_{0}^{B}\right\|\right]\right) \quad\left(p=\frac{1}{2}\right) \\
= & \frac{1}{2}(2+\alpha \gamma-\alpha) \mathbb{E}\left[d\left(\left(Q_{0}^{A}, Q_{0}^{B}\right),\left(R_{0}^{A}, R_{0}^{B}\right)\right)\right]
\end{aligned}
$$

Since $0 \leq 1 / 2(2+\alpha \gamma-\alpha)<1$, so we are done. We note that the first equality only follows since, under the coupling, either A or B is updated for both functions.

Appendix B Proofs of Section 5

Theorem B.1. Suppose $\widehat{\mathcal{T}}^{\pi}$ is such that the updates (5) with step-size α converge to a stationary distribution ψ_{α}. If $\widehat{\mathcal{T}}$ is an empirical Bellman operator for some policy π, then $\mathbb{E}\left[f_{\alpha}\right]=f^{\pi}$ where $f_{\alpha} \sim \psi_{\alpha}$ and f^{π} is the fixed point of \mathcal{T}^{π}.

Proof. Let f_{0} be distributed according to ψ_{α}. Rewriting equation (5):

$$
\begin{equation*}
f_{1}=(1-\alpha) f_{0}+\alpha \mathcal{T}^{\pi} f_{0}+\alpha \xi\left(f_{0}\right) \tag{12}
\end{equation*}
$$

where $\xi\left(f_{0}\right)=\hat{\mathcal{T}}^{\pi}\left(f_{0}, \omega\right)-\mathcal{T}^{\pi} f_{0}$ is a zero-mean noise term. Taking expectations on both sides, and using that f_{1} is also distributed according to ψ_{α} by stationarity and that $\mathbb{E}[\xi(f)]=0$ for any f :

$$
\begin{aligned}
\overline{f_{\alpha}} & =(1-\alpha) \overline{f_{\alpha}}+\alpha \mathbb{E}\left[\mathcal{T}^{\pi} f_{0}\right] \\
\alpha \overline{f_{\alpha}} & =\alpha \mathbb{E}\left[\mathcal{R}^{\pi}+\gamma \mathcal{P}^{\pi} f_{0}\right] \\
\overline{f_{\alpha}} & =\mathcal{R}^{\pi}+\gamma \mathcal{P}^{\pi} \mathbb{E}\left[f_{0}\right] \\
\overline{f_{\alpha}} & =\mathcal{T}^{\pi} \overline{f_{\alpha}}
\end{aligned}
$$

And therefore $\overline{f_{\alpha}}=f^{\pi}$ since it is the unique fixed point of \mathcal{T}^{π}.
Theorem B.2. Suppose $\widehat{\mathcal{T}}^{\pi}$ is such that the updates (5) with step-size α converge to a stationary distribution ψ_{α}, and that $\widehat{\mathcal{T}}^{\pi}$ is an empirical Bellman operator for some policy π. Define

$$
\mathcal{C}(f):=\mathbb{E}_{\omega}\left[\left(\widehat{\mathcal{T}}^{\pi}(f, \omega)-\mathcal{T}^{\pi} f\right)\left(\widehat{\mathcal{T}}^{\pi}(f, \omega)-\mathcal{T}^{\pi} f\right)^{\top}\right]
$$

to be the covariance of the zero-mean noise term $\widehat{\mathcal{T}}^{\pi}(f, \omega)-\mathcal{T}^{\pi} f$ for a given function f. Then, the covariance of $f_{\alpha} \sim \psi_{\alpha}$ is given by

$$
\begin{aligned}
\left(1-(1-\alpha)^{2}\right) \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{T}}\right]= & \alpha^{2}\left(\gamma \mathcal{P}^{\pi}\right) \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{\top}}\right]\left(\gamma \mathcal{P}^{\pi}\right)^{\mathrm{\top}} \\
& +\alpha(1-\alpha)\left(\gamma \mathcal{P}^{\pi}\right) \mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\mathrm{T}}\right] \\
& +\alpha(1-\alpha) \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{T}}\right]\left(\gamma \mathcal{P}^{\pi}\right)^{\mathrm{\top}} \\
& +\alpha^{2} \int \mathcal{C}(f) \psi_{\alpha}(\mathrm{d} f)
\end{aligned}
$$

Furthermore, we have that $\left\|\mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{T}}\right]\right\|_{o p}$ is monotonically decreasing with respect to α, where $\|\cdot\|_{o p}$ denotes the operator norm of a matrix. In particular, $\lim _{\alpha \rightarrow 0}\left\|\mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\top}\right]\right\|_{o p}=0$, and we have that:

$$
\mathbb{P}\left\{\min _{i}\left|f_{\alpha}(i)-f^{\pi}(i)\right| \geq \varepsilon\right\} \xrightarrow{\alpha \rightarrow 0} 0 \quad \forall \varepsilon>0
$$

We preface the proof with some useful identities. We will write the covariance in terms of the tensor product for ease of manipulations
Lemma B.1. Write $\xi(f):=\left(\widehat{\mathcal{T}}^{\pi}(f, \omega)-\mathcal{T}^{\pi} f\right)$. In the same setup as Theorem 5.2:

$$
\mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(\mathcal{T}^{\pi} f_{\alpha}-f^{\pi}+\xi\left(f_{0}\right)\right)^{\mathrm{T}}\right]=\mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{T}}\right]\left(\gamma \mathcal{P}^{\pi}\right)^{\mathrm{\top}}
$$

and

$$
\begin{aligned}
\mathbb{E}\left[\left(\left(\mathcal{T}^{\pi} f_{\alpha}-f^{\pi}\right)+\xi\left(f_{\alpha}\right)\right)\left(\left(\mathcal{T}^{\pi} f_{\alpha}-f^{\pi}\right)+\xi\left(f_{\alpha}\right)\right)^{\top}\right]= & \left(\gamma \mathcal{P}^{\pi}\right) \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\top}\right]\left(\gamma \mathcal{P}^{\pi}\right)^{\top} \\
& +\int C(v) \psi_{\alpha}(\mathrm{d} v)
\end{aligned}
$$

Proof. Let $f_{0} \sim \psi_{\alpha}$, by (5) we have $f_{1}=(1-\alpha) f_{0}+\alpha\left(\mathcal{T}^{\pi} f_{0}+\xi\left(f_{0}\right)\right)$ and $f_{1} \sim \psi_{\alpha}$. Furthermore, the distribution of f_{0} is independent of the distribution of ω. By independence,

$$
\begin{aligned}
\mathbb{E}\left[\left(f_{0}-f^{\pi}\right) \xi\left(f_{0}\right)^{\top}\right] & =\mathbb{E}_{f_{0}} \mathbb{E}_{\omega}\left[\left(f_{0}-f^{\pi}\right) \xi\left(f_{0}\right)^{\top}\right] & \text { (by independence of } \left.f_{0} \text { and } \xi(\cdot)\right) \\
& =\mathbb{E}_{f_{0}}\left[\left(f_{0}-f^{\pi}\right)\left(\mathbb{E}_{\omega} \xi\left(f_{0}\right)\right)^{\top}\right]=0 & \left(\mathbb{E}_{\omega}[\xi(f)]=0 \text { for every } f\right)
\end{aligned}
$$

For the first identity, note that

$$
\begin{aligned}
\left.\mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}\right)\right)^{\top}\right] & =\mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(\mathcal{R}^{\pi}+\gamma \mathcal{P}^{\pi}\left(f_{0}\right)-\mathcal{R}^{\pi}-\gamma \mathcal{P}^{\pi}\left(f^{\pi}\right)\right)^{\top}\right] \\
& =\mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(\gamma \mathcal{P}^{\pi}\left(f_{0}-f^{\pi}\right)\right)^{\top}\right] \\
& =\mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\top}\left(\gamma \mathcal{P}^{\pi}\right)^{\mathrm{T}}\right] \\
& =\mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\mathrm{\top}}\right]\left(\gamma \mathcal{P}^{\pi}\right)^{\top}
\end{aligned}
$$

The first identity then follows by using $\mathbb{E}\left[\left(f_{0}-f^{\pi}\right) \xi\left(f_{0}\right)^{\top}\right]=0$ and linearity of expectations.
For the second identity, expanding the outer product gives:

$$
\begin{aligned}
\mathbb{E}\left[\left(\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}\right)+\xi\left(f_{0}\right)\right)\left(\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}\right)+\xi\left(f_{0}\right)\right)^{\top}\right]= & \mathbb{E}\left[\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}\right)\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}\right)^{\top}\right] \\
& \left.+\mathbb{E}\left[\left(\xi\left(f_{0}\right)\right)\left(\xi\left(f_{0}\right)\right)\right)^{\top}\right] \\
& +\frac{\mathbb{E}\left[\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}\right)\left(\xi\left(f_{0}\right)\right)^{\top}\right]}{} \\
& +\mathbb{E}\left[\xi\left(f_{0}\right)\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}\right)^{\top}\right] \\
= & \mathbb{E}\left[\left(\gamma \mathcal{P}^{\pi}\left(f_{0}-f^{\pi}\right)\right)\left(\gamma \mathcal{P}^{\pi}\left(f_{0}-f^{\pi}\right)\right)^{\top}\right] \\
& +\int \mathcal{C}(v) \psi_{\alpha}(\mathrm{d} v) \\
= & \left(\gamma P^{\pi}\right) \mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\top}\right]\left(\gamma P^{\pi}\right)^{\top} \\
& +\int \mathcal{C}(v) \psi_{\alpha}(\mathrm{d} v)
\end{aligned}
$$

where we used $\mathbb{E}\left[\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}\right)\left(\xi\left(f_{0}\right)\right)^{\top}\right]=0$.

Proof (of Theorem 5.2). Again let f_{0} be distributed according to ψ_{α}. Subtracting f^{π} from equation (12),

$$
f_{1}-f^{\pi}=(1-\alpha)\left(f_{0}-f^{\pi}\right)+\alpha\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}+\xi\left(f_{0}\right)\right)
$$

and taking outer products:

$$
\begin{aligned}
\left(f_{1}-f^{\pi}\right)\left(f_{1}-f^{\pi}\right)^{\top}= & (1-\alpha)^{2}\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\top} \\
& +\alpha^{2}\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}+\xi\left(f_{0}\right)\right)\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}+\xi\left(f_{0}\right)\right)^{\top} \\
& +\alpha(1-\alpha)\left(f_{0}-f^{\pi}\right)\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}+\xi\left(f_{0}\right)\right)^{\top} \\
& +\alpha(1-\alpha)\left(\mathcal{T}^{\pi} f_{0}-f^{\pi}+\xi\left(f_{0}\right)\right)\left(f_{0}-f^{\pi}\right)^{\top}
\end{aligned}
$$

Taking expectations on both sides, and using Lemma B.1:

$$
\begin{aligned}
\mathbb{E}\left[\left(f_{1}-f^{\pi}\right)\left(f_{1}-f^{\pi}\right)^{\mathrm{\top}}\right]= & (1-\alpha)^{2} \mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\mathrm{\top}}\right]+\alpha^{2}\left(\gamma \mathcal{P}^{\pi}\right) \mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\right]\left(\gamma \mathcal{P}^{\pi}\right)^{\mathrm{\top}} \\
& +\alpha^{2} \int \mathcal{C}(v) \psi_{a}(\mathrm{~d} v) \\
& +\alpha(1-\alpha)\left(\gamma \mathcal{P}^{\pi}\right) \mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\mathrm{\top}}\right] \\
& +\alpha(1-\alpha) \mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\mathrm{T}}\right]\left(\gamma \mathcal{P}^{\pi}\right)^{\mathrm{\top}}
\end{aligned}
$$

Since $\mathbb{E}\left[\left(f_{1}-f^{\pi}\right)\left(f_{1}-f^{\pi}\right)^{\top}\right]=\mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\top}\right]$ by stationarity, re-arranging to the LHS and factoring gives:

$$
\begin{aligned}
\left(1-(1-\alpha)^{2}\right) \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{T}}\right]= & \alpha^{2}\left(\gamma \mathcal{P}^{\pi}\right) \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{\top}}\right]\left(\gamma \mathcal{P}^{\pi}\right)^{\mathrm{\top}} \\
& +\alpha(1-\alpha)\left(\gamma \mathcal{P}^{\pi}\right) \mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\mathrm{T}}\right] \\
& +\alpha(1-\alpha) \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{T}}\right]\left(\gamma \mathcal{P}^{\pi}\right)^{\mathrm{\top}} \\
& +\alpha^{2} \int \mathcal{C}(f) \psi_{\alpha}(\mathrm{d} f)
\end{aligned}
$$

For the remainder of the proof we re-write the above expression in terms of tensor products. The tensor product of two vectors x, y is the matrix defined by $x \otimes y=x y^{\top}$. By extension, the tensor product of two matrices A, B is the operator defined by $(A \otimes B) X=A X B^{\top}$. Then, the above expression can be re-written as:

$$
\begin{aligned}
\left(1-(1-\alpha)^{2}\right) \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\top}\right]= & \alpha^{2}\left(\gamma \mathcal{P}^{\pi}\right)^{\otimes 2} \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\top}\right] \\
& +\alpha(1-\alpha)\left(\gamma \mathcal{P}^{\pi} \otimes \mathrm{I}\right) \mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\mathrm{\top}}\right] \\
& +\alpha(1-\alpha)\left(\mathrm{I} \otimes \gamma \mathcal{P}^{\pi}\right) \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{\top}}\right] \\
& +\alpha^{2} \int \mathcal{C}(f) \psi_{\alpha}(\mathrm{d} f) .
\end{aligned}
$$

Factoring the tensor products further gives:

$$
\left[I-\left((1-\alpha) I+\alpha \gamma P^{\pi}\right)^{\otimes 2}\right] \mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)^{\otimes 2}\right]=\alpha^{2} \int \mathcal{C}(f) \psi_{\alpha}(\mathrm{d} f)
$$

We show that the matrix on the LHS is invertible. By (Puterman, 2014, Corollary C.4) it will follow from showing that $\rho\left(\left((1-\alpha) I+\alpha \gamma P^{\pi}\right)^{\otimes 2}\right)<1$, where $\rho(A)$ is the spectral radius of matrix A. Writing $\|A\|_{\mathrm{op}}=$ $\max _{i} \sum_{j}|A(i, j)|$ for the operator norm of a matrix A, and using that $\rho(A) \leq\|A\|_{\mathrm{op}},\|A \otimes B\|_{\mathrm{op}}=\|A\|_{\mathrm{op}}\|B\|_{\mathrm{op}}$, and $\left\|P^{\pi}\right\|_{\mathrm{op}}=\|I\|_{\mathrm{op}}=1$:

$$
\begin{equation*}
\left\|\left((1-\alpha) I+\alpha \gamma P^{\pi}\right)^{\otimes 2}\right\|_{\mathrm{op}}=\left\|(1-\alpha) I+\alpha \gamma P^{\pi}\right\|_{\mathrm{op}}^{2} \leq((1-\alpha)+\alpha \gamma)^{2}<1 \tag{13}
\end{equation*}
$$

where the last inequality followed since $\gamma<1$. Finally, for the limit $\alpha \rightarrow 0$, we use the following identity: if A is such that $\|I-A\| \leq 1$ then $\left\|A^{-1}\right\| \leq \frac{1}{1-\|I-A\|}$. We let $A=I-\left((1-\alpha) I+\alpha \gamma \mathcal{P}^{\pi}\right)^{\otimes 2}$, by the calculation in (13) we have $\|I-A\|<1$. So we calculate the operator norm of the covariance matrix:

$$
\begin{aligned}
\left\|\mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\mathrm{T}}\right]\right\| & =\alpha^{2}\left\|\left[I-\left((1-\alpha) I+\alpha \gamma P^{\pi}\right)^{\otimes 2}\right]^{-1} \int \mathcal{C}(v) \psi_{\alpha}(\mathrm{d} v)\right\| \\
& \leq \alpha^{2}\left\|\left[I-\left((1-\alpha) I+\alpha \gamma P^{\pi}\right)^{\otimes 2}\right]^{-1}\right\|\left\|\int \mathcal{C}(v) \psi_{\alpha}(\mathrm{d} v)\right\| \\
& \leq \alpha^{2} \frac{1}{1-\left\|I-I+\left((1-\alpha) I+\alpha \gamma P^{\pi}\right)^{\otimes 2}\right\|}\left\|\int \mathcal{C}(v) \psi_{\alpha}(\mathrm{d} v)\right\| \\
& =\alpha^{2} \frac{1}{1-\left\|\left((1-\alpha) I+\alpha \gamma P^{\pi}\right)^{\otimes 2}\right\|}\left\|\int \mathcal{C}(v) \psi_{\alpha}(\mathrm{d} v)\right\| \\
& =\alpha^{2} \frac{1}{1-\left\|\left((1-\alpha) I+\alpha \gamma P^{\pi}\right)\right\|^{2}}\left\|\int \mathcal{C}(v) \psi_{\alpha}(\mathrm{d} v)\right\| \\
& \leq \alpha^{2} \frac{1}{1-(1-\alpha+\alpha \gamma)^{2}}\left\|\int \mathcal{C}(v) \psi_{\alpha}(\mathrm{d} v)\right\|
\end{aligned}
$$

Finally, since the state space is bounded in $[0, \operatorname{Rmax} /(1-\gamma)]^{n}$, we have $(\widehat{\mathcal{T}} f)_{i} \leq \operatorname{Rmax} /(1-\gamma)$ and $(\mathcal{T} f)_{i} \leq$ $\operatorname{Rmax} /(1-\gamma)$ for each i. Then, we have $\left|\xi_{\omega}(f)_{i} \xi_{\omega}(f)_{j}\right|=\left|(\widehat{\mathcal{T}} f)_{i}(\mathcal{T} f)_{j}-(\mathcal{T} f)_{i}(\widehat{\mathcal{T}} f)_{j}-(\mathcal{T} f)_{j}(\widehat{\mathcal{T}} f)_{j}+(\mathcal{T} f)_{j}(\mathcal{T} f)_{i}\right| \leq$ $4 \frac{\mathrm{Rmax}^{2}}{(1-\gamma)^{2}}$ Thus we have $\|\mathcal{C}(f)\| \leq 4 \frac{\mathrm{Rmax}^{2}}{(1-\gamma)^{2}}:=M$ and thus

$$
\left\|\mathbb{E}\left[\left(f_{0}-f^{\pi}\right)\left(f_{0}-f^{\pi}\right)^{\mathrm{T}}\right]\right\| \leq M \frac{\alpha^{2}}{1-(1-\alpha+\alpha \gamma)^{2}} \xrightarrow{\alpha \rightarrow 0} 0
$$

For the concentration inequality, we will use a multivariate Chebyshev inequality (Marshall and Olkin, 1960, Theorem 3.1), whos statement is as follows:
Theorem B.3. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector with $\mathbb{E} X=0$ and $\mathbb{E}\left[X^{T} X\right]=\Sigma$. Let $T=T_{+} \cup\left\{x:-x \in T_{+}\right\}$, where $T_{+} \subseteq \mathbb{R}^{n}$ is a closed, convex set. If $A=\left\{a \in \mathbb{R}^{n}:\langle a, x\rangle \geq 1 \forall x \in T_{+}\right\}$, then

$$
\mathbb{P}\{X \in T\} \leq \inf _{a \in A} a^{\top} \Sigma a
$$

Let $\varepsilon>0$. We first bound $a^{\top} \Sigma a$ with the operator norm of Σ. Note that

$$
\begin{aligned}
a^{\top} \Sigma a & =\sum_{i} a_{i}(\Sigma a)_{i} \\
& \leq \sum_{i} a_{i}\|\Sigma a\| \leq n\|\Sigma\|_{\mathrm{op}}\|a\|^{2}
\end{aligned}
$$

We define T_{+}to be the intersection of half-planes the $\left\{x \mid x_{i} \geq \varepsilon\right\}$, so that $T_{+}=\left\{x \mid x_{i} \geq \varepsilon \forall i\right\}$. Since the half-planes are closed and convex, T_{+}is also closed and convex since it is an intersection of closed and convex sets.Then, $T=T_{+} \cup\left\{x:-x \in T_{+}\right\}=\left\{x \mid x_{i} \geq \varepsilon \forall i\right.$ or $\left.x_{i} \leq-\varepsilon \forall i\right\}$. Note that $x \in T \Longleftrightarrow \min _{i}\left|x_{i}\right| \geq \varepsilon$. We define $X=f_{\alpha}-f^{\pi}$ which has zero-mean. Finally, Theorem B. 3 states that

$$
\mathbb{P}\{X \in T\}=\mathbb{P}\left\{f_{\alpha}-f^{\pi} \in T\right\} \leq \inf _{a \in A} a^{T} \Sigma a \leq n\|\Sigma\|_{\mathrm{op}} \inf _{a \in A}\|a\|^{2}
$$

Note that $\inf _{a}\|a\|^{2}$ is bounded since $a=\left(\frac{1}{n \varepsilon}, \frac{1}{n \varepsilon}, \ldots, \frac{1}{n \varepsilon}\right)$ is in A and $\|a\|^{2}=\frac{1}{(n \varepsilon)^{2}}$. So $n \inf _{a \in A}\|a\|^{2} \leq C$ for some constant C independent of α. From the previous result, we can take the limit of $\alpha \rightarrow 0$ of $\|\Sigma\|_{\text {op }}=$ $\left\|\mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{T}}\right]\right\|_{\mathrm{op}}$ and obtain:

$$
\mathbb{P}\left\{f_{\alpha}-f^{\pi} \in T\right\}=\mathbb{P}\left\{\min _{i}\left|f_{\alpha}(i)-f^{\pi}(i)\right| \geq \varepsilon\right\} \leq C \cdot\left\|\mathbb{E}\left[\left(f_{\alpha}-f^{\pi}\right)\left(f_{\alpha}-f^{\pi}\right)^{\mathrm{T}}\right]\right\|_{\mathrm{op}} \rightarrow 0
$$

Appendix C Proofs of Section 6

Lemma C.1. Suppose $\pi^{\prime}(s)=\operatorname{argmax}_{a} Q^{\pi}(s, a)$ for each s. Then $K\left(\pi, \pi^{\prime}\right)=\mathbb{P}\left\{\pi^{\prime}\right.$ is greedy with respect to $\left.\mathcal{G}^{\pi}\right\}>0$.
We will prove an intermediate probability lemma. Let X_{1}, \ldots, X_{n} be mutually independent random variables bounded in $[a, b]$, and $F_{i}(x)=\mathbb{P}\left\{X_{i} \leq x\right\}$ denote the cumulative density functions of X_{i} for $i=2, . ., n$. Note that

$$
\begin{align*}
\mathbb{P}\left\{X_{1} \geq X_{2}, X_{1} \geq X_{3}, \ldots, X_{1} \geq X_{n}\right\} & =\int_{a}^{b} \int_{a}^{x_{1}} \cdots \int_{a}^{x_{1}} \mathrm{~d} \mathbb{P}\left(x_{1}, \ldots, x_{n}\right) \\
& =\int_{a}^{b} \int_{a}^{x_{1}} \cdots \int_{a}^{x_{1}} \mathrm{~d} \mathbb{P}_{1}\left(x_{1}\right) \mathrm{d} \mathbb{P}_{2}\left(x_{2}\right) \mathrm{d} \mathbb{P}_{n}\left(x_{n}\right) \quad \text { by mutual independence } \\
& =\int_{a}^{b} F_{2}\left(x_{1}\right) \cdots F_{n}\left(x_{1}\right) \mathrm{d} \mathbb{P}_{1}\left(x_{1}\right) \\
& =\mathbb{E}\left[F_{2}\left(X_{1}\right) F_{3}\left(X_{1}\right) \cdots F_{n}\left(X_{1}\right)\right] \tag{14}
\end{align*}
$$

Then, we have:
Lemma C.2. Suppose that $\mathbb{E}\left[F_{i}\left(X_{1}\right)\right]>0 \forall i=2, \ldots, n$. Then also

$$
\mathbb{E}\left[F_{2}\left(X_{1}\right) \cdots F_{n}\left(X_{1}\right)\right]>0
$$

Proof. It is easy to see that $H\left(x_{1}\right)=\prod_{i=2}^{n} F_{i}\left(x_{1}\right)$ is also a CDF. In particular, H starts at 0 , ends at 1 , and it monotone and right-continuous. In fact, by Equation (14) it corresponds to the CDF of max $\left(X_{2}, \ldots, X_{n}\right)$. Assume for a contradiction that $\mathbb{E}\left[F_{2}\left(X_{1}\right) \cdots F_{n}\left(X_{1}\right)\right]=0$. By positivity, monotonicity, and right-continuity, we have that $H\left(x_{1}\right)=0 \forall x_{1} \in[a, b)$. Then, for every x we have

$$
H(x)=0 \Longrightarrow F_{i}(x)=0 \text { for some } i .
$$

Since we have $H(b)=1$ and $H(x)=0$ otherwise, note that there must exist one i^{\prime} such that $F_{i^{\prime}}(b)=1$ and $F_{i^{\prime}}(x)=0$ otherwise. If not, then for all i there exists a $\varepsilon_{i}>0$ such that $F_{i}\left(b-\varepsilon_{i}\right)>0$. By monotonicity, $F_{i}\left(b-\min _{i} \varepsilon_{i}\right)>0 \forall i$, and thus $H\left(b-\min _{i} \varepsilon_{i}\right)>0$. Thus we have $\mathbb{E}\left[F_{i^{\prime}}(x)\right]=0$, a contradiction.

Proof (Lemma C.1). Note that

$$
K\left(\pi, \pi^{\prime}\right)=\mathbb{P}\left\{\pi^{\prime} \text { is greedy with respect to } \mathcal{G}^{\pi}\right\}=\mathbb{P}\left\{\text { for each } s, \mathcal{G}^{\pi}\left(s, \pi^{\prime}(s)\right) \geq \mathcal{G}^{\pi}(s, a) \forall a\right\}
$$

Fix a state s, write $X_{i}(s):=G^{\pi}\left(s, a_{i}\right)$, and without loss of generality assume that $\pi^{\prime}(s)=a_{1}$. We first show that $\mathbb{E}\left[F_{i}\left(X_{1}\right)\right]>0$, i.e. $\mathbb{P}\left\{G^{\pi}\left(s, a_{1}\right) \geq G^{\pi}(s, a)\right\}>0$ for all a. Suppose that it is not so, and pick a such that $\mathbb{P}\left\{G^{\pi}\left(s, a_{1}\right) \geq G^{\pi}(s, a)\right\}=0$. Then

$$
\begin{aligned}
Q^{\pi}\left(s, a_{1}\right) & =\mathbb{E}\left[\mathcal{G}^{\pi}\left(s, a_{1}\right)\right] \\
& =\mathbb{P}\left\{\mathcal{G}^{\pi}\left(s, a_{1}\right) \geq \mathcal{G}^{\pi}(s, a)\right\} \mathbb{E}\left[\mathcal{G}^{\pi}\left(s, a_{1}\right) \mid\left\{\mathcal{G}^{\pi}\left(s, a_{1}\right) \geq \mathcal{G}^{\pi}(s, a)\right\}\right] \\
& +\mathbb{P}\left\{\mathcal{G}^{\pi}\left(s, a_{1}\right)<\mathcal{G}^{\pi}(s, a)\right\} \mathbb{E}\left[\mathcal{G}^{\pi}\left(s, a_{1}\right) \mid\left\{\mathcal{G}^{\pi}\left(s, a_{1}\right)<\mathcal{G}^{\pi}(s, a)\right\}\right] \\
& =0+\mathbb{E}\left[\mathcal{G}^{\pi}\left(s, a_{1}\right) \mid\left\{\mathcal{G}^{\pi}\left(s, a_{1}\right)<\mathcal{G}^{\pi}(s, a)\right\}\right] \\
& <\mathbb{E}\left[\mathcal{G}^{\pi}(s, a)\right]=Q^{\pi}(s, a),
\end{aligned}
$$

which contradicts the fact that π^{\prime} is greedy wrt Q^{π}. Hence $\mathbb{E}\left[F_{i}\left(X_{1}\right)\right]>0$, and we apply Lemma $C .2$ to this set to conclude that for each s,

$$
\mathbb{P}\left\{G^{\pi}\left(s, a_{1}\right) \geq G^{\pi}(s, a), \forall a\right\}>0
$$

Because the returns are mutually independent, we further know that

$$
\mathbb{P}\left\{G^{\pi}\left(s, a_{1}\right) \geq G^{\pi}(s, a), \forall s, a\right\}=\prod_{s \in \mathcal{S}} \mathbb{P}\left\{G^{\pi}\left(s, a_{1}\right) \geq G^{\pi}(s, a), \forall a\right\}>0
$$

completing the proof.

Appendix D On weak convergence and total variation convergence

Recall the definition of the Total Variation metric:
Definition D.1. The total variation metric between probability measures is defined by:

$$
d_{\mathrm{TV}}(\mu, \nu)=\sup _{\mathcal{B} \in \operatorname{Borel}\left(\mathbb{R}^{\mathrm{d}}\right)}|\mu(A)-\nu(A)|,
$$

for $\mu, \nu \in \mathscr{P}\left(\mathbb{R}^{\mathrm{d}}\right)$.
Consider a bandit with a single arm that has a deterministic reward of 0 . Consider any of the classic algorithms covered in this paper, which will sample a target of 0 at every iteration. It is easy to see that the unique stationary distribution of the algorithm in this instance is a Dirac distribution at 0 (denoted δ_{0}).
Suppose a step-size of $\alpha<1$. If we initialize with some $f_{0} \neq 0$ then we can see that the algorithm will never converge to the true stationary distribution in Total Variation distance. This is because a Dirac distribution at any $x \neq 0$ is always a constant distance of 1 away from a Dirac at 0 . In other words,

$$
d_{\mathrm{TV}}\left(\delta_{0}, \delta_{f_{n}}\right)=1 \quad \forall n
$$

despite the fact that $f_{n} \rightarrow 0$. On the other hand, we have

$$
\mathcal{W}\left(\delta_{0}, \delta_{f_{n}}\right) \rightarrow 0
$$

since the Wasserstein metric takes into consideration the underlying metric structure of the space.

[^0]: ${ }^{1}$ This is the original algorithm, not the deep reinforcement learning version given in (Van Hasselt, Guez, and Silver, 2016).

