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Appendices

Appendix A Laundry List of Convergent Algorithms

We outline the general proof recipe, which will be re-using for the following examples.

Proof strategy

(P1) Let µ(1)
, µ

(2) be initial distributions and (f (1)
0 , f

(2)
0 ) be the optimal coupling which minimizesW(µ(1)

, µ
(2));

(P2) Define an appropriate coupling f
(1)
1 ⇠ µ

(1)
K, f

(2)
1 ⇠ µ

(2)
K – e.g. by defining them to follow the same

trajectories if the updates sample from the same distributions;

(P3) Use the upper bound W(µ(1)
K,µ

(2)
K)  E

h
kf (1)

1 � f
(2)
2 k

i
and bound E

h
kf (1)

1 � f
(2)
1 k

i


⇢E
h
kf (1)

0 � f
(2)
0 k

i
for some ⇢ < 1 (usually follows from the recursive nature of the updates) to show that

µ 7! µK is a contraction.

A.1 Convergence of synchronous Monte Carlo Evaluation with constant step-sizes

We prove that Monte Carlo Evaluation with synchronous updates & constant step-size converges to a stationary
distribution. The algorithm aims to evaluate the value function of a given policy ⇡ using Monte Carlo returns.
The update rule is given by:

8 s 2 S : Vn+1(s) = (1� ↵)Vn(s) + ↵G⇡
n(s) (MCE)

where G⇡
n(s) =

P
n�0 �

n
rn(sn, an) is the return of a random trajectory (sn, an, rn)n�0 starting from s, following

an ⇠ ⇡(·|sn), rn ⇠ R(·|sn, an), and sn+1 ⇠ P(·|sn, an).
Theorem A.1. For any constant step size 0 < ↵  1 and initialization V0 ⇠ µ0 2 M(R|S|), the sequence of random
variables (Vn)n�0 defined by the recursion (MCE) converges in distribution to a unique stationary distribution '↵ 2
M(R|S|).

Proof. Following the proof strategy outlined above, we skip to step (P2) of the proof. We define the coupling of
the updates (V (1)

1 , V
(2)
1 ) to sample the same trajectories:

V
(1)
1 (s) = (1� ↵)V (1)

0 (s) + ↵G⇡
k (s)

V
(2)
1 (s) = (1� ↵)V (2)

0 (s) + ↵G⇡
k (s).

)
for the same G⇡

k (s) (11)

Note that this is a valid coupling of (µ(1)
K↵, µ

(2)
K↵), since V (1)

1 (s) and V
(2)
1 (s) have access to the same sampling

distributions. We upper bound W(µ(1)
K↵, µ

(2)
K↵) by the coupling defined in Equation (11). This gives:

W(µ(1)
K↵, µ

(2)
K↵)  E

h���V (1)
1 � V

(2)
1

���
i

= E
h���(1� ↵)V (1)

0 + ↵G⇡
1 �

⇣
(1� ↵)V (2)

0 + ↵G⇡
1

⌘���
i

= E
h���(1� ↵)(V (1)

0 � V
(2)
0 )

���
i

= (1� ↵)E
h���V (1)

0 � V
(2)
0

���
i
= (1� ↵)W(µ(1)

, µ
(2))

Since 1� ↵ < 1, K↵ is a contraction mapping and we are done.

A.2 Convergence of synchronous Q-Learning with constant step-sizes

We prove that Q-Learning with synchronous updates & constant step-sizes converges to a stationary distribu-
tion. The algorithm aims to learn the optimal action-value function Q

?. The updates are given by:

8 (s, a) 2 S ⇥A : Qn+1(s, a) = (1� ↵)Qn(s, a) + ↵

⇣
r + �max

a0
Qn(s

0
, a

0)
⌘
, (QL)
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where r ⇠ R(·|s, a), s0 ⇠ P(·|s, a), and ↵ > 0.
Theorem A.2. For any constant step size 0 < ↵  1 and initialization Q0 ⇠ µ0 2 M(R|S|⇥|A|), the sequence of
random variables (Qn)n�0 defined by the recursion (QL) converges in distribution to a unique stationary distribution

⇠↵ 2 M(R|S|).

Proof. We use the proof outline given above, and jump straight to step (P2). We witness the same-sampling
coupling again:

Q
(1)
1 (s, a) = (1� ↵)Q(1)

0 (s, a) + ↵

⇣
r + �max

a0
Q

(1)
0 (s0, a0)

⌘

Q
(2)
1 (s.a) = (1� ↵)Q(2)

0 (s, a) + ↵

⇣
r + �max

a0
Q

(2)
0 (s0, a0)

⌘

9
>=

>;
for the same r ⇠ R(s, a),

s
0 ⇠ P(·|s, a)

The bound follows similarly, but with one additional step. Again we write bT (Q)(s, a) = r+ �maxa0 Q(s0(s,a), a
0)

for the empirical Bellman (optimality) operator.

E
h���bT (Q(1))� bT (Q(2))

���
i
= E


max
s,a

���r � r + �

⇣
max
a0

Q
(1)(s0(s,a), a

0)�max
a0

Q
(2)(s0(s,a), a

0)
⌘���
�

= �E

max
s,a

���max
a0

Q
(1)(s0(s,a), a

0)�max
a0

Q
(2)(s0(s,a), a

0)
���
�

 �E

max
s,a

max
a0

���Q(1)(s0(s,a), a
0)�Q

(2)(s0(s,a), a
0)
���
�

 �E

max
s,a

���Q(1)(s, a)�Q
(2)(s, a)

���
�
= �E

h���Q(1) �Q
(2)
���
i

The first inequality follows from |maxa0 Q1(s, a0)�maxa0 Q2(s, a0)|  maxa0 |Q1(s, a0)�Q2(s, a0)|, and the second
inequality follows sinceQ(1) andQ

(2) sampled the same s0. Concluding the proof as beforewe see that the kernel
is contractive with Lipschitz constant 1 + ↵� ↵� < 1, and we are done.

A.3 TD(�)

We prove that TD(�)with synchronous updates & constant step-size converges to a stationary distribution. The
algorithm aims to evaluate the value function of a given policy ⇡ using a convex combination of n-step returns.
The update rule is given by:

8s : Vn+1(s) = (1� ↵)Vn(s, a) + ↵(1� �)
1X

k=1

�
k�1

 
kX

i=0

�
i
r(si, ai) + �

k
Vn(sk)

!
(TD(�))

where each n-step trajectory is sampled starting from s and following policy ⇡.
Theorem A.3. For any constant step size 0 < ↵  1 and initialization V0 ⇠ µ0 2 M(R|S|), the sequence of random
variables (Vn)n�0 defined by the recursion (TD(�)) converges in distribution to a unique stationary distribution ⇣↵ 2
M(R|S|).

Proof. Again, we jump straight to step (P2) of the template given above. We couple every n-step trajectory to
sample the same n rewards, actions, and successors states.

V
(1)
k+1(s) = (1� ↵)V (1)

k (s) + ↵(1� �)
1X

n=1

�
n�1

 
n�1X

i=0

�
i
ri(si, ai) + �

n
V

(1)
k (sn)

!

V
(2)
k+1(s) = (1� ↵)V (2)

k (s) + ↵(1� �)
1X

n=1

�
n�1

 
n�1X

i=0

�
i
ri(si, ai) + �

n
V

(2)
k (sn)

!

9
>>>>>=

>>>>>;

same
(si, ai, ri)ni=0

8n

By the coupling, the reward terms will cancel in every n-step trajectory. We write R
(i)
n =

Pn�1
i=0 �

i
ri(si, ai) +

�
n
V

(i)
k (sn) for the n-step return and T̂ (V )(s) =

P1
k=1 �

k�1
⇣Pk

i=0 �
i
r(si, ai) + �

k
Vn(sk)

⌘
for the empirical Bell-
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man operator of TD(�).

E
h���T̂ (V (1))� T̂ (V (2))

���
i
= E

"
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�����
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n �
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�����

#
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"
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⌘�����

#

= E
"
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�����
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�
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⇣
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#
(reward terms cancel)
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�
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�
n max

s

���
⇣
V

(1)(sn)� V
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⌘���

#
(triangle inequality)


1X

n=1

�
n�1

�
nE
h
max

s

���V (1)(s)� V
(2)(s)

���
i

(by the coupling)

=
1X

n=1

�
n�1

�
nE
h���V (1) � V

(2)
���
i
= �

1

1� ��
E
h���V (1) � V

(2)
���
i

Concluding the proof as before, we haveW(µ(1)
K,µ

(2)
K)  (1�↵+↵� 1��

1��� )W(µ(1)
, µ

(2)). Since 1�↵+↵� 1��
1���

¡ 1 we are done.

A.4 SARSA with "-greedy policies

In this example we will example the use of "-greedy policies for control. In particular, we examine SARSA
updates with "-greedy policies. Let ⇡(·|s) be some base policy. The updates are as follow:

Qk+1(s, a) =

(
(1� ↵)Qk(s, a) + ↵ (r(s, a) + �Qk(s0, a0)) w.p. "
(1� ↵)Qk(s, a) + ↵ (r(s, a) + �maxa0 Qk(s0, a0)) w.p. 1� "

(SARSA)

where r ⇠ R(·|s, a) and s
0 ⇠ P(·|s, a) in both cases and a

0 ⇠ ⇡(·|s0) in the first case.
Theorem A.4. For any constant step size 0 < ↵  1 and initialization Q0 ⇠ µ0 2 M(R|S|⇥|A|), the sequence of
random variables (Qn)n�0 defined by the recursion (SARSA) converges in distribution to a unique stationary distribution

✓↵ 2 M(R|S|⇥|A|).

Proof. We jump straight to step (P2) of the proof template. We use the same-sampling coupling, where Q
(1)
1

takes the greedy action if and only ifQ(2)
1 does. In the non-greedy case, they sample the same a0 ⇠ ⇡(·|s0). In all

cases, both functions sample the same r(s, a) and s
0.

We write T̂ (Q)(s, a) =

(
r + �Q(s0, a0) w.p. "
r + �maxa0 Q(s0, a0) w.p. 1� "

The bound follows similarly to the examples of Q-learning and TD(0). We omit the subscripts on the Q-
functions.

E
h���T̂ (Q(1))� T̂ (Q(2))

���
i
= P {greedy action chosen}E


max
s,a

�|(max
a0

Q
(1)(s0, a0)�max

a0
Q

(2)(s0, a0)|
�

+ P {non-greedy action chosen}E

max
s,a

|�(Q(1)(s0, a0)�Q
(2)(s0, a0))|

�

 "�E
h���Q(1) �Q

(2)
���
i
+ (1� ")�E

h���Q(1) �Q
(2)
���
i

= �E
h
kQ(1) �Q

(2)k
i

The bound E
⇥
maxs,a �|(maxa0 Q

(1)(s0, a0)�maxa0 Q
(2)(s0, a0)|

⇤
 �E

⇥��Q(1) �Q
(2)
��⇤ follows from

|maxa0 Q1(s, a0) � maxa0 Q2(s, a0)|  maxa0 |Q1(s, a0) � Q2(s, a0)|, and since Q
(1) and Q

(2) sampled the
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same s
0 in the greedy case. The bound E

⇥
maxs,a|�(Q(1)(s0, a0)�Q

(2)(s0, a0))|
⇤
 E

⇥��Q(1) �Q
(2)
��⇤ follows

since Q(1) and Q
(2) sampled the same state-action pair in the non-greedy case. Concluding the proof as before,

we have that E
h
kQ(1)

1 �Q
(2)
1 k
i
 (1� ↵+ ↵�)E

h
kQ(1)

0 �Q
(2)
0 k
i
, and thus the kernel is a contraction.

A.5 Expected SARSA with "-greedy policies

In this example we examine the Expected SARSA updates with "-greedy policies. Let ⇡(·|s) be some base policy.
Define ⇡"(·|s) as the "-greedy policy which takes the greedy action with probability 1-" and ⇡ otherwise. The
updates are as follow:

Qk+1(s, a) = (1� ↵)Qk(s, a) + ↵

 
r(s, a) + �

X

a0

⇡"(a
0|s)Qk(s

0
, a

0)

!
(Expected-SARSA)

where r ⇠ R(·|s, a) and s
0 ⇠ P(·|s, a) in both cases and a

0 ⇠ ⇡(·|s0) in the first case.
Theorem A.5. For any constant step size 0 < ↵  1 and initialization Q0 ⇠ µ0 2 M(R|S|⇥|A|), the sequence of
random variables (Qn)n�0 defined by the recursion (Expected-SARSA) converges in distribution to a unique stationary

distribution �↵ 2 M(R|S|⇥|A|).

Proof. We jump straight to step (P2) of the proof template. We use the same-sampling coupling.

We write T̂ (Q)(s, a) = r+�
P

a0 ⇡(a0|s)Q(s0, a0). The bound follows similarly to the examples ofQ-learning and
TD(0). We omit the subscripts on the Q-functions.

E
h���T̂ (Q(1))� T̂ (Q(2))

���
i
= E

"
max
s,a

�|
X

a0

⇡"(a
0)Q(1)(s0, a0)�

X

a0

⇡"(a
0)Q(2)(s0, a0)|

#

 E
"
max
s,a

�

X

a0

⇡"(a
0)|Q(1)(s0, a0)�Q

(2)(s0, a0)|
#

 E
"
max
s,a

�

X

a0

⇡"(a
0)
���Q(1)(s0, a0)�Q

(2)(s0, a0)
���

#

 �E
h
kQ(1) �Q

(2)k
i

Concluding the proof as before, we have that E
h
kQ(1)

1 �Q
(2)
1 k
i
 (1 � ↵ + ↵�)E

h
kQ(1)

0 �Q
(2)
0 k
i
, and thus the

kernel is a contraction.

A.6 Double Q-Learning

In this example we will have to modify our state-space and introduce a newmetric on pairs ofQ-functions. The
DoubleQ-Learning algorithm (Hasselt, 2010)1 maintains two random estimates (QA

, Q
B) and updatesQA with

probability p and Q
B with probability 1� p. Should Q

A be chosen to be updated, the update is:

Q
A
n+1(s, a) = (1� ↵)QA

n (s, a) + ↵
�
r(s, a) + �Q

B
n (s, argmaxa0 Q

A
n (s

0
, a

0))
�
.

Analogously, the update for QB is:

Q
B
n+1(s, a) = (1� ↵)QB

n (s, a) + ↵
�
r(s, a) + �Q

A
n (s, argmaxa0 Q

B
n (s

0
, a

0))
�
.

In both cases, we have s
0 ⇠ P(·|s, a). For this algorithm, the updates are Markovian on pairs of action-value

functions. Thus we set the state space to be R|S|⇥|A| ⇥ R|S|⇥|A|. We choose the product metric defined by
d1((QA

, Q
B), (RA

, R
B)) =

��QA �R
A
��+

��QB �R
B
��.

1This is the original algorithm, not the deep reinforcement learning version given in (VanHasselt, Guez, and Silver, 2016).
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Theorem A.6. For any constant step size 0 < ↵  1 and initialization (QA
0 , Q

B
0 ) ⇠ µ0 2 M(R|S|⇥|A| ⇥ R|S|⇥|A|),

the sequence of random variables (QA
n , Q

B
n )n�0 defined by the Double Q-Learning recursion converges in distribution to a

unique stationary distribution �↵ 2 M(R|S|⇥|A| ⇥ R|S|⇥|A|).

Proof. As before, let µ(1)
, µ

(2)M(R|S|⇥|A| ⇥ R|S|⇥|A|) be arbitrary initializations and (QA
0 , Q

B
0 ) and (RA

0 , R
B
0 ) be

the optimal coupling of W(µ(1)
, µ

(2)). We couple (QA
1 , Q

B
1 ) and (RA

1 , R
B
1 ) to sample the same function to be

updated and the same s0. Assume for a moment thatQA andR
A are chosen to be updated. Proceeding as in the

proof of Q-Learning (cf. Theorem A.2), we find that

E
⇥��QA

1 �R
A
1

��⇤  (1� ↵)E
⇥��QA

0 �R
A
0

��⇤+ ↵�E
⇥��QB

0 �R
B
0

��⇤ .

Analogously, if QB and R
B are chosen to updated, we have:

E
⇥��QB

1 �R
B
1

��⇤  (1� ↵)E
⇥��QB

0 �R
B
0

��⇤+ ↵�E
⇥��QA

0 �R
A
0

��⇤ .

Putting everything together, the full expectation is:

E
⇥
d((QA

1 , Q
B
1 ), (R

A
1 , R

B
1 ))
⇤
= E

⇥��QA
1 �R

A
1

��+
��QB

1 �R
B
1

��⇤

= P {A is updated}E
⇥��QA

1 �R
A
1

��+
��QB

1 �R
B
1

��⇤

+ P {B is updated}E
⇥��QA

1 �R
A
1

��+
��QB

1 �R
B
1

��⇤

= pE
⇥��QA

1 �R
A
1

��+
��QB

0 �R
B
0

��⇤

+ (1� p)E
⇥��QA

0 �R
A
0

��+
��QB

1 �R
B
1

��⇤

 p
�
(1� ↵)E

⇥��QA
0 �R

A
0

��⇤+ (1 + ↵�)E
⇥��QB

0 �R
B
0

��⇤�

+ (1� p)
�
(1 + ↵�)E

⇥��QA
0 �R

A
0

��⇤+ (1� ↵)E
⇥��QB

0 �R
B
0

��⇤�

 1

2
(2 + ↵� � ↵)

�
E
⇥��QA

0 �R
A
0

��⇤+ E
⇥��QB

0 �R
B
0

��⇤� (p = 1
2)

=
1

2
(2 + ↵� � ↵)E

⇥
d((QA

0 , Q
B
0 ), (R

A
0 , R

B
0 ))
⇤

Since 0  1/2(2 + ↵� � ↵) < 1, so we are done. We note that the first equality only follows since, under the
coupling, either A or B is updated for both functions.

Appendix B Proofs of Section 5

Theorem B.1. Suppose bT ⇡
is such that the updates (5) with step-size ↵ converge to a stationary distribution  ↵. If

bT is

an empirical Bellman operator for some policy ⇡, then E[f↵] = f
⇡
where f↵ ⇠  ↵ and f

⇡
is the fixed point of T ⇡

.

Proof. Let f0 be distributed according to  ↵. Rewriting equation (5):

f1 = (1� ↵)f0 + ↵T ⇡
f0 + ↵⇠(f0), (12)

where ⇠(f0) = T̂ ⇡(f0,!) � T ⇡
f0 is a zero-mean noise term. Taking expectations on both sides, and using that

f1 is also distributed according to  ↵ by stationarity and that E[⇠(f)] = 0 for any f :

f↵ = (1� ↵)f↵ + ↵E[T ⇡
f0]

↵f↵ = ↵E[R⇡ + �P⇡
f0]

f↵ = R⇡ + �P⇡E[f0]
f↵ = T ⇡

f↵

And therefore f↵ = f
⇡ since it is the unique fixed point of T ⇡ .

Theorem B.2. Suppose bT ⇡
is such that the updates (5)with step-size ↵ converge to a stationary distribution  ↵, and that

bT ⇡
is an empirical Bellman operator for some policy ⇡. Define

C(f) := E![(bT ⇡(f,!)� T ⇡
f)(bT ⇡(f,!)� T ⇡

f)T]



Philip Amortila, Doina Precup, Prakash Panangaden, Marc G. Bellemare

to be the covariance of the zero-mean noise term bT ⇡(f,!)� T ⇡
f for a given function f . Then, the covariance of f↵ ⇠  ↵

is given by

(1� (1� ↵)2)E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤
= ↵

2(�P⇡)E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤
(�P⇡)T

+ ↵(1� ↵)(�P⇡)E
⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤

+ ↵(1� ↵)E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤
(�P⇡)T

+ ↵
2

Z
C(f) ↵(df)

Furthermore, we have that
��E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤��

op
is monotonically decreasingwith respect to↵, where k·k

op
denotes

the operator norm of a matrix. In particular, lim↵!0

��E[(f↵ � f
⇡)(f↵ � f

⇡)T]
��
op
= 0, and we have that:

P
n
min
i
|f↵(i)� f

⇡(i)| � "

o
↵!0�! 0 8 " > 0

We preface the proof with some useful identities. We will write the covariance in terms of the tensor product
for ease of manipulations
Lemma B.1. Write ⇠(f) := (bT ⇡(f,!)� T ⇡

f). In the same setup as Theorem 5.2:

E
⇥
(f↵ � f

⇡)(T ⇡
f↵ � f

⇡ + ⇠(f0))
T
⇤
= E

⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤
(�P⇡)T

and

E
h
((T ⇡

f↵ � f
⇡) + ⇠(f↵)) ((T ⇡

f↵ � f
⇡) + ⇠(f↵))

T
i
= (�P⇡)E

⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤
(�P⇡)T

+

Z
C(v) ↵(dv)

Proof. Let f0 ⇠  ↵, by (5) we have f1 = (1�↵)f0 +↵(T ⇡
f0 + ⇠(f0)) and f1 ⇠  ↵. Furthermore, the distribution

of f0 is independent of the distribution of !. By independence,
E
⇥
(f0 � f

⇡)⇠(f0)
T
⇤
= Ef0E!

⇥
(f0 � f

⇡)⇠(f0)
T
⇤

(by independence of f0 and ⇠(·))
= Ef0

⇥
(f0 � f

⇡)(E!⇠(f0))
T
⇤
= 0 (E![⇠(f)] = 0 for every f)

For the first identity, note that
E
⇥
(f0 � f

⇡)(T ⇡
f0 � f

⇡))T
⇤
= E

⇥
(f0 � f

⇡)(R⇡ + �P⇡(f0)�R⇡ � �P⇡(f⇡))T
⇤

= E
⇥
(f0 � f

⇡)(�P⇡(f0 � f
⇡))T

⇤

= E
⇥
(f0 � f

⇡)(f0 � f
⇡)T(�P⇡)T

⇤

= E
⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤
(�P⇡)T

The first identity then follows by using E
⇥
(f0 � f

⇡)⇠(f0)T
⇤
= 0 and linearity of expectations.

For the second identity, expanding the outer product gives:

E
h
((T ⇡

f0 � f
⇡) + ⇠(f0)) ((T ⇡

f0 � f
⇡) + ⇠(f0))

T
i
= E

⇥
(T ⇡

f0 � f
⇡)(T ⇡

f0 � f
⇡)T
⇤

+ E
⇥
(⇠(f0))(⇠(f0)))

T
⇤

+
(((((((((((
E
⇥
(T ⇡

f0 � f
⇡)(⇠(f0))

T
⇤

+(((((((((((
E
⇥
⇠(f0)(T ⇡

f0 � f
⇡)T
⇤

= E
⇥
(�P⇡(f0 � f

⇡))(�P⇡(f0 � f
⇡))T

⇤

+

Z
C(v) ↵(dv)

= (�P⇡)E
⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤
(�P⇡)T

+

Z
C(v) ↵(dv)
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where we used E
⇥
(T ⇡

f0 � f
⇡)(⇠(f0))T

⇤
= 0.

Proof (of Theorem 5.2). Again let f0 be distributed according to  ↵. Subtracting f
⇡ from equation (12),

f1 � f
⇡ = (1� ↵)(f0 � f

⇡) + ↵ (T ⇡
f0 � f

⇡ + ⇠(f0)) .

and taking outer products:

(f1 � f
⇡) (f1 � f

⇡)T =(1� ↵)2 (f0 � f
⇡) (f0 � f

⇡)T

+ ↵
2 (T ⇡

f0 � f
⇡ + ⇠(f0)) (T ⇡

f0 � f
⇡ + ⇠(f0))

T

+ ↵(1� ↵)(f0 � f
⇡)(T ⇡

f0 � f
⇡ + ⇠(f0))

T

+ ↵(1� ↵)(T ⇡
f0 � f

⇡ + ⇠(f0))(f0 � f
⇡)T.

Taking expectations on both sides, and using Lemma B.1:

E
⇥
(f1 � f

⇡)(f1 � f
⇡)T
⇤
=(1� ↵)2E

⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤
+ ↵

2(�P⇡)E[(f0 � f
⇡)](�P⇡)T

+ ↵
2

Z
C(v) a(dv)

+ ↵(1� ↵)(�P⇡)E
⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤

+ ↵(1� ↵)E
⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤
(�P⇡)T

Since E
⇥
(f1 � f

⇡)(f1 � f
⇡)T
⇤
= E

⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤
by stationarity, re-arranging to the LHS and factoring

gives:

(1� (1� ↵)2)E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤
= ↵

2(�P⇡)E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤
(�P⇡)T

+ ↵(1� ↵)(�P⇡)E
⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤

+ ↵(1� ↵)E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤
(�P⇡)T

+ ↵
2

Z
C(f) ↵(df)

For the remainder of the proof we re-write the above expression in terms of tensor products. The tensor product
of two vectors x, y is the matrix defined by x ⌦ y = xy

T. By extension, the tensor product of two matrices A,B
is the operator defined by (A⌦B)X = AXB

T. Then, the above expression can be re-written as:

(1� (1� ↵)2)E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤
= ↵

2(�P⇡)⌦2E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤

+ ↵(1� ↵)(�P⇡ ⌦ I)E
⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤

+ ↵(1� ↵)(I⌦�P⇡)E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤

+ ↵
2

Z
C(f) ↵(df).

Factoring the tensor products further gives:
h
I � ((1� ↵)I + ↵�P

⇡)⌦2
i
E
⇥
(f↵ � f

⇡)⌦2
⇤
= ↵

2

Z
C(f) ↵(df)

We show that the matrix on the LHS is invertible. By (Puterman, 2014, Corollary C.4) it will follow from
showing that ⇢

⇣
((1� ↵)I + ↵�P

⇡)⌦2
⌘

< 1, where ⇢(A) is the spectral radius of matrix A. Writing kAkop =

maxi
P

j |A(i, j)| for the operator norm of a matrix A, and using that ⇢(A)  kAkop, kA⌦Bkop = kAkop kBkop,
and kP⇡kop = kIkop = 1:

���((1� ↵)I + ↵�P
⇡)⌦2

���
op

= k(1� ↵)I + ↵�P
⇡k2op  ((1� ↵) + ↵�)2 < 1, (13)
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where the last inequality followed since � < 1. Finally, for the limit ↵! 0, we use the following identity: if A is
such that kI �Ak  1 then

��A�1
��  1

1�kI�Ak . We let A = I � ((1� ↵)I + ↵�P⇡)⌦2, by the calculation in (13)
we have kI �Ak < 1. So we calculate the operator norm of the covariance matrix:

��E
⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤�� = ↵

2

����
h
I � ((1� ↵)I + ↵�P

⇡)⌦2
i�1

Z
C(v) ↵(dv)

����

 ↵
2

����
h
I � ((1� ↵)I + ↵�P

⇡)⌦2
i�1
����

����
Z

C(v) ↵(dv)

����

 ↵
2 1

1�
���I � I + ((1� ↵)I + ↵�P⇡)⌦2

���

����
Z

C(v) ↵(dv)

����

= ↵
2 1

1�
���((1� ↵)I + ↵�P⇡)⌦2

���

����
Z

C(v) ↵(dv)

����

= ↵
2 1

1� k((1� ↵)I + ↵�P⇡)k2

����
Z

C(v) ↵(dv)

����

 ↵
2 1

1� (1� ↵+ ↵�)2

����
Z

C(v) ↵(dv)

����

Finally, since the state space is bounded in [0,R���/(1 � �)]n, we have (bT f)i  R���/(1 � �) and (T f)i 
R���/(1��) for each i. Then, we have |⇠!(f)i⇠!(f)j | = |(bT f)i(T f)j�(T f)i(bT f)j�(T f)j(bT f)j+(T f)j(T f)i| 
4 R���2
(1��)2 Thus we have kC(f)k  4 R���2

(1��)2
:= M and thus

��E
⇥
(f0 � f

⇡)(f0 � f
⇡)T
⇤��  M

↵
2

1� (1� ↵+ ↵�)2
↵!0�! 0

For the concentration inequality, we will use a multivariate Chebyshev inequality (Marshall and Olkin, 1960,
Theorem 3.1), whos statement is as follows:

TheoremB.3. LetX = (X1, ..., Xn) be a random vector withEX = 0 andE[XT
X] = ⌃. Let T = T+[{x : �x 2 T+},

where T+ ✓ Rn
is a closed, convex set. If A = {a 2 Rn : ha, xi � 1 8x 2 T+}, then

P {X 2 T}  inf
a2A

a
T
⌃a

Let " > 0. We first bound a
T
⌃a with the operator norm of ⌃. Note that

a
T
⌃a =

X

i

ai(⌃a)i


X

i

ai k⌃ak  n k⌃kop kak
2

Wedefine T+ to be the intersection of half-planes the {x|xi � "}, so that T+ = {x|xi � " 8i}. Since the half-planes
are closed and convex, T+ is also closed and convex since it is an intersection of closed and convex sets.Then,
T = T+ [ {x : �x 2 T+} = {x|xi � " 8i or xi  �" 8i}. Note that x 2 T () mini|xi| � ". We define
X = f↵ � f

⇡ which has zero-mean. Finally, Theorem B.3 states that

P {X 2 T} = P {f↵ � f
⇡ 2 T}  inf

a2A
a
T
⌃a  n k⌃kop inf

a2A
kak2 .

Note that infa kak2 is bounded since a = ( 1
n" ,

1
n" , ....,

1
n" ) is in A and kak2 = 1

(n")2 . So n infa2A kak2  C for
some constant C independent of ↵. From the previous result, we can take the limit of ↵ ! 0 of k⌃kop =��E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤��

op and obtain:

P {f↵ � f
⇡ 2 T} = P

n
min
i
|f↵(i)� f

⇡(i)| � "

o
 C ·

��E
⇥
(f↵ � f

⇡)(f↵ � f
⇡)T
⇤��

op ! 0
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Appendix C Proofs of Section 6

Lemma C.1. Suppose ⇡
0(s) = argmaxa Q

⇡(s, a) for each s. ThenK(⇡,⇡0) = P{⇡0
is greedy with respect to G⇡} > 0.

We will prove an intermediate probability lemma. Let X1, ..., Xn be mutually independent random variables
bounded in [a, b], and Fi(x) = P {Xi  x} denote the cumulative density functions of Xi for i = 2, .., n. Note
that

P {X1 � X2, X1 � X3, ..., X1 � Xn} =

Z b

a

Z x1

a
· · ·
Z x1

a
dP(x1, ..., xn)

=

Z b

a

Z x1

a
· · ·
Z x1

a
dP1(x1)dP2(x2)dPn(xn) by mutual independence

=

Z b

a
F2(x1) · · ·Fn(x1)dP1(x1)

= E [F2(X1)F3(X1) · · ·Fn(X1)] . (14)

Then, we have:
Lemma C.2. Suppose that E[Fi(X1)] > 0 8i = 2, ..., n. Then also

E [F2(X1) · · ·Fn(X1)] > 0

Proof. It is easy to see that H(x1) = ⇧n
i=2Fi(x1) is also a CDF. In particular, H starts at 0, ends at 1, and it

monotone and right-continuous. In fact, by Equation (14) it corresponds to the CDF ofmax(X2, ..., Xn). Assume
for a contradiction that E [F2(X1) · · ·Fn(X1)] = 0. By positivity, monotonicity, and right-continuity, we have that
H(x1) = 0 8x1 2 [a, b). Then, for every x we have

H(x) = 0 =) Fi(x) = 0 for some i.

Since we have H(b) = 1 and H(x) = 0 otherwise, note that there must exist one i
0 such that Fi0(b) = 1 and

Fi0(x) = 0 otherwise. If not, then for all i there exists a "i > 0 such that Fi(b � "i) > 0. By monotonicity,
Fi(b�mini "i) > 0 8i, and thus H(b�mini "i) > 0. Thus we have E[Fi0(x)] = 0, a contradiction.

Proof (Lemma C.1). Note that

K(⇡,⇡0) = P {⇡0 is greedy with respect to G⇡} = P {for each s,G⇡(s,⇡0(s)) � G⇡(s, a) 8a} .

Fix a state s, write Xi(s) := G
⇡(s, ai), and without loss of generality assume that ⇡0(s) = a1. We first show

that E[Fi(X1)] > 0, i.e. P {G⇡(s, a1) � G
⇡(s, a)} > 0 for all a. Suppose that it is not so, and pick a such that

P {G⇡(s, a1) � G
⇡(s, a)} = 0. Then

Q
⇡(s, a1) = E [G⇡(s, a1)]

= P{G⇡(s, a1) � G⇡(s, a)}E [G⇡(s, a1) | {G⇡(s, a1) � G⇡(s, a)}]
+ P{G⇡(s, a1) < G⇡(s, a)}E [G⇡(s, a1) | {G⇡(s, a1) < G⇡(s, a)}]
= 0 + E [G⇡(s, a1)|{G⇡(s, a1) < G⇡(s, a)}]
< E [G⇡(s, a)] = Q

⇡(s, a),

which contradicts the fact that ⇡0 is greedy wrt Q⇡ . Hence E[Fi(X1)] > 0, and we apply Lemma C.2 to this set
to conclude that for each s,

P {G⇡(s, a1) � G
⇡(s, a), 8a} > 0.

Because the returns are mutually independent, we further know that

P {G⇡(s, a1) � G
⇡(s, a), 8s, a} =

Y

s2S
P {G⇡(s, a1) � G

⇡(s, a), 8a} > 0,

completing the proof.
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Appendix D On weak convergence and total variation convergence

Recall the definition of the Total Variation metric:
Definition D.1. The total variation metric between probability measures is defined by:

dTV(µ, ⌫) = sup
B2Borel(Rd)

|µ(A)� ⌫(A)|,

for µ, ⌫ 2 P(Rd).

Consider a bandit with a single arm that has a deterministic reward of 0. Consider any of the classic algorithms
covered in this paper, whichwill sample a target of 0 at every iteration. It is easy to see that the unique stationary
distribution of the algorithm in this instance is a Dirac distribution at 0 (denoted �0).

Suppose a step-size of ↵ < 1. If we initialize with some f0 6= 0 then we can see that the algorithm will never
converge to the true stationary distribution in Total Variation distance. This is because a Dirac distribution at
any x 6= 0 is always a constant distance of 1 away from a Dirac at 0. In other words,

dTV(�0, �fn) = 1 8n

despite the fact that fn ! 0. On the other hand, we have

W(�0, �fn) ! 0,

since the Wasserstein metric takes into consideration the underlying metric structure of the space.


