SUPPLEMENTARY MATERIAL

1 Proof of Theorem 3.1

Theorem 3.1. Suppose that \(\theta \) is a random variable defined on state space \(\Theta \), with probability density \(p(\theta) \). For any given \(\theta \in \Theta \), let \(y \) and \(y' \) be two random variables that are independent conditional on \(\theta \), and both follow the same distribution \(p(y|\theta) \). Now define \(z = y - y' \), and we then have,

\[
E_\theta[H(p(y|\theta))] \leq H(E_\theta[p(z|\theta)]) - \frac{\text{dim}(y)}{2} \log 2,
\]

where \(\text{dim}(y) \) is the dimensionality of \(y \).

Proof. From Shannon's entropy power inequality \cite{1}, we obtain,

\[
\exp(2H(p(z|\theta))/\text{dim}(y)) \\
\geq \exp(2H(p(y|\theta))/\text{dim}(y)) + \exp(2H(p(-y|\theta))/\text{dim}(y)) \\
= 2\exp(2H(p(y|\theta))/\text{dim}(y)),
\]

which implies that

\[
H(p(y|\theta)) \leq H(p(z|\theta)) - \frac{\text{dim}(y)}{2} \log 2. \tag{1}
\]

Taking expectation with respect to \(p(\theta) \) on both sides of Eq. (1) yields,

\[
E_\theta[H(p(y|\theta))] \\
\leq E_\theta[H(p(z|\theta))] - \frac{\text{dim}(y)}{2} \log 2 \tag{2}
\]

where the last inequality is due to the concavity of the entropy \cite{1}.

\[\square\]

2 Proof of Corollary 3.2

Corollary 3.2. Suppose \(p(\theta), p(y|\theta), \) and \(p(z|\theta) \) are defined as is in Theorem 3.1, and \(p(\theta) \) admits the form of,

\[
p(\theta) = \sum_{l=1}^{L} \omega_l f_l(\theta),
\]

where \(\omega_l \geq 0 \) for \(l = 1...L \), \(\sum_{l=1}^{L} \omega_l = 1 \), and \(f_l(\theta) \) are density functions. Then

\[
E_\theta[H(p(y|\theta))] \leq \sum_{l=1}^{L} \omega_l H(E_{\theta\sim f_l}[p(z|\theta)]) - \frac{\text{dim}(y)}{2} \log 2 \\
\leq H(E_\theta[p(z|\theta)]) - \frac{\text{dim}(y)}{2} \log 2.
\]

Proof. Recall that the prior takes the form of

\[
p(\theta) = \sum_{l=1}^{L} \omega_l f_l(\theta),
\]

and we have

\[
E_\theta[H(p(y|\theta))] = \int_{\Theta} p(\theta)H(p(y|\theta))d\theta \\
= \sum_{l=1}^{L} \omega_l \int_{\Theta} f_l(\theta)H(p(y|\theta))d\theta \\
\leq \sum_{l=1}^{L} \omega_l H(E_{\theta\sim f_l}[p(z|\theta)]) - \frac{\text{dim}(y)}{2} \log 2, \tag{3}
\]

where the inequality above is a direct consequence of Theorem 3.1. Once again, because the entropy is concave, we have

\[
\sum_{l=1}^{L} \omega_l H(E_{\theta\sim f_l}[p(z|\theta)]) - \frac{\text{dim}(y)}{2} \log 2 \\
\leq H(\sum_{l=1}^{L} \omega_l E_{\theta\sim f_l}[p(z|\theta)]) - \frac{\text{dim}(y)}{2} \log 2 \tag{4}
\]

where

\[
= H(E_\theta[p(z|\theta)]) - \frac{\text{dim}(y)}{2} \log 2.
\]

\[\square\]

3 Implementation details

This section provides the experimental setup and implementation details of the examples. Code for reproducing our experiments can be found at

https://github.com/ziq-ao/LBKLD_estimator

The mathematical example. We estimate the expected LB-KLD utility function values with \(3 \times 10^4 \) (i.e. \(n = 10^4 \)) model simulations. In the prior partition step, we set \(n_{\min} = 10 \) and \(L = 5 \). Averaging
was done over 100 independent runs to mitigate the random errors. Moreover we generate a larger number (10^5) of samples to estimate the KLD based expected utility function values with the nested MC method. For the D-posterior precision method, 100 samples are kept from 10^4 prior-predictive simulations to form the ABC posterior. Again, the reported results are the average over 100 runs.

Ricker Model. We estimate the expected LB-KLD utility with 3 \times 10^4 model simulations. In the prior partition step, we set \(n_{\text{min}} = 50 \) and \(L = 5 \). For the D-posterior precision method, 100 out of 10^4 prior-predictive samples are used to compute the posterior statistics.

Aphid Model. The implementation setup of the LB-KLD and the D-posterior methods is the same as that of the Ricker model. It should also be mentioned here that, for \(k = 1 \) and \(k = 2 \), the optimal solutions are obtained by exhausting all the integer grid points, while the Simultaneous Perturbation Stochastic Approximation algorithm [2] is used to optimize the expected utility functions for \(k = 3 \) and \(k = 4 \).

References
