
Naive Feature Selection: Sparsity in Naive Bayes

A Proof of Theorem 1

Theorem 1 (Sparse Bernoulli naive Bayes). Consider the sparse Bernoulli naive Bayes training problem (SBNB),
with binary data matrix X ∈ {0, 1}n×m. The optimal values of the variables are obtained as follows. Set

v := (f+ + f−) ◦ log
(f+ + f−

n

)
+ (n1− f+ − f−) ◦ log

(
1− f+ + f−

n

)
,

w := w+ + w−, w± := f± ◦ log
f+

n±
+ (n±1− f±) ◦ log

(
1− f±

n±

)
.

Then identify a set I of indices with the k largest elements in w − v, and set θ+∗ , θ−∗ according to

θ+∗i = θ−∗i =
1

n
(f+i + f−i ), ∀i 6∈ I, θ±∗i =

f±i
n±

, ∀i ∈ I.

First note that an `0-norm constraint on a m-vector q can be reformulated as

‖q‖0 ≤ k ⇐⇒ ∃ I ⊆ [m], |I| ≤ k : ∀ i 6∈ I, qi = 0.

Hence problem (SBNB) is equivalent to

max
θ+,θ−∈[0,1]m,I

Lbnb(θ+, θ−;X) : θ+i = θ−i ∀i 6∈ I, I ⊆ [m], |I| ≤ k, (18)

where the complement of the index set I encodes the indices where variables θ+, θ− agree. Then (18) becomes

p∗ := max
I⊆[m], |I|≤k

∑
i6∈I

(
max
θi∈[0,1]

(f+i + f−i ) log θi + (n− f+i − f−i ) log(1− θi)
)

+
∑
i∈I

(
max

θ+i ∈[0,1]
f+i log θ+i + (n+ − f+i ) log(1− θ+i )

)
(19)

+
∑
i∈I

(
max

θ−i ∈[0,1]
f−i log θ−i + (n− − f−i ) log(1− θ−i )

)
.

where we use the fact that n+ + n− = n. All the sub-problems in the above can be solved in closed-form, yielding
the optimal solutions

θ+∗ i = θ−∗ i =
1

n
(f+i + f−i ), ∀i 6∈ I, and θ±∗i =

f±i
n±

, ∀i ∈ I. (20)

Plugging the above inside the objective of (18) results in a Boolean formulation, with a Boolean vector u of
cardinality ≤ k such that 1− u encodes indices for which entries of θ+, θ− agree:

p∗ := max
u∈Ck

(1− u)>v + u>w,

where, for k ∈ [m]:
Ck := {u : u ∈ {0, 1}m, 1>u ≤ k},

and vectors v, w are as defined in (8):

v := (f+ + f−) ◦ log
(f+ + f−

n

)
+ (n1− f+ − f−) ◦ log

(
1− f+ + f−

n

)
,

w := w+ + w−, w± := f± ◦ log
f+

n±
+ (n±1− f±) ◦ log

(
1− f±

n±

)
.

We obtain
p∗ = 1>v + max

u∈Ck
u>(w − v) = 1>v + sk(w − v),

where sk(·) denotes the sum of the k largest elements in its vector argument. Here we have exploited the fact
that the map z := w − v ≥ 0, which in turn implies that

sk(z) = max
u∈{0,1}m : 1>u=k

u>z = max
u∈Ck

u>z.

In order to recover an optimal pair (θ+∗ , θ
−
∗ ), we simply identify the set I of indices with the k largest elements in

w − v, and set θ+∗ , θ−∗ according to (20).
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B Proof of Theorem 2

Theorem 2 (Sparse Multinomial Naive Bayes). Let φ(k) be the optimal value of (SMNB). Then φ(k) ≤ ψ(k),
where ψ(k) is the optimal value of the following one-dimensional convex optimization problem

ψ(k) := C + min
α∈[0,1]

sk(h(α)), (USMNB)

where C is a constant, sk(·) is the sum of the top k entries of its vector argument, and for α ∈ (0, 1)

h(α) := f+ ◦ log f+ + f− ◦ log f− − (f+ + f−) ◦ log(f+ + f−)− f+ logα− f− log(1− α).

Further, given an optimal dual variable α∗ that solves (USMNB), we can reconstruct a primal feasible (sub-optimal)
point (θ+, θ−) for (SMNB) as follows. For α∗ optimal for (USMNB), let I be complement of the set of indices
corresponding to the top k entries of h(α∗); then set B± :=

∑
i6∈I f

±
i , and

θ+∗ i = θ−∗ i =
f+i + f−i

1>(f+ + f−)
, ∀i ∈ I, θ±∗i =

B+ +B−
B±

f±i
1>(f+ + f−)

, ∀i 6∈ I. (21)

Proof. We begin by deriving the expression for the upper bound ψ(k).

Duality bound. We first derive the bound stated in the theorem. Problem (SMNB) is written

(θ+∗ , θ
−
∗ ) = arg max

θ+,θ−∈[0,1]m
f+> log θ+ + f−> log θ− : 1>θ+ = 1>θ− = 1,

‖θ+ − θ−‖0 ≤ k.
(SMNB)

By weak duality we have φ(k) ≤ ψ(k) where

ψ(k) := min
µ+,µ−

λ≥0

max
θ+,θ−∈[0,1]m

f+> log θ+ + f−> log θ− + µ+(1− 1>θ+) + µ−(1− 1>θ−)

+ λ(k − ‖θ+ − θ−‖0).

The inner maximization is separable across the components of θ+, θ− since ‖θ+ − θ−‖0 =
∑m
i=1 1{θ+i 6=θ−i }. To

solve it, we thus only need to consider one dimensional problems written

max
q,r∈[0,1]

f+i log q + f−i log r − µ+q − µ−r − λ1{q 6=r}, (22)

where f+i , f
−
i > 0 and µ± > 0 are given. We can split the max into two cases; one case in which q = r and

another when q 6= r, then compare the objective values of both solutions and take the larger one. Hence (22)
becomes

max
(

max
u∈[0,1]

(f+i + f−i ) log u− (µ+ + µ−)u, max
q,r∈[0,1]

f+i log q + f−i log r − µ+q − µ−r − λ
)
.

Each of the individual maximizations can be solved in closed form, with optimal point

u∗ =
(f+i + f−i )

µ+ + µ−
, q∗ =

f+i
µ+

, r∗ =
f−i
µ−

. (23)

Note that none of u∗, q∗, r∗ can be equal to either 0 or 1, which implies µ+, µ− > 0. Hence (22) reduces to

max
(

(f+i + f−i ) log
( (f+i + f−i )

µ+ + µ−

)
, f+i log

(f+i
µ+

)
+ f−i log

(f−i
µ−

)
− λ
)
− (f+i + f−i ). (24)

We obtain, with S := 1>(f+ + f−),

ψ(k) = −S + min
µ+,µ−>0
λ≥0

µ+ + µ− + λk +

m∑
i=1

max(vi(µ), wi(µ)− λ). (25)
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where, for given µ = (µ+, µ−) > 0,

v(µ) := (f+ + f−) ◦ log
(f+ + f−

µ+ + µ−

)
, w(µ) := f+ ◦ log

(f+
µ+

)
+ f− ◦ log

(f−
µ−

)
.

Recall the variational form of sk(z). For a given vector z ≥ 0, Lemma 11 shows

sk(z) = min
λ≥0

λk +

m∑
i=1

max(0, zi − λ).

Problem (25) can thus be written

ψ(k) = −S + min
µ>0
λ≥0

µ+ + µ− + λk + 1>v(µ) +

m∑
i=1

max(0, wi(µ)− vi(µ)− λ)

= −S + min
µ>0

µ+ + µ− + 1>v(µ) + sk(w(µ)− v(µ)),

where the last equality follows from w(µ) ≥ v(µ), valid for any µ > 0. To prove this, observe that the negative
entropy function x→ x log x is convex, implying that its perspective P also is. The latter is the function with
domain R+ ×R++, and values for x ≥ 0, t > 0 given by P (x, t) = x log(x/t). Since P is homogeneous and convex
(hence subadditive), we have, for any pair z+, z− in the domain of P : P (z+ + z−) ≤ P (z+) + P (z−). Applying
this to z± := (f±i , µ

+
i ) for given i ∈ [m] results in wi(µ) ≥ vi(µ), as claimed.

We further notice that the map µ → w(µ) − v(µ) is homogeneous, which motivates the change of variables
µ± = t p±, where t = µ+ + µ− > 0 and p± > 0, p+ + p− = 1. The problem reads

ψ(k) = −S + (f+ + f−)> log(f+ + f−) + min
t>0, p>0,
p++p−=1

{t− S log t+ sk(H(p))}

= C + min
p>0, p++p−=1

sk(H(p)),

where C := (f+ + f−)> log(f+ + f−)− S logS, because t = S at the optimum, and

H(p) := v − f+ ◦ log p+ − f− ◦ log p−,

with
v = f+ ◦ log f+ + f− ◦ log f− − (f+ + f−) ◦ log(f+ + f−).

Solving for ψ(k) thus reduces to a 1D bisection

ψ(k) = C + min
α∈[0,1]

sk(h(α)),

where
h(α) := H(α, 1− α) = v − f+ logα− f− log(1− α).

This establishes the first part of the theorem. Note that it is straightforward to check that with k = n, the bound
is exact: φ(n) = ψ(n).

Primalization. Next we focus on recovering a primal feasible (sub-optimal) point (θ+sub, θ−sub) from the dual
bound obtained before. Assume that α∗ is optimal for the dual problem (USMNB). We sort the vector h(α∗)
and find the indices corresponding to the top k entries. Denote the complement of this set of indices by I. These
indices are then the candidates for which θ+i = θ−i for i ∈ I in the primal problem to eliminate the cardinality
constraint. Hence we are left with solving

(θ+sub, θ−sub) = arg max
θ+,θ−∈[0,1]m

f+> log θ+ + f−> log θ− (26)

s.t.1>θ+ = 1>θ− = 1,

θ+i = θ−i , i ∈ I
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or, equivalently

max
θ,θ+,θ−,s∈[0,1]

∑
i∈I

(f+i + f−i ) log θi +
∑
i 6∈I

(f+i log θ+i + f−i log θ−i ) (27)

s.t. 1>θ+ = 1>θ− = 1− s, 1>θ = s.

For given κ ∈ [0, 1], and f ∈ Rm++, we have

max
u : 1>u=κ

f> log(u) = f> log f − (1>f) log(1>f) + (1>f) log κ,

with optimal point given by u∗ = (κ/(1>f))f . Applying this to problem (27), we obtain that the optimal value
of s is given by

s∗ = arg max
s∈(0,1)

{A log s+B log(1− s)} =
A

A+B
,

where
A :=

∑
i∈I

(f+i + f−i ), B± :=
∑
i 6∈I

f±i , B := B+ +B− = 1>(f+ + f−)−A.

We obtain
θ+sub
i = θ−sub

i =
s∗

A
(f+i + f−i ), i ∈ I, θ±sub

i =
(1− s∗)

B±(A+B)
f±i , i 6∈ I,

which further reduces to the expression stated in the theorem.

C Proof of Theorem 3

The proof follows from results by (Aubin and Ekeland, 1976) (see also (Ekeland and Temam, 1999; Kerdreux
et al., 2017) for a more recent discussion) which are briefly summarized below for the sake of completeness. Given
functions fi, a vector b ∈ Rm, and vector-valued functions gi, i ∈ [n] that take values in Rm, we consider the
following problem:

hP (u) := min
x

n∑
i=1

fi(xi) :

n∑
i=1

gi(xi) ≤ b+ u (P)

in the variables xi ∈ Rdi , with perturbation parameter u ∈ Rm. We first recall some basic results about conjugate
functions and convex envelopes.

Biconjugate and convex envelope. Given a function f , not identically +∞, minorized by an affine function,
we write

f∗(y) , inf
x∈dom f

{y>x− f(x)}

the conjugate of f , and f∗∗(y) its biconjugate. The biconjugate of f (aka the convex envelope of f) is the
pointwise supremum of all affine functions majorized by f (see e.g. (Rockafellar, 1970, Th. 12.1) or (Hiriart-Urruty
and Lemaréchal, 1993, Th.X.1.3.5)), a corollary then shows that epi(f∗∗) = Co(epi(f)). For simplicity, we write
S∗∗ = Co(S) for any set S in what follows. We will make the following technical assumptions on the functions fi
and gi in our problem.
Assumption 3. The functions fi : Rdi → R are proper, 1-coercive, lower semicontinuous and there exists an
affine function minorizing them.

Note that coercivity trivially holds if dom(fi) is compact (since f can be set to +∞ outside w.l.o.g.). When
Assumption 3 holds, epi(f∗∗), f∗∗i and hence

∑n
i=1 f

∗∗
i (xi) are closed (Hiriart-Urruty and Lemaréchal, 1993,

Lem.X.1.5.3). Also, as in e.g. (Ekeland and Temam, 1999), we define the lack of convexity of a function as
follows.
Definition 4. Let f : Rd → R, we let

ρ(f) , sup
x∈dom(f)

{f(x)− f∗∗(x)} (28)



Naive Feature Selection: Sparsity in Naive Bayes

Many other quantities measure lack of convexity (see e.g. (Aubin and Ekeland, 1976; Bertsekas, 2014) for further
examples). In particular, the nonconvexity measure ρ(f) can be rewritten as

ρ(f) = sup
xi∈dom(f)

µ∈Rd+1

{
f

(
d+1∑
i=1

µixi

)
−
d+1∑
i=1

µif(xi) : 1>µ = 1, µ ≥ 0

}
(29)

when f satisfies Assumption 3 (see (Hiriart-Urruty and Lemaréchal, 1993, Th.X.1.5.4)).

Bounds on the duality gap and the Shapley-Folkman Theorem Let hP (u)∗∗ be the biconjugate of
hP (u) defined in (P), then hP (0)∗∗ is the optimal value of the dual to (P) (Ekeland and Temam, 1999, Lem. 2.3),
and (Ekeland and Temam, 1999, Th. I.3) shows the following result.
Theorem 5. Suppose the functions fi, gji in problem (P) satisfy Assumption 3 for i = 1, . . . , n, j = 1, . . . ,m.
Let

p̄j = (m+ 1) max
i
ρ(gji), for j = 1, . . . ,m (30)

then
hP (p̄) ≤ hP (0)∗∗ + (m+ 1) max

i
ρ(fi). (31)

where ρ(·) is defined in Def. 4.

We are now ready to prove Theorem 3, whose proof follows from Theorem 5 above.
Theorem 6 (Quality of Sparse Multinomial Naive Bayes Relaxation). Let φ(k) be the optimal value of (SMNB)
and ψ(k) that of the convex relaxation in (USMNB), we have for k ≥ 4,

ψ(k − 4) ≤ φ(k) ≤ ψ(k) ≤ φ(k + 4).

for k ≥ 4.

Proof. Problem (SMNB) is separable and can be written in perturbation form as in the result by (Ekeland and
Temam, 1999, Th. I.3) recalled in Theorem 5, to get

hP (u) = minq,r −f+> log q − f−> log r
subject to 1>q = 1 + u1,

1>r = 1 + u2,∑m
i=1 1qi 6=ri ≤ k + u3

(32)

in the variables q, r ∈ [0, 1]m, where u ∈ R3 is a perturbation vector. By construction, we have φ(k) = −hP (0)
and φ(k + l) = −hP ((0, 0, l)). Note that the functions 1qi 6=ri are lower semicontinuous and, because the domain
of problem (SMNB) is compact, the functions

f+i log qi + qi + f−i log ri + ri + 1qi 6=ri

are 1-coercive for i = 1, . . . ,m on the domain and satisfy Assumption 3 above.

Now, because q, r ≥ 0 with 1>q = 1>r = 1, we have q − r ∈ [−1, 1]m and the convex envelope of 1qi 6=ri on
q, r ∈ [0, 1]m is |qi − ri|, hence the lack of convexity (29) of 1qi 6=ri on [0, 1]2 is bounded by one, because

ρ(1x6=y) := sup
x,y∈[0,1]

{1y 6=x − |x− y|} = 1

which means that maxi=1,...,n ρ(g3i) = 1 in the statement of Theorem 5. The fact that the first two constraints in
problem (32) are convex means that maxi=1,...,n ρ(gji) = 0 for j = 1, 2, and the perturbation vector in (30) is
given by p̄ = (0, 0, 4), because there are three constraints in problem (32) so m = 3 in (30), hence

hP (p̄) = hP ((0, 0, 4)) = −φ(k + 4).

The objective function being convex separable, we have maxi=1,...,n ρ(fi) = 0. Theorem 5 then states that

hP (p̄) = hP ((0, 0, 4)) = −φ(k + 4) ≤ hP (0)∗∗ + 0 = −ψ(k)

because −hP (0)∗∗ is the optimal value of the dual to φ(k) which is here ψ(k) defined in Theorem 2. The other
bound in (15), namely φ(k) ≤ ψ(k), follows directly from weak duality.
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Primalization. We first derive the second dual of problem (P), i.e. the dual of problem (USMNB), which will
be used to extract good primal solutions.
Proposition 7. A dual of problem (USMNB) is written

max. z>(g ◦ log(g)) + x>(f+ ◦ log(f+) + f− ◦ log(f−)) + (x>g) log(x>g)− (x>g)

−(1>g) log(1>g)− (x>f+) log(x>f+)− (x>f−) log(x>f−)

s.t. x+ z = 1, 1>x ≤ k, x ≥ 0, z ≥ 0

(D)

in the variables x, z ∈ Rn. Furthermore, strong duality holds between the dual (USMNB) and its dual (D).

Proof. The dual optimum value ψ(k) in (USMNB) can be written as in (25),

ψ(k) = −S + min
µ+,µ−>0
λ≥0

µ+ + µ− + λk +

m∑
i=1

max(vi(µ), wi(µ)− λ).

with S := 1>(f+ + f−), and

v(µ) := (f+ + f−) ◦ log
(f+ + f−

µ+ + µ−

)
, w(µ) := f+ ◦ log

(f+
µ+

)
+ f− ◦ log

(f−
µ−

)
.

for given µ = (µ+, µ−) > 0. This can be rewritten

min
µ+,µ−>0
λ≥0

max
x+z=1
x,z≥0

µ+ + µ− − S + λ(k − 1>x) + z>v(µ) + x>w(µ)

using additional variables x, z ∈ Rn, or again

min
µ+,µ−>0
λ≥0

max
x+z=1
x,z≥0

λ(k − 1>x)− (x+ z)>g − (z>g) log(µ+ + µ−) + z>(g ◦ log(g))
−(x>f+) log(µ+)− (x>f−) log(µ−)
+x>(f+ ◦ log(f+) + f− ◦ log(f−)) + µ+ + µ−

(33)

calling g = f+ + f−. Strong duality holds in this min max problem so we can switch the min and the max.
Writing µ± = t p±, where t = µ+ + µ− and p± > 0, p+ + p− = 1 the Lagrangian becomes

L(p+, p−, t, λ, x, z, α) = 1>ν − z>ν − x>ν + λk − λ1>x− 1>g − (z>g) log(t)

−(x>f+) log(t p+)− (x>f−) log(t p−) + t

+z>(g ◦ log(g)) + x>(f+ ◦ log(f+) + f− ◦ log(f−))

+α(p+ + p− − 1),

where α is the dual variable associated with the constraint p+ + p− = 1. The dual of problem (USMNB) is then
written

sup
{x≥0,z≥0,α}

inf
p+≥0,p−≥0,
t≥0,λ≥0

L(p+, p−, t, µ
−, λ, x, z, α)

The inner infimum will be −∞ unless 1>x ≤ k, so the dual becomes

sup
x+z=1,1>x≤k,
x≥0,z≥0,α

inf
p+≥0,p−≥0,

t≥0

z>(g ◦ log(g)) + x>(f+ ◦ log(f+) + f− ◦ log(f−))
−(x>f+)(log t+ log(p+))− (x>f−)(log t+ log(p−))
+t− 1>g − (z>g) log(t) + α(p+ + p− − 1)

and the first order optimality conditions in t, p+, p− yield

t = 1>g (34)
p+ = (x>f+)/α

p− = (x>f−)/α
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which means the above problem reduces to

sup
x+z=1,1>x≤k,
x≥0,z≥0,α

z>(g ◦ log(g)) + x>(f+ ◦ log(f+) + f− ◦ log(f−))
−(1>g) log(1>g)− (x>f+) log(x>f+)− (x>f−) log(x>f−)
+(x>g) logα− α

and setting in α = x>g leads to the dual in (D).

We now use this last result to better characterize scenarios where the bound produced by problem (USMNB) is
tight and recovers an optimal solution to problem (SMNB).
Proposition 8. Given k > 0, let φ(k) be the optimal value of (SMNB). Given an optimal solution (x, z) of
problem (D), let J = {i : xi /∈ {0, 1}} be the set of indices where xi, zi are not binary in {0, 1}. There is a feasible
point θ̄, θ̄+, θ̄− of problem (SMNB) for k̄ = k + |J |, with objective value OPT such that

φ(k) ≤ OPT ≤ φ(k + |J |).

Proof. Using the fact that
max
x

a log(x)− bx = a log
(a
b

)
− a

the max min problem in (33) can be rewritten as

max
x+z=1
x,z≥0

min
µ+,µ−>0
λ≥0

max
θ,θ+,θ−

λ(k − 1>x) + z>(g ◦ log θ)
+x>(f+ ◦ log θ+) + x>(f− ◦ log θ−)
+µ+(1− z>θ − x>θ+) + µ−(1− z>θ − x>θ−)

(35)

in the additional variables θ, θ+, θ− ∈ Rn, with (23) showing that

θi =
(f+i + f−i )

µ+ + µ−
, θ+i =

f+i
µ+

, θ−i =
f−i
µ−

.

at the optimum. Strong duality holds in the inner min max, which means we can also rewrite problem (D) as

max
x+z=1
x,z≥0

max
z>θ+x>θ+≤1
z>θ+x>θ−≤1

x>1≤k

z>(g ◦ log θ) + x>(f+ ◦ log θ+ + f− ◦ log θ−) (36)

or again, in epigraph form

max. r

s.t.


r
1
1
k

 ∈


0
R+

R+

R+

+
∑n
i=1

zi

gi log θi
θi
θi
0

+ xi


f+i log θ+i + f−i log θ−i

θ+i
θ−i
1


 (37)

Suppose the optimal solutions x?, z? of problem (D) are binary in {0, 1}n and let I = {i : zi = 0}, then
problem (hence problem (D)) reads

(θ+sub, θ−sub) = arg max
θ+,θ−∈[0,1]m

f+> log θ+ + f−> log θ− (38)

s.t.1>θ+ = 1>θ− = 1,

θ+i = θ−i , i ∈ I.

which is exactly (38). This means that the optimal values of problem (38) and (D) are equal, so that the relaxation
is tight and θ+i = θ−i for i ∈ I. Suppose now that some coefficients xi are not binary. Let us call J the set
J = {i : xi /∈ {0, 1}}. As in (Ekeland and Temam, 1999, Th. I.3), we define new solutions θ̄, θ̄+, θ̄− and x̄, z̄ as
follows, {

θ̄i = θi, θ̄
+
i = θ+i , θ̄

−
i = θ−i and z̄i = zi, x̄i = xi if i /∈ J

θ̄i = 0, θ̄+i = ziθ + xiθ
+
i , θ̄

−
i = ziθ + xiθ

−
i and z̄i = 0, x̄i = 1 if i ∈ J
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By construction, the points θ̄, θ̄+, θ̄− and z̄, x̄ satisfy the constraints z̄>θ̄ + x̄>θ̄+ ≤ 1, z̄>θ̄ + x̄>θ̄− ≤ 1 and
x̄>1 ≤ k. We also have x̄> ≤ k + |J | and

z>((f+ + f−) ◦ log θ) + x>(f+ ◦ log θ+ + f− ◦ log θ−)

≤ z̄>((f+ + f−) ◦ log θ̄) + x̄>(f+ ◦ log θ̄+ + f− ◦ log θ̄−)

by concavity of the objective, hence the last inequality.

We will now use the Shapley-Folkman theorem to bound the number of nonbinary coefficients in Proposition 7
and construct a solution to (D) satisfying the bound in Theorem 3.

Proposition 9. There is a solution to problem (D) with at most four nonbinary pairs (xi, zi).

Proof. Suppose (x?, z?, r?) and (θ, θ+i , θ
−
i ) solve problem (D) written as in (C), we get

r?

1− s1
1− s2
k − s3

 =

n∑
i=1

zi

gi log θi
θi
θi
0

+ xi


f+i log θ+i + f−i log θ−i

θ+i
θ−i
1


 (39)

where s1, s2, s3 ≥ 0. This means that the point (r?, 1− s1, 1− s1, k− s3) belongs to a Minkowski sum of segments,
with 

r?

1− s1
1− s2
k − s3

 ∈ n∑
i=1

Co




gi log θi
θi
θi
0

 ,


f+i log θ+i + f−i log θ−i

θ+i
θ−i
1



 (40)

The Shapley-Folkman theorem (Starr, 1969) then shows that
r?

1− s1
1− s2
k − s3

 ∈
∑

[1,n]\S



gi log θi
θi
θi
0

 ,


f+i log θ+i + f−i log θ−i

θ+i
θ−i
1




+
∑
S

Co




gi log θi
θi
θi
0

 ,


f+i log θ+i + f−i log θ−i

θ+i
θ−i
1





where |S| ≤ 4, which means that there exists a solution to (D) with at most four nonbinary pairs (xi, zi) with
indices i ∈ S.

In our case, since the Minkowski sum in (40) is a polytope (as a Minkowski sum of segments), the Shapley-Folkman
result reduces to a direct application of the fundamental theorem of linear programming, which allows us to
reconstruct the solution of Proposition 9 by solving a linear program.

Proposition 10. Given (x?, z?, r?) and (θ, θ+i , θ
−
i ) solving problem (D), we can reconstruct a solution (x, z)

solving problem (7), such that at most four pairs (xi, zi) are nonbinary, by solving

min. c>x
s.t.

∑n
i=1(1− xi)gi log θi + xi(f

+
i log θ+i + f−i log θ−i ) = r?∑n

i=1(1− xi)θi + xiθ
+
i ≤ 1∑n

i=1(1− xi)θi + xiθ
−
i ≤ 1∑n

i=1 xi ≤ k
0 ≤ x ≤ 1

(41)

which is a linear program in the variable x ∈ Rn where c ∈ Rn is e.g. a i.i.d. Gaussian vector.
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Proof. Given (x?, z?, r?) and (θ, θ+i , θ
−
i ) solving problem (D), we can reconstruct a solution (x, z) solving

problem (7), by solving (41) which is a linear program in the variable x ∈ Rn where c ∈ Rn is e.g. a i.i.d. Gaussian
vector. This program has 2n+ 4 constraints, at least n of which will be saturated at the optimum. In particular,
at least n − 4 constraints in 0 ≤ x ≤ 1 will be saturated so at least n − 4 coefficients xi will be binary at the
optimum, idem for the corresponding coefficients zi = 1− xi.

Proposition 10 shows that solving the linear program in (41) as a postprocessing step will produce a solution to
problem (D) with at most n− 4 nonbinary coefficient pairs (xi, zi). Proposition 8 then shows that this solution
satisfies

φ(k) ≤ OPT ≤ φ(k + 4).

which is the bound in Theorem (3).

Finally, we show a technical lemma linking the dual solution (x, z) in (D) above and the support of the k largest
coefficients in the computation of sk(h(α)) in theorem 2.
Lemma 11. Given c ∈ Rn+, we have

sk(c) = min
λ≥0

λk +

n∑
i=1

max(0, ci − λ) (42)

and given k, λ ∈ [c[k+1], c[k]] at the optimum, where c[1] ≥ . . . ≥ c[n]. Its dual is written

max. x>c
s.t. 1>x ≤ k

x+ z = 1
0 ≤ z, x

(43)

When all coefficients ci are distinct, the optimum solutions x, z of the dual have at most one nonbinary coefficient
each, i.e. xi, zi ∈ (0, 1) for a single i ∈ [1, n]. If in addition c[k] > 0, the solution to (43) is binary.

Proof. Problem (42) can be written
min. λk + 1>t
s.t. c− λ1 ≤ t

0 ≤ t
and its Lagrangian is then

L(λ, t, z, x) = λk + 1>t+ x>(c− λ1− t) + z>t.

The dual to the minimization problem (42) reads

max. x>c
s.t. 1>x ≤ k

x+ z = 1
0 ≤ z, x

in the variable w ∈ Rn, its optimum value is sk(z). By construction, given λ ∈ [c[k+1], c[k]], only the k largest
terms in

∑m
i=1 max(0, ci − λ) are nonzero, and they sum to sk(c)− kλ. The KKT optimality conditions impose

xi(ci − λ− ti) = 0 and ziti = 0, i = 1, . . . , n

at the optimum. This, together with x+ z = 1 and t, x, z ≥ 0, means in particular that{
xi = 0, zi = 1, if ci − λ < 0
xi = 0, zi = 1, or xi = 1, zi = 0 if ci − λ > 0

(44)

the result of the second line comes from the fact that if ci − λ > 0 and ti = ci − λ then zi = 0 hence xi = 1, if on
the other hand ti 6= ci − λ, then xi = 0 hence zi = 1. When the coefficients ci are all distinct, ci − λ = 0 for at
most a single index i and (44) yields the desired result. When c[k] > 0 and the ci are all distinct, then the only
way to enforce zero gap, i.e.

x>c = sk(c)

is to set the corresponding coefficients of xi to one.
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D Details on Datasets

This section details the data sets used in our experiments.

Downloading data sets.

1. AMZN The complete Amazon reviews data set was collected from here; only a subset of this data was used
which can be found here. This data set was randomly split into 80/20 train/test.

2. IMDB The large movie review (or IMDB) data set was collected from here and was already split 50/50 into
train/test.

3. TWTR The Twitter Sentiment140 data set was downloaded from here and was pre-processed according to
the method highlighted here.

4. MPQA The MPQA opinion corpus can be found here and was pre-processed using the code found here.

5. SST2 The Stanford Sentiment Treebank data set was downloaded from here and the pre-processing code can
be found here.

Creating feature vectors. After all data sets were downloaded and pre-processed, the diffeent types of feature
vectors were constructed using CounterVectorizer and TfidfVectorizer from Sklearn (Pedregosa et al., 2011).
Counter vector, tf-idf, and tf-idf word bigrams use the analyzer = ‘word’ specification while the tf-idf char
bigrams use analyzer = ‘char’.

Two-stage procedures. For experiments 2 and 3, all standard models were trained in Sklearn (Pedregosa
et al., 2011). In particular, the following settings were used in stage 2 for each model

1. LogisticRegression(penalty=‘l2’, solver=‘lbfgs’, C =1e4, max_iter=1e2)

2. LinearSVC(C = 1e4)

3. MultinomialNB(alpha=a)

In the first stage of the two stage procedures, the following settings were used for each of the different feature
selection methods

1. LogisticRegression(random_state=0, C = λ1,penalty=‘l1’,solver=‘saga’, max_iter=1e2)

2. clf = LogisticRegression(C = 1e4, penalty=‘l2’, solver = ‘lbfgs’, max_iter =
1e2).fit(train_x,train_y)
selector_log = RFE(clf, k), step=0.3)

3. Lasso(alpha = λ2, selection=‘cyclic’, tol = 1e-5)

4. LinearSVC(C =λ3, penalty=‘l1’,dual=False)

5. clf = LinearSVC(C = 1e4, penalty=‘l2’,dual=False).fit(train_x,train_y)
selector_svm = RFE(clf,k, step=0.3)

6. MultinomialNB(alpha=a)

where λi are hyper-parameters used by the `1 methods to achieve a desired sparsity level k. a is a hyper-parameter
for the different MNB models which we compute using cross validation (explained below).

Hyper-parameters. For each of the `1 methods we manually do a grid search over all hyper-parameters to
achieve an approximate desired sparsity pattern. For determining the hyper-parameter for the MNB models, we
employ 10-fold cross validation on each data set for each type of feature vector and determine the best value of a.
In total, this is 16 + 20 = 36 values of a – 16 for experiment 2 and 20 for experiment 3. In experiment 2, we do
not use the twitter data set since computing the λi’s to achieve a desired sparsity pattern for the `1 based feature
selection methods was computationally intractable.

https://drive.google.com/drive/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M
https://gist.github.com/kunalj101/ad1d9c58d338e20d09ff26bcc06c4235
http://ai.stanford.edu/~amaas//data/sentiment/
http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
https://towardsdatascience.com/another-twitter-sentiment-analysis-bb5b01ebad90
http://mpqa.cs.pitt.edu/
https://github.com/AcademiaSinicaNLPLab/sentiment_dataset
https://nlp.stanford.edu/sentiment/
https://github.com/AcademiaSinicaNLPLab/sentiment_dataset
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Experiment 2 and 3: full results. Here we show the results of experiments 2 and 3 for all the data sets. All
error bars represents 10 separate simulations where each simulation is a different appropriately-sized train-test
split (as per Table 1). As seen in Figure 1, the SVM-`1 model was unable to converge and hence has an accuracy
of 50%. This was in spite of manually adjusting max_iter=1e7 and using the liblinear solver which is default for
LinearSVC in sci-kit learn.
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Figure 4: Experiment 2: AMZN - Stage 2 Logistic
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Figure 5: Experiment 2: AMZN - Stage 2 SVM
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Figure 6: Experiment 2: AMZN - Stage 2 MNB
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Figure 7: Experiment 2: IMDB - Stage 2 Logistic
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Figure 8: Experiment 2: IMDB - Stage 2 SVM



Naive Feature Selection: Sparsity in Naive Bayes

0.1 1 5 10

50

60

70

80

90

A
cc

u
ra

cy
(%

)

IMDB - Count Vector

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

Odds Ratio

TMNB

SMNB - this work

0.1 1 5 10

101

102

103

104

S
p

ee
d

u
p

IMDB - Count Vector

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

0.1 1 5 10
40

50

60

70

80

90

A
cc

u
ra

cy
(%

)

IMDB - tf-idf

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

Odds Ratio

TMNB

SMNB - this work

0.1 1 5 10

101

102

103

S
p

ee
d

u
p

IMDB - tf-idf

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

0.1 1 5 10
40

45

50

55

60

65

70

75

80

A
cc

u
ra

cy
(%

)

IMDB - tf-idf word bigram

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

Odds Ratio

TMNB

SMNB - this work

0.1 1 5 10

101

102

103

S
p

ee
d

u
p

IMDB - tf-idf word bigram

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

0.1 1 5 10
Sparsity level(%)

40

50

60

70

80

A
cc

u
ra

cy
(%

)

IMDB - tf-idf char bigram

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

Odds Ratio

TMNB

SMNB - this work

0.1 1 5 10
Sparsity level(%)

101

102

103

S
p

ee
d

u
p

IMDB - tf-idf char bigram

Logistic-`1

Logistic-RFE
SVM-`1

SVM-RFE

LASSO

Figure 9: Experiment 2: IMDB - Stage 2 MNB
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Figure 10: Experiment 2: MPQA - Stage 2 Logistic
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Figure 11: Experiment 2: MPQA - Stage 2 SVM
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Figure 12: Experiment 2: MPQA - Stage 2 MNB
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Figure 13: Experiment 2: SST2 - Stage 2 Logistic
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Figure 14: Experiment 2: SST2 - Stage 2 SVM
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Figure 15: Experiment 2: SST2 - Stage 2 MNB
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Figure 16: Experiment 3: AMZN - Stage 2 MNB
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Figure 17: Experiment 3: IMDB - Stage 2 MNB
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Figure 18: Experiment 3: TWTR - Stage 2 MNB



Naive Feature Selection: Sparsity in Naive Bayes

0.01 0.05 0.1 1
70

71

72

73

74

75

76

77

A
cc

u
ra

cy
(%

)

MPQA - Count Vector
TMNB

Odds Ratio

SMNB - this work

0.01 0.05 0.1 1
0.0076

0.0078

0.0080

0.0082

0.0084

t S
M
N
B

(s
)

MPQA - Count Vector

0.01 0.05 0.1 1

71

72

73

74

75

76

A
cc

u
ra

cy
(%

)

MPQA - tf-idf
TMNB

Odds Ratio

SMNB - this work

0.01 0.05 0.1 1

0.0074

0.0076

0.0078

0.0080

0.0082

t S
M
N
B

(s
)

MPQA - tf-idf

0.01 0.05 0.1 1

70.4

70.6

70.8

71.0

71.2

71.4

A
cc

u
ra

cy
(%

)

MPQA - tf-idf word bigram
TMNB

Odds Ratio

SMNB - this work

0.01 0.05 0.1 1

0.0220

0.0225

0.0230

0.0235

0.0240

0.0245

0.0250

0.0255

0.0260

t S
M
N
B

(s
)

MPQA - tf-idf word bigram

0.01 0.05 0.1 1

Sparsity level(%)

70

71

72

73

74

A
cc

u
ra

cy
(%

)

MPQA - tf-idf char bigram
TMNB

Odds Ratio

SMNB - this work

0.01 0.05 0.1 1

Sparsity level(%)

0.0080

0.0082

0.0084

0.0086

0.0088

0.0090

0.0092

t S
M
N
B

(s
)

MPQA - tf-idf char bigram

Figure 19: Experiment 3: MPQA - Stage 2 MNB
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Figure 20: Experiment 3: SST2 - Stage 2 MNB
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