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Abstract

We use matrix iteration theory to character-
ize acceleration in smooth games. We define
the spectral shape of a family of games as
the set containing all eigenvalues of the Jaco-
bians of standard gradient dynamics in the
family. Shapes restricted to the real line repre-
sent well-understood classes of problems, like
minimization. Shapes spanning the complex
plane capture the added numerical challenges
in solving smooth games. In this framework,
we describe gradient-based methods, such as
extragradient, as transformations on the spec-
tral shape. Using this perspective, we propose
an optimal algorithm for bilinear games. For
smooth and strongly monotone operators, we
identify a continuum between convex mini-
mization, where acceleration is possible us-
ing Polyak’s momentum, and the worst case
where gradient descent is optimal. Finally, go-
ing beyond first-order methods, we propose an
accelerated version of consensus optimization.

1 Introduction

Recent successes of multi-agent formulations in various
areas of deep learning (Goodfellow et al., 2014; Pfau
and Vinyals, 2016) have caused a surge of interest in
the theoretical understanding of first-order methods for
the solution of differentiable multi-player games (Pala-
niappan and Bach, 2016; Gidel et al., 2019a; Balduzzi
et al., 2018; Mescheder et al., 2017, 2018; Mazumdar
et al., 2019). This exploration hinges on a key question:

How fast can a first-order method be?

In convex minimization, Nesterov (1983, 2004) an-
swered this question with lower bounds for the rate
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Figure 1: Transformation of the spectral shape K (in
red from left to right) by the extragradient operator
ϕ : λ 7→ λ(1− ηλ). Any ellipse (e.g. in blue) that contains
the transformed red shape ϕ(K) provides a upper conver-
gence bound using extragradient with Polyak momentum
(with step-size and momentum that depends on the ellipse
parameters). Any ellipse included in it (e.g. in green)
provides a lower bound. See §3.3.

of convergence and an accelerated, momentum-based
algorithm matching that optimal lower bound.

The dynamics of numerical methods is often described
by a vector field, F , and summarized in the spectrum of
its Jacobian. In minimization problems, the eigenvalues
of the Jacobian lie on the real line. On strongly convex
problems, the condition number (the dynamic range
of eigenvalues) is at the heart of Nesterov’s upper and
lower bound results, characterizing the hardness of an
minimization problem.

Our understanding of differentiable games is nowhere
close to this point. There, the eigenvalues of the Ja-
cobian at the solution are distributed on the complex
plane, suggesting a richer, more complex set of dy-
namics (Mescheder et al., 2017; Balduzzi et al., 2018).
Some old papers (Korpelevich, 1976; Tseng, 1995) and
many recent ones (Nemirovski, 2004; Chen et al., 2014;
Palaniappan and Bach, 2016; Mescheder et al., 2017;
Gidel et al., 2019a,b; Daskalakis et al., 2018; Mokhtari
et al., 2019; Azizian et al., 2019) suggest new methods
and provide better upper bounds.

All of the above work relies on bounding the magnitude
or the real part of the eigenvalues of submatrices of the
Jacobian. This coarse-grain approach can be oblivious
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to the dependence of upper and lower bounds on the
exact distribution of eigenvalues on the complex plane.
More importantly, the questions of acceleration and
optimality have not been answered for smooth games.

In this paper, we take a different approach. We use
matrix iteration theory to characterize acceleration
in smooth games. Our analysis framework revolves
around the spectral shape of a family of games, defined
as the set containing all eigenvalues of the Jacobians of
natural gradient dynamics in the family (cf. §3.2). This
fine-grained analysis framework can captures the depen-
dence of upper and lower bounds on the specific shape
of the spectrum. Critically, it allows us to establish
acceleration in specific families of smooth games.

Contributions. Our main contribution is a geometric
interpretation of the conditioning of a game (via its
spectral shape as illustrated in Fig. 1, and discussed with
more details in §3.3). Our result links the “hardness”
of a game to the distribution of the eigenvalues of
its Jacobian of the game at the optimum. Using our
framework, we make the following contributions.
1. We show a reduction from bilinear games to games
with real eigenvalues, where acceleration is possible
through momentum. We provide lower bounds and
design an optimal algorithm for this class.
2. Showing that acceleration persists even if there is an
“imaginary perturbation”, we propose an accelerated
version of extragradient (EG) for bilinear games.
3. We accelerate consensus optimization (CO), a cheap
second-order method. We combine it with momentum
to achieve a nearly-accelerated rate, improving the best
rate previously known for this method.

Organisation. We recall the definition of the asymp-
totic convergence factor in §4 and use it to show that
acceleration is not possible for the general class of
smooth and strongly monotone games. In §5 we show
that bilinear games or games with a “small imaginary
perturbation” can be accelerated. Finally, in §6 we
improve the rate of CO by using momentum.

2 Related work

Matrix iteration theory. There is extensive litera-
ture on iterative methods for linear systems, due to
their countless applications. An important line of work
considers the design of iterative methods through the
lens of approximation problems by polynomials on
the complex plane. Eiermann and Niethammer (1983)
then used complex analysis tools to define, for a given
compact set, its asymptotic convergence factor : it is
the optimal asymptotic convergence rate a first-order
method can achieve for all linear systems with spectrum
in the set. Niethammer and Varga (1983) bring tools
from summability theory to analyze multi-step iterative

methods in this framework and provide optimal meth-
ods, in particular, the momentum method for ellipses.
Eiermann et al. (1985) continued in this direction, sum-
marizing and improving the previous results. Finally
Eiermann et al. (1989) study how polynomial transfor-
mations of the spectrum help compute the asymptotic
convergence factor and the optimal method for a given
set, potentially yielding faster convergence.

Acceleration and lower bounds. Lower bounds of
convergence are standard in convex optimization (Nes-
terov, 2004) but are often non-asymptotic or cast in
an infinite-dimensional space. Arjevani et al. (2016);
Arjevani and Shamir (2016) showed non-asymptotic
lower bounds using a framework called p-SCLI close to
matrix iteration theory. Ibrahim et al. (2019); Azizian
et al. (2019) extended this framework to multi-player
games, but they consider lower and upper-bounds on
the eigenvalues of the Jacobian of the game rather than
their distribution in the complex plane. Two main
acceleration methods in convex optimization achieve
these lower bounds, Polyak’s momentum (Polyak, 1964)
and Nesterov’s acceleration Nesterov (1983). The latter
is the only one that has global convergence guarantees
for convex functions. Nevertheless, Polyak’s momen-
tum still plays a crucial role in the training of large
scale machine learning models Sutskever et al. (2013).

Acceleration for games. Recent work applied ac-
celeration techniques to game optimization. Gidel
et al. (2019b) showed that negative momentum with
alternating updates converges on bilinear games, but
with the same geometrical rate as EG. Chen et al.
(2014) provided a version of the mirror-prox method
which improves the constant but not its rate. In the
context of minimax optimization, Palaniappan and
Bach (2016) used Catalyst (Lin et al., 2015), a generic
acceleration method, to improve the convergence of
variance-reduced algorithms for min-max problems. In
the context of variational inequalities, the standard
assumptions on the operator are Lipschitzness and
(strong) monotonicity (Tseng, 1995; Nesterov, 2003).
Nemirovski (2004) provided a lower bound in O(1/t)
on the convergence rate for smooth monotone games,
which suggests that EG is nearly optimal in the strongly
monotone case. In our work, we show that acceleration
is possible by substituting the smoothness and mono-
tonicity assumptions on the operator into more precise
assumptions on the eigenvalues of its Jacobian.

3 Setting and notation

We consider the problem of finding a stationary point
ω∗ ∈ Rd of a vector field F : Rd → Rd, i.e., F (ω∗) = 0.,
the solution of an unconstrained variational inequality
problem (Harker and Pang, 1990). A relevant special
case is a n-player convex game, where ω∗ corresponds
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to a Nash equilibrium (Von Neumann and Morgenstern,
1944; Balduzzi et al., 2018). Consider n players i =
1, . . . , n who want to minimize their loss li(ω

(i), ω(−i)).
The notation ·(−i) means all indexes but i. A Nash
equilibrium satisfies

(ω∗)(i) ∈ arg min
ω(i)∈Rdi

li(ω
(i), (ω∗)(−i)) ∀i ∈ {1, . . . , n}.

In this situation no player can unilaterally reduce its
loss. The vector field of the game is

F (ω) =
[
∇ω1

lT1 (ω(1), ω(−1)), ...,∇ωn lTn (ω(n), ω(−n))
]T
.

3.1 First-order methods

To study lower bounds of convergence, we need a class
of algorithms. We consider the classic definition1 of
first-order methods from Nemirovsky and Yudin (1983).

Definition 1. A first-order method generates

ωt ∈ ω0 + Span{F (ω0), . . . , F (ωt−1)} , t ≥ 1 .

This class is widely used in large-scale optimization,
as it involves only gradient computation. For instance,
Nesterov’s acceleration belongs to the class of first-
order methods. On the contrary, this definition does
not cover Adagrad (Duchi et al., 2011), that could
conceptually be also considered as first-order. This is
due to the diagonal re-scaling, so ωt can go outside
the span of gradients. The next proposition gives a
way to easily identify first-order methods that fit our
definition.

Proposition 1. (Arjevani and Shamir, 2016) first-
order methods can be written as

ωt+1 =
∑t
k=0 α

(t)
k F (ωk) + β

(t)
k ωk, (1)

where
∑t
k=0 β

(t)
k = 1. The method is called oblivious if

the coefficients α
(t)
k and β

(t)
k are known in advance.

Oblivious methods allow the knowledge of “side infor-
mation” on the function, like its smoothness constant.
Most of first-order methods belong to this class, but it
excludes for instance methods with adaptive step-sizes.
We show how standard methods fit into this framework.

Gradient method. Consider the gradient method
with time-dependant step-size: ωt+1 = ωt − ηtF (ωt).

This is a first-order method, where α
(t)
t = −ηt, β(t)

t = 1
and all the other coefficients set to zero.

Momentum method. The momentum method de-
fines iterates as ωt+1 = ωt − αF (ωt) + β(ωt − ωt−1).

It fits into the previous framework with α
(t)
t = −α,

β
(t)
t = 1 + β, β

(t)
t−1 = −β.

1Technically, first-order algorithms are more generally
methods that have access only to first-order oracles.

Extragradient method. Though slightly trickier,
the extragradient method (EG) is also encompassed
by this definition. The iterates of EG are defined by
ωt+1 = ωt − ηF (ωt − ηF (ωt)) where{
β

(t)
t = 0, β

(t)
t−1 = 1 if t is odd (update) ,

β
(t)
t = 1, β

(t)
t−1 = 0 if t is even (extrapolation) ,

and α
(t)
t = −η the step size.

The next (known) lemma shows that when F is linear,
first-order methods can be written using polynomials.

Lemma 1. (e.g. Chihara, 2011) If F (ω) = Aω + b,

ωt − ω∗ = pt(A)(ω0 − ω∗) , (2)

where ω∗ satisfies Aω∗ + b = 0 and pt is a real polyno-
mial of degree at most t such that pt(0) = 1.

We denote by Pt the set of real polynomials of degree
at most t such that pt(0) = 1. Hence, the convergence
of a first-order method can be analyzed through the
sequence of polynomials (pt)t it defines.

3.2 Problem class

In the previous section, when F is the linear function
F = Ax+ b, the iterates ωt follow the relation (2) in-
volving the polynomial pt. Since all first-order methods
can be written using polynomials (1), they follow

‖ωt − ω∗‖2 = ‖pt(A)(ω0 − ω∗)‖2 . (3)

This gives the rate of convergence of the method for a
specific matrix A. Instead, we consider a larger class of
problems. It consists of a setMK of matrices A whose
eigenvalues belong to a set K on the complex plane,

MK := {A ∈ Rd : Sp(A) ⊂ K ⊂ C+}, (4)

where Sp(A) is the set of eigenvalues of A and C+ is
the set of complex numbers with positive real part.
Moreover, we assume that d ≥ 2 to avoid trivial cases.

3.3 Geometric intuition

Our paper is entirely based on the study of the support
K of the eigenvalues of the Jacobian of the operator
F , denoted by JF (ω∗). Before detailing our theoretical
results, we give a high-level explanation of our objec-
tives. This geometric intuition comes from the fact
that the standard assumptions made in the literature
correspond to particular problem classes MK .

Smooth and strongly convex minimization. Con-
sider the minimization of a twice-differentiable, L-
smooth and µ-strongly convex function f ,

µI � ∇2f(ω) � LI ∀ω ∈ Rd.
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There is a link between minimization problems and
games, since the vector field F becomes the gradient
of the objective, and its Jacobian JF (ω) is the Hes-
sian ∇2f(ω). Thus, the class corresponding to the
minimization of smooth, strongly convex functions is

{F : ∀ω ∈ Rd, Sp JF (ω) ⊂ [µ,L]} , 0 < µ ≤ L}.

Bilinear games. Consider the following problem,

min
x∈Rd

max
y∈Rd

x>Ay .

Its Jacobian JF (ω) is constant and skew-symmetric. It
is a standard linear algebra result (see Lem. 7) to show
that Sp JF (ω) ∈ ±[iσmin(A), iσmax(A)].

Variational inequalities. The Lipchitz assumption

‖F (ω)− F (ω′)‖22 ≤ L‖ω − ω′‖22 (5)

implies an upper bound on the magnitude of the eigen-
values of JF (ω∗). The strong monotonicity assumption

(ω − ω′)T (F (ω)− F (ω′)) ≥ µ‖ω − ω′‖22 (6)

implies a lower bound on the real part of the eigenvalues
of JF (ω∗) (see Lem. 5 in §B) which thus belong to

K = {λ ∈ C : 0 < µ ≤ <λ, |λ| ≤ L}.

This set is the intersection between a circle and a half-
plane, as shown in Figure 2 (left).

Fine-grained bounds. Nemirovski (2004) provides
a lower-bound for the class of strongly monotone and
Lipschitz operators (see §4.2) excluding the possibility
of acceleration in that general setting. It motivates the
adoption of more refined assumptions on the eigenval-
ues of JF (ω∗). We consider the class of games where
these eigenvalues belong to a specified set K. Since
JF (ω∗) is real, its spectrum is symmetric w.r.t. the
real axis, so we assume that K is too. For this class of
problem, we have a simple method to compute lower
and upper convergence bounds using a class of well
studied shapes: ellipses.

Proposition 2 (Ellipse method for lower and upper
bound (Informal)). Let K ⊂ C+ be a compact set, then
any ellipse symmetric w.r.t. the real axis that includes
(resp. is included in) K provides an upper (resp. lower)
convergence bound for the class of problem MK using
Polyak momentum with a step-size and a momentum
depending on the ellipse.

See Appendix C.2, Thm. 6 for the precise result on
ellipses. The proposition extends to any shape whose
optimal algorithm (resp. lower bound) is known. This
proposition, illustrated in Fig. 1, heavily relies on the
fact that, the optimal method for ellipses is Polyak
momentum (Niethammer and Varga, 1983).

Any first-order method can be seen as a way to trans-
form the set K. In order to illustrate that we consider
Lemma 1: since a first-order method update for a linear
operator F = Ax+b can be written using a polynomial
p, the eigenvalues to consider are not the ones of A but
the ones of p(A). Thus, the set of interest is p(K).

As an example, consider EG with momentum. This
consists in applying the momentum method to the
transformed vector field ω 7→ F (ω − ηF (ω)). From a
spectral point of view, this is equivalent to first trans-
forming the shape K into ϕ(K) with the extragradient
mapping ϕη : λ 7→ λ(1− ηλ), then study the effect of
momentum on ϕ(K). This example of transformation
is illustrated in Fig. 1, and this idea is used in §5.4.

4 Asymptotic convergence factor

We recall known results that compute lower bounds for
some classes of games using the asymptotic convergence
factor (Eiermann and Niethammer, 1983; Eiermann
et al., 1985; Nevanlinna, 1993). Then, we illustrate
them on two particular classes of problems.

4.1 Lower bounds for a class of problems

We now show how to lower bound the worst-case rate
of convergence of a specific method over the class MK

(4), with the worst possible initialisation ω0. We start
with equation (3), but this time we pick the worst-case
over all matrices A ∈MK , i.e.,

max
A∈MK

‖pt(A)(ω0 − ω∗)‖2.

Now, we can pick an arbitrary bad initialisation ω0,
in particular, the one that corresponds to the largest
eigenvalue of pt(A) in magnitude. This gives

∃ω0 : ‖ωt − ω∗‖2 ≥ max
A∈MK

ρ
(
pt(A)

)
‖ω0 − ω∗‖2

= max
λ∈K
|pt(λ)|‖ω0 − ω∗‖2 . (7)

It remains to lower bound maxλ∈K |pt(λ)| over all pos-
sible first-order methods. This is called the asymptotic
convergence factor, presented in the next section.

4.2 Asymptotic convergence factor

Here we recall the definition of the asymptotic conver-
gence factor (Eiermann and Niethammer, 1983), which
gives a lower bound for the rate of convergence over ma-
trices which belong to the classMk (4), for all possible
first-order methods. We mainly follow the definition of
Nevanlinna (1993) (see Rmk. 1 in §B for details).

The simplest way to lower bound ‖ωt − ω∗‖2 is given
by minimizing (7) over all polynomials corresponding
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to a first-order method. By Lemma 1, this class of
polynomials is given by Pt. Thus, for some ω0,

‖ωt − ω∗‖ ≥ min
pt∈Pt

max
λ∈K
|pt(λ)| · ‖ω0 − ω∗‖2.

The asymptotic convergence factor
¯
ρ(K) for the class

K is given by taking the minimum average rate of
convergence over t for any t, i.e.,

¯
ρ(K) = inf

t>0
min
pt∈Pt

max
λ∈K

t
√
|pt(λ)| . (8)

This way, by construction,
¯
ρ(K) gives a lower-bound

on the worst-case rate of convergence for the classMK .
We formalize this statement in the proposition below.

Proposition 3. (Nevanlinna, 1993) Let K ⊂ C be a
subset of C symmetric w.r.t. the real axis, which does
not contain 0 and such that MK 6= ∅. Then, any
oblivious first-order method (whose coefficients only
depend on K) satisfies,

∀t ≥ 0, ∃A ∈MK , ∃ω0 : ‖ωt−ω∗‖2 ≥
¯
ρ(K)t‖ω0−ω∗‖2.

However, the object
¯
ρ(K) may be complicated to obtain

as it depends on the solution of a minimax problem over
a set K ⊂ C+. If the set is simple enough, we can lower-
bound the asymptotic rate of convergence. We start
by giving the two extreme cases: when K is a segment
on the real line (convex and smooth minimization) or
K is a disc (monotone and smooth games).

4.3 Extreme cases: real segments and discs

Smooth and strongly convex minimization.

In the case where we are interested in lower-bounds,
we can consider the restricted class of functions where
JF (ω)(= ∇2f(ω)) is constant, i.e., independent of ω.
This corresponds to quadratic minimization, and our
restricted class becomes

MK where K = [µ,L].

For this specific class, where K is a segment in the real
line, the solution to the subproblem associated to the
asymptotic rate of convergence (8), i.e.,

min
p∈Pt

max
λ∈[µ,L]

|p(λ)| (9)

is well-known. The optimal polynomial p∗t is a properly
scaled and translated Chebyshev polynomial of the first
kind of degree t (Golub and Varga, 1961; Manteuffel,
1977). The rate of convergence of pt evolves with t, but
asymptotically converges to

¯
ρ([µ,L]) =

√
L−√µ√
L+
√
µ
.

This is the lower bound of Nesterov (2004, Thm. 2.1.13),
which corresponds to an accelerated linear rate. The
condition number L/µ appears as a square root unlike
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Figure 2: Left: Illustration of the proof of Cor. 1. The
yellow set correspond to K, the set of strongly monotone
problems while the red disc is the disc of center 1

2
(µ+ L)

and radius 1
2
(L− µ) which fits inside. Right: Illustration

of Kε of Prop. 6 with ε =
√
µL.

for the rate of the plain gradient descent, which implies
a huge (asymptotic) improvement.

In this section, we have seen that when the spectrum
is constrained to be on a segment in the real line, one
can expect acceleration. The next section shows that
this is not the case for the class of discs.

Discs and strongly monotone vector fields Con-
sider a disc with a real positive center

K = {z ∈ C : |z − c| ≤ r}, with 0 < c < r.

This time again, the shape is simple enough to have an
explicit solution for the optimal polynomials

p∗t (λ) = arg min
pt∈Pt

max
λ∈K
|pt(λ)|.

In this case, the optimal polynomial reads p∗t (ω) =
(1 − ω/c)t, and this corresponds to gradient descent
with step-size η = 1/c. Hence, with this specific shape,
gradient method is optimal (Eiermann et al., 1985,
§6.2); Nevanlinna (1993, Example 3.8.2). A direct con-
sequence of this result is a lower bound of convergence
for the class of Lipshitz, strongly monotone vector
fields, i.e., vector fields F that satisfies (5)-(6). For
linear vector fields parameterized by the matrix A as
in Lemma 1, this is included in the set

MK , K = {λ ∈ C : 0 < µ ≤ <λ, |λ| ≤ L}. (10)

This set is the intersection between a circle and a half-
plane, as shown in Figure 2 (left). Notice that the disc
of center µ+L

2 and radius L−µ
2 actually fits in K, as

illustrated by Fig. 2. Since this disc in included in K,
a lower bound for the disc also gives a lower bound for
K, as stated in the following corollary.

Corollary 1. Let K be defined in (10). Then,

¯
ρ(K) > L−µ

L+µ = 1− 2µ
L+µ .

The rate of Cor. 1 is already achieved by first-order
methods, without momentum or acceleration, such as
EG. Thus, acceleration is not possible for the general
class of smooth, strongly monotone games.
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5 Acceleration in games

We present our contributions in this section. The previ-
ous section highlights a big contrast between optimiza-
tion and games. In the former, acceleration is possible,
but this does not generalize for the latter. Here, we
explore acceleration via a sharp analysis of intermedi-
ate cases, like imaginary segments (bilinear games) or
thin ellipses (perturbed acceleration), via lower and
upper bounds. Since we use spectral arguments, the
convergence guarantees of our algorithms are local, but
lower bounds remain valid globally.

5.1 Local convergence of optimization
methods for nonlinear vector fields

Before presenting our result, we recall the classical
local convergence theorem from Polyak (1964). In this
section, we are interested in finding the fixed point ω∗

of a vector field V , i.e, V (ω∗) = ω∗. V here plays the
role of an iterative optimization methods and defines
iterates according to the fixed-point iteration

ωt+1 = V (ωt). (11)

Analysing the properties of the vector field V is usu-
ally challenging, as V can be any nonlinear func-
tion. However, under mild assumption, we can sim-
plify the analysis by considering the linearization
V (ω) ≈ V (ω∗) + JV (ω∗)(ω − ω∗), where JV (ω) is the
Jacobian of V evaluated at ω∗. The next theorem shows
we can deduce the rate of convergence of (11) using
the spectral radius of JV (ω∗), denoted by ρ(JV (ω∗)).

Theorem 1 (Polyak (1987)). Let V : Rd −→ Rd be
continuously differentiable and let ω∗ one of its fixed-
points. Assume that there exists ρ∗ > 0 such that,

ρ(JV (ω∗)) ≤ ρ∗ < 1.

For ω0 close to ω∗, (11) converges linearly to ω∗ at a
rate O((ρ∗ + ε)t). If V is linear, then ε = 0.

Recent works such as Mescheder et al. (2017); Gidel
et al. (2019b); Daskalakis and Panageas (2018) used
this connection to study game optimization methods.

Thm. 1 can be applied directly on methods which
use only the last iterate, such as gradient or EG. For
methods that do not fall into this category, such as mo-
mentum, a small adjustment is required, called system
augmentation.

Consider that V : Rd × Rd → Rd follows the recursion

ωt+1 = V (ωt, ωt−1). (12)

Instead we consider its augmented operator[
ωt
ωt+1

]
= Vaugm(ωt, ωt−1) =

[
ωt

V (ωt, ωt−1)

]
,

to which we can now apply the previous theorem. This
technique is summarized in the following lemma.

Lemma 2. Let V : Rd×Rd −→ Rd be continuously dif-
ferentiable and let ω∗ satisfies V (ω∗, ω∗) = ω∗ . Assume
there exists ρ∗ > 0 such that, ρ(JVaugm

(ω∗)) ≤ ρ∗ < 1.
If ω0 and ω1 are close to ω∗, then (11) converges lin-

early to ω∗ at rate
(
ρ∗ + ε

)t
. If V is linear, then ε = 0.

5.2 Acceleration for bilinear games

For convex minimization, adding momentum results in
an accelerated rate for strongly convex functions we
have discuss above. For instance, if Sp∇F (ω∗) ⊂ [µ,L],
the Polyak’s Heavy-ball method (see the full statement
inAppendix C.1), Polyak (1964, Thm. 9)

ωt+1 = V Polyak(ωt, ωt−1)

:= ωt − αF (ωt) + β(ωt − ωt−1) (13)

converges (locally) with the accelerated rate

ρ(JV Polyak(ω∗, ω∗)) ≤
√
L−√µ√
L+
√
µ
.

Another example are bilinear games. Most known meth-
ods converge at a rate of (1−cσmin(A)2/σmax(A)2)t for
some c > 0 (Daskalakis et al., 2018; Mescheder et al.,
2017; Gidel et al., 2019a,b; Liang and Stokes, 2018;
Abernethy et al., 2019). Using results from Eiermann
et al. (1989), we show that this rate is suboptimal.

For bilinear games, the eigenvalues of the Jacobian JF
are purely imaginary (see Lem. 7 inAppendix C.1), i.e.,

K = [iσmin(A), iσmax(A)] ∪ [−iσmin(A),−iσmax(A)].

A method that follows strictly the vector field F does
not converge, as its flow is composed by only concentric
circles, thus leading to oscillations. This problem is
avoided if we transform the vector field into another one
with better properties. For example, the transformation

F real(ω) = 1
η (F (ω − ηF (ω))− F (ω)) (14)

can be seen as a finite-difference approximation of
∇
(

1
2‖F‖

2
2

)
. It is easier to find the equilibrium of V

since the eigenvalues of JV (ω) = −J2
F (ω) are located

on a real segment. Thus, we can use standard mini-
mization methods like the Polyak Heavy-Ball method.

Proposition 4. Let F be a vector field such that
Sp∇F (ω∗) ⊂ [ia, ib]∪[−ia,−ib], for 0 < a < b. Setting√
α = 2

a+b ,
√
β = b−a

b+a , the Polyak Heavy-Ball method
(13) on the transformation (14), i.e.,

ωt+1 = ωt − αF real(ωt) + β(ωt − ωt−1) .

converges locally at a linear rate O
(
(1− 2a

a+b )
t
)
.
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Using results from Eiermann et al. (1989), we show
that this method is optimal. Indeed, for this set, we
can compute explicitly

¯
ρ(K) from (8), the lower bound

for the local convergence factor.

Proposition 5. Let K = [ia, ib] ∪ [−ia,−ib] for 0 <

a < b. Then,
¯
ρ(K) =

√
b−a
b+a .

Proof. (Sketch). The transformation that we have ap-
plied, i.e. λ 7→ −λ2, preserves the asymptotic conver-
gence factor

¯
ρ (up to a square root), as it satisfies the

assumptions of Eiermann et al. (1989, Thm. 6).

The difference of a square root between the lower bound
and the bound on the spectral radius is explained by
the fact that the method presented here queries two
gradient per iteration and so one of its iterations actu-
ally corresponds to two steps of a first-order method
as defined in Definition 1.

In this subsection, we showed that when the eigen-
values of the Jacobian are purely real or imaginary,
acceleration is possible using momentum on the right
vector field. Yet the previous subsection shows it is not
the case for general smooth, strongly monotone games.
The question of acceleration remains for intermediate
shapes, like ellipses. The next subsection shows how to
recover an accelerated rate of convergence in this case.

5.3 Perturbed acceleration

As we cannot compute
¯
ρ explicitly for most sets K,

we focus on ellipses to answer this question. They
have been well studied, and optimal methods are again
based on Chebyshev polynomials (Manteuffel, 1977).

In this section we study games whose eigenvalues of
the Jacobian belong to a thin ellipse. These ellipses
correspond to the real segments [µ,L] perturbed in an
elliptic way, see Fig. 2 (right). Mathematically, we have
for 0 < µ < L and ε > 0, the equation

Kε =

{
z ∈ C :

(
<z−µ+L2
L−µ

2

)2

+
(=z
ε

)2 ≤ 1

}
When ε = 0 (with the convention that 0/0 = 0), Polyak

momentum achieves the rate of 1− 2
√
µ

√
µ+
√
L

. However,

when ε = L−µ
2 , we showed the lower bound of 1 −

2 µ
µ+L in Cor. 1. To check if acceleration still persists

for intermediate cases, we study the behaviour of the
asymptotic convergence factor (when L/µ→ +∞) as
a function of ε. The next proposition uses results from
Niethammer and Varga (1983); Eiermann et al. (1985)
to show that acceleration is still possible on Kε.

Proposition 6. Define ε(µ,L) as ε(µ,L)
L =

(
µ
L

)θ
with

θ > 0 and a ∧ b = min(a, b). Then, when µ
L → 0,

¯
ρ(Kε) =


1− 2

√
µ
L +O

((
µ
L

)θ∧1
)
, if θ > 1

2

1− 2(
√

2− 1)
√

µ
L +O

(
µ
L

)
, if θ = 1

2

1−
(
µ
L

)1−θ
+O

((
µ
L

)1∧(2−3θ)
)
, if θ < 1

2 .

Moreover, the momentum method is optimal for Kε.
This means there exists α > 0 and β > 0 (function of
µ, L and ε only) such that if SpJF (ω∗) ⊂ Kε, then,
ρ(JV Polyak(ω∗, ω∗)) ≤

¯
ρ(Kε).

This shows that the convergence rate interpolates con-
tinuously between the accelerated rate and the non-
accelerated one. Crucially, for small perturbations,
that is to say if the ellipse is thin enough, acceleration
persists until θ = 1

2 or equivalently ε ∼
√
µL. That’s

why Prop. 6 plays a central role in our forthcoming
analyses of accelerated EG and CO.

5.4 Accelerating extragradient

We now consider the acceleration of EG using momen-
tum. Its main appealing property is its convergence
on bilinear games, unlike the gradient method. On the
class of bilinear problems, EG achieves a convergence
rate of (1− ca2/b2) for some constant c > 0.

In the previous section, we achieved an accelerated
rate on bilinear games by applying momentum to the
operator F real(ω) instead of F , as the Jacobian of F real

has real eigenvalues when JF (ω∗) has its spectrum in
K. Here we try to apply momentum to the EG operator
F e-g(ω), defined as

F e-g(ω) = F (ω − ηF (ω)) . (15)

Unfortunately, when Sp JF ⊂ K, the spectrum of
F e-g(ω∗) is never purely real. Using the insight from
Prop. 6, we can choose η > 0 such that we are in the
first case of Prop. 6, making acceleration possible.

Proposition 7. Consider the vector field F , where
SpJF (ω∗) ⊂ [ia, ib] ∪ [−ia,−ib] for 0 < a < b. There
exists α, β, η > 0 such that, the operator defined by

ωt+1 = ωt − αF (ωt − ηF (ωt)) + β(ωt − ωt−1) ,

converges locally at a linear rate O
((

1− cab +M a2

b2

)t)
where c =

√
2− 1 and M is an absolute constant.

One drawback is that, to achieve fast convergence on
bilinear games, one has to tune the two step-sizes α, η
of EG precisely and separately. They actually differ

by a factor b2

a2 : η is roughly proportional to 1
a while α

behaves like a
b2 (see Lem. 9 in Appendix C.4).
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6 Beyond typical first-order methods

In the previous section, we achieved acceleration with
first-order methods for specific problem classes. How-
ever, the lower bound from Cor. 1 still prevents us
from doing so for the larger problem classes for smooth
and strongly monotone games. To bypass this limita-
tion, we can consider going beyond first-order methods.
In this section, we consider two different approaches.
The first one is adaptive acceleration, which is a non-
oblivious first-order method. The second is consensus
optimization, an inversion-free second order method.

6.1 Adaptive acceleration

In previous sections, we considered shapes whose op-
timal polynomial is known. This optimal polynomial
lead to an optimal first-order method. However, when
the shape is unknown, we cannot use better methods
than EG with an appropriate stepsize.

Recent work in optimization analysed adaptive algo-
rithms, such as Anderson Acceleration (Walker and
Ni, 2011), that are adaptive to the problem constants.
They can be seen as an automatic way to find the opti-
mal combination of the previous iterates. Recent works
on Anderson Acceleration extended the theory for non-
quadratic minimization, by using regularisation (Scieur
et al., 2016) (RNA method). The theory has also been
extended to “non symmetric operators” (Bollapragada
et al., 2018), and this setting fits perfectly the one of
games, as JF (ω∗) is not symmetric.

Anderson acceleration and its extension RNA are simi-
lar to quasi-Newton (Fang and Saad, 2009), but remains
first-order methods. Even if they find the optimal first-
order method (for linear F ), they cannot beat a lower
bound similar to Cor. 1, when the number of itera-
tions is smaller than the dimension of the problem.
The next section shows how to use cheap second-order
information to improve the convergence rate.

6.2 Momentum consensus optimization

CO (Mescheder et al., 2017) iterates as follow:

ωt+1 = ωt − α
(
F (ωt) + τJTF (ω)F (ω)

)
.

Albeit being a second-order method, each iteration re-
quires only one Jacobian-vector multiplication. This
operation can be computed efficiently by modern ma-
chine learning frameworks, with automatic differenti-
ation and back-propagation. For instance, for neural
networks, the computation time of this product or the
gradient is comparable. Moreover, unlike Newton’s
method, CO does not require a matrix inversion.

Though CO is a second-order method, its analysis can

still be reduced to our framework by considering the
following transformation of the initial operator F (ω),

F cons.(ω) = F (ω) + τ∇
(

1
2‖F‖

2
)

(ω) . (16)

Though the eigenvalues of JF cons. are not purely real
in general, their imaginary to real part ratio can be
controlled by Mescheder et al. (2017, Lem. 9) as,

maxλ∈SpJFcons. (ω∗)
|=λ|
|<λ| = O

(
1
τ

)
.

Therefore, if τ increases, these eigenvalues move closer
to the real axis and can be included in a thin ellipse
as described by §5.3. We then show that, if τ is large
enough, this ellipse can be chosen thin enough to fall
into the accelerated regime of Prop. 6 and therefore,
adding momentum achieves acceleration.

Proposition 8. Let σi be the singular values of
JF (ω∗). Assume that

γ ≤ σi ≤ L, τ = L
γ2 .

There exists α, β, s.t., momentum applied to F cons.,

ωt+1 = ωt − αF cons.(ωt) + β(ωt − ωt−1)

converges locally at a rate O
((

1− c γL +M γ2

L2

)t)
where

c =
√

2− 1 and M is an absolute constant.

Hence, adding momentum to CO yields an accelerated
rate. The assumption on the Jacobian encompasses
both strongly monotone and bilinear games. On these
two classes of problems, CO is at least as fast as any
oblivious first-order method as its rate roughly matches
the lower bounds of Prop. 3 and 5.

Note that, choosing τ of this order is what is done by
Abernethy et al. (2019) for (non-accelerated) CO. They
claim that this point of view – seeing consensus as a
perturbation of gradient descent on 1

2‖F‖
2 – is justified

by practice as in the experiments of Mescheder et al.
(2017), τ is set to 10.

7 Conclusion

This paper shows that a spectral perspective is funda-
mental to understand the conditioning of games. The
latter is indeed linked to the geometric properties of
the distribution of the spectrum of its Jacobian. In
the light of this perspective, we demonstrate how sev-
eral gradient-based methods transform the spectral
shape of a game to achieve accelerated convergence
when combined with Polyak momentum. Our main
tool throughout this paper was the flexible and conve-
nient class of ellipses; we left as future work the study
of more intricate shapes, which – ideally – would fit
the distribution of the eigenvalues of applications of
challenging machine learning problems such as GANs.
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Wäıss Azizian, Ioannis Mitliagkas, Simon Lacoste-
Julien, and Gauthier Gidel. A tight and unified
analysis of extragradient for a whole spectrum of
differentiable games. arXiv, 2019.

Joseph Bak and Donald J. Newman. Complex Analy-
sis. Undergraduate Texts in Mathematics. Springer-
Verlag, New York, 2010.

David Balduzzi, Sebastien Racaniere, James Martens,
Jakob Foerster, Karl Tuyls, and Thore Graepel. The
Mechanics of n-Player Differentiable Games. In
ICML, 2018.

Raghu Bollapragada, Damien Scieur, and Alexandre
d’Aspremont. Nonlinear acceleration of momentum
and primal-dual algorithms. arXiv, 2018.

Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang.
Accelerated Schemes For A Class of Variational In-
equalities. arXiv, 2014.

Theodore S Chihara. An introduction to orthogonal
polynomials. Courier Corporation, 2011.

Constantinos Daskalakis and Ioannis Panageas. The
Limit Points of (Optimistic) Gradient Descent in
Min-Max Optimization. arXiv, 2018.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgka-
nis, and Haoyang Zeng. Training GANs with Opti-
mism. In ICLR, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adap-
tive subgradient methods for online learning and
stochastic optimization. JMLR, 2011.

M. Eiermann, W. Niethammer, and R. S. Varga. A
study of semiiterative methods for nonsymmetric
systems of linear equations. Numerische Mathematik,
1985.

Michael Eiermann and Wilhelm Niethammer. On the
Construction of Semiterative Methods. SIAM Jour-
nal on Numerical Analysis, 1983.

Michael Eiermann, X Li, and Richard Varga. On Hy-
brid Semi-Iterative Methods. Siam Journal on Nu-
merical Analysis, 1989.

Francisco Facchinei and Jong-Shi Pang. Finite-
Dimensional Variational Inequalities and Comple-
mentarity Problems Vol I. Springer Series in Oper-
ations Research and Financial Engineering, Finite-
Dimensional Variational Inequalities and Comple-
mentarity Problems. Springer-Verlag, 2003.

Haw-ren Fang and Yousef Saad. Two classes of multise-
cant methods for nonlinear acceleration. Numerical
Linear Algebra with Applications, 2009.

Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal
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