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Abstract

We consider differentiable games where the
goal is to find a Nash equilibrium. The ma-
chine learning community has recently started
using variants of the gradient method (GD).
Prime examples are extragradient (EG), the
optimistic gradient method (OG) and con-
sensus optimization (CO), which enjoy lin-
ear convergence in cases like bilinear games,
where the standard GD fails. The full bene-
fits of theses relatively new methods are not
known as there is no unified analysis for both
strongly monotone and bilinear games. We
provide new analyses of the EG’s local and
global convergence properties and use is to get
a tighter global convergence rate for OG and
CO. Our analysis covers the whole range of
settings between bilinear and strongly mono-
tone games. It reveals that these methods
converges via different mechanisms at these
extremes; in between, it exploits the most
favorable mechanism for the given problem.
We then prove that EG achieves the optimal
rate for a wide class of algorithms with any
number of extrapolations. Our tight analysis
of EG’s convergence rate in games shows that,
unlike in convex minimization, EG may be
much faster than GD.

1 Introduction

Gradient-based optimization methods have under-
pinned many of the recent successes of machine learning.
The training of many models is indeed formulated as
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the minimization of a loss involving the data. However,
a growing number of frameworks rely on optimization
problems that involve multiple players and objectives.
For instance, actor-critic models (Pfau and Vinyals,
2016), generative adversarial networks (GANs) (Good-
fellow et al., 2014) and automatic curricula (Sukhbaatar
et al., 2018) can be cast as two-player games.

Hence games are a generalization of the standard single-
objective framework. The aim of the optimization is
to find Nash equilibria, that is to say situations where
no player can unilaterally decrease their loss. However,
new issues that were not present for single-objective
problems arise. The presence of rotational dynam-
ics prevent standard algorithms such as the gradient
method to converge on simple bilinear examples (Good-
fellow, 2016; Balduzzi et al., 2018). Furthermore, sta-
tionary points of the gradient dynamics are not neces-
sarily Nash equilibria (Adolphs et al., 2019; Mazumdar
et al., 2019).

Some recent progress has been made by introducing new
methods specifically designed with games or variational
inequalities in mind. The main example are the opti-
mistic gradient method (OG) introduced by Rakhlin
and Sridharan (2013) initially for online learning, con-
sensus optimization (CO) which adds a regularization
term to the optimization problem and the extragradi-
ent method (EG) originally introduced by Korpelevich
(1976). Though these news methods and the gradi-
ent method (GD) have similar performance in convex
optimization, their behaviour seems to differ when ap-
plied to games: unlike gradient, they converge on the
so-called bilinear example (Tseng, 1995; Gidel et al.,
2019a; Mokhtari et al., 2019; Abernethy et al., 2019).

However, linear convergence results for EG and OG
(a.k.a extrapolation from the past) in particular have
only been proven for either strongly monotone vari-
ational inequalities problems, which include strongly
convex-concave saddle point problems, or in the bilin-
ear setting separately (Tseng, 1995; Gidel et al., 2019a;
Mokhtari et al., 2019).

In this paper, we study the dynamics of such gradient-
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based methods and in particular GD, EG and more
generally multi-step extrapolations methods for uncon-
strained games. Our objective is three-fold. First, tak-
ing inspiration from the analysis of GD by Gidel et al.
(2019b), we aim at providing a single precise analysis
of EG which covers both the bilinear and the strongly
monotone settings and their intermediate cases. Sec-
ond, we are interested in theoretically comparing EG
to GD and general multi-step extrapolations through
upper and lower bounds on convergence rates. Third,
we provide a framework to extend the unifying results
of spectral analysis in global guarantees and leverage
it to prove tighter convergence rates for OG and CO.
Our contributions can be summarized as follows:

• We perform a spectral analysis of EG in §5. We
derive a local rate of convergence which covers the
whole range of settings between purely bilinear
and strongly monotone games and which is faster
than existing rates in some regimes. Our analysis
also encompasses multi-step extrapolation meth-
ods and highlights the similarity between EG and
the proximal point methods.

• We use and extend the framework from Arjevani
et al. (2016) to derive lower bounds for specific
classes of algorithms. (i) We show in §4 that the
previous spectral analysis of GD by Gidel et al.
(2019b) is tight, confirming the difference of be-
haviors with EG. (ii) We prove lower bounds for
1-Stationary Canonical Linear Iterative methods
with any number of extrapolation steps in §5. As
expected, this shows that increasing this number
or choosing different step sizes for each does not
yield significant improvements and hence EG can
be considered as optimal among this class.

• In §6, we derive a global convergence rate for the
EG with the same unifying properties as the local
analysis. We then leverage our approach to derive
global convergence guarantees for OG and CO
with similar unifying properies. It shows that,
while these methods converges for different reasons
in the convex and bilinear settings, in between they
actually take advantage of the most favorable one.

2 Related Work

Extragradient was first introduced by Korpelevich
(1976) in the context of variational inequalities. Tseng
(1995) proves results which induce linear convergence
rates for this method in the bilinear and strongly mono-
tone cases. We recover both rates with our analysis.
The extragradient method was generalized to arbi-
trary geometries by Nemirovski (2004) as the mirror-
prox method. A sublinear rate of O(1/t) was proven

Tseng
(1995)

Gidel
et al.

(2019a)

Mokhtari
et al.

(2019)

Abernethy
et al.

(2019)

This work
§6

EG c µL - µ
4L - 1

4 ( µL + γ2

16L2 )

OG - µ
4L

µ
4L - 1

4 ( µL + γ2

32L2 )

CO - - - γ2

4L2
H

µ2

2L2
H

+ γ2

2L2
H

Table 1: Summary of the global convergence results pre-
sented in §6 for extragradient (EG), optimistic gradient
(OMD) and consensus optimization (CO) methods. If a
result shows that the iterates converge as O((1− r)t), the
quantity r is reported (the larger the better). The letter
c indicates that the numerical constant was not reported
by the authors. µ is the strong monotonicity of the vector
field, γ is a global lower bound on the singular values of
∇v , L is the Lipschitz constant of the vector field and
L2

H the Lipschitz-smoothness of 1
2
‖v‖22. For instance, for

the so-called bilinear example (Ex. 1), we have µ = 0 and
γ = σmin(A). Note that for this particular example, previ-
ous papers developed a specific analysis that breaks when
a small regularization is added (see Ex. 3).

for monotone variational inequalities by treating this
method as an approximation of the proximal point
method as we will discuss later. More recently, Mer-
tikopoulos et al. (2019) proved that, for a broad class of
saddle-point problems, its stochastic version converges
almost surely to a solution.

Optimistic gradient method is slightly different
from EG and can be seen as a kind of extrapolation
from the past (Gidel et al., 2019a). It was initially
introduced for online learning (Chiang et al., 2012;
Rakhlin and Sridharan, 2013) and subsequently stud-
ied in the context of games by Daskalakis et al. (2018),
who proved that this method converges on bilinear
games. Gidel et al. (2019a) interpreted GANs as a vari-
ational inequality problem and derived OG as a variant
of EG which avoids “wasting” a gradient. They prove
a linear convergence rate for strongly monotone varia-
tional inequality problems. Treating EG and OG as
perturbations of the proximal point method, Mokhtari
et al. (2019) gave new but still separate derivations
for the standard linear rates in the bilinear and the
strongly convex-concave settings. Liang and Stokes
(2019) mentioned the potential impact of the interac-
tion between the players, but they only formally show
this on bilinear examples: our results show that this
conclusion extends to general nonlinear games.

Consensus optimization has been motivated by the
use of gradient penalty objectives for the practical train-
ing of GANs (Gulrajani et al., 2017; Mescheder et al.,
2017). It has been analysed by Abernethy et al. (2019)
as a perturbation of Hamiltonian gradient descent.

We provide a unified and tighter analysis for these three
algorithms leading to faster rates (cf. Tab. 1).
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Lower bounds in optimization date back to Ne-
mirovsky and Yudin (1983) and were popularized by
Nesterov (2004). One issue with these results is that
they are either only valid for a finite number of iter-
ations depending on the dimension of the problem or
are proven in infinite dimensional spaces. To avoid
this issue, Arjevani et al. (2016) introduced a new
framework called p-Stationary Canonical Linear Iter-
ative algorithms (p-SCLI). It encompasses methods
which, applied on quadratics, compute the next iterate
as fixed linear transformation of the p last iterates,
for some fixed p ≥ 1. We build on and extend this
framework to derive lower bounds for games for 1-SCLI.
Note that sublinear lower bounds have been proven
for saddle-point problems by Nemirovsky (1992); Ne-
mirovski (2004); Chen et al. (2014); Ouyang and Xu
(2018), but they are outside the scope of this paper
since we focus on linear convergence bounds.

Our notation is presented in §A. The proofs can be
found in the subsequent appendix sections.

3 Background and motivation

3.1 n-player differentiable games

Following Balduzzi et al. (2018), a n-player differen-
tiable game can be defined as a family of twice contin-
uously differentiable losses li : Rd → R for i = 1, . . . , n.
The parameters for player i are ωi ∈ Rdi and we note
ω = (ω1, . . . , ωn) ∈ Rd with d =

∑n
i=1 di. Ideally, we

are interested in finding an unconstrained Nash equilib-
rium (Von Neumann and Morgenstern, 1944): that is
to say a point ω∗ ∈ Rd such that

∀i ∈ {1, . . . , n}, (ωi)∗ ∈ arg min
ωi∈Rdi

li((ω
−i)∗, ωi) ,

where the vector (ω−i)∗ contains all the coordinates of
ω∗ except the ith one. Moreover, we say that a game
is zero-sum if

∑n
i=1 li = 0. For instance, following

Mescheder et al. (2017); Gidel et al. (2019b), the stan-
dard formulation of GANs from Goodfellow et al. (2014)
can be cast as a two-player zero-sum game. The Nash
equilibrium corresponds to the desired situation where
the generator exactly capture the data distribution,
completely confusing a perfect discriminator.

Let us now define the vector field

v(ω) =
(
∇ω1 l1(ω) , · · · , ∇ωn ln(ω)

)
associated to a n-player game and its Jacobian:

∇v(ω) =

 ∇2
ω1 l1(ω) . . . ∇ωn∇ω1 l1(ω)

...
...

∇ω1∇ωn ln(ω) . . . ∇2
ωn ln(ω)

 .

We say that v is L-Lipschitz for some L ≥ 0 if ‖v(ω)−
v(ω′)‖ ≤ L‖ω − ω′‖ ∀ω, ω′ ∈ Rd, that v is µ-strongly
monotone for some µ ≥ 0, if µ‖ω − ω′‖2 ≤ (v(ω) −
v(ω′))T (ω − ω′) ∀ω, ω′ ∈ Rd.

A Nash equilibrium is always a stationary point of
the gradient dynamics, i.e. a point ω ∈ Rd such that
v(ω) = 0. However, as shown by Adolphs et al. (2019);
Mazumdar et al. (2019); Berard et al. (2019), in gen-
eral, being a Nash equilibrium is neither necessary nor
sufficient for being a locally stable stationary point,
but if v is monotone, these two notions are equiva-
lent. Hence, in this work we focus on finding stationary
points. One important class of games is saddle-point
problems: two-player games with l1 = −l2. If v is
monotone, or equivalently f is convex-concave, station-
ary points correspond to the solutions of the min-max
problem

min
ω1∈Rd1

max
ω2∈Rd2

l1(ω1, ω2) .

Gidel et al. (2019b) and Balduzzi et al. (2018) men-
tioned two particular classes of games, which can be
seen as the two opposite ends of a spectrum. As the
definitions vary, we only give the intuition for these two
categories. The first one is adversarial games, where
the Jacobian has eigenvalues with small real parts and
large imaginary parts and the cross terms ∇ωi∇ωj lj(ω),
for i 6= j, are dominant. Ex. 1 gives a prime example
of such game that has been heavily studied: a simple
bilinear game whose Jacobian is anti-symmetric and so
only has imaginary eigenvalues (see Lem. 7 in App. E):

Example 1 (Bilinear game).

min
x∈Rm

max
y∈Rm

xTAy + bTx+ cT y

with A ∈ Rm×m non-singular, b ∈ Rm and c ∈ Rm.

If A is non-singular, there is an unique stationary point
which is also the unique Nash equilibrium. The gradient
method is known not to converge in such game while
the proximal point and extragradient methods converge
Rockafellar (1976); Tseng (1995).

Bilinear games are of particular interest to us as they
are seen as models of the convergence problems that
arise during the training of GANs. Indeed, Mescheder
et al. (2017) showed that eigenvalues of the Jacobian
of the vector field with small real parts and large imag-
inary parts could be at the origin of these problems.
Bilinear games have pure imaginary eigenvalues and so
are limiting models of this situation. Moreover, they
can also be seen as a very simple type of WGAN, with
the generator and the discriminator being both linear,
as explained in Gidel et al. (2019a); Mescheder et al..

The other category is cooperative games, where the
Jacobian has eigenvalues with large positive real parts
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and small imaginary parts and the diagonal terms∇2
ωi li

are dominant. Convex minimization problems are the
archetype of such games. Our hypotheses, for both the
local and the global analyses, encompass these settings.

3.2 Methods and convergence analysis

Convergence theory of fixed-point iterations.
Seeing optimization algorithms as the repeated ap-
plication of some operator allows us to deduce their
convergence properties from the spectrum of this opera-
tor. This point of view was presented by Polyak (1987);
Bertsekas (1999) and recently used by Arjevani et al.
(2016); Mescheder et al. (2017); Gidel et al. (2019b)
for instance. The idea is that the iterates of a method
(ωt)t are generated by a scheme of the form:

ωt+1 = F (ωt) , ∀t ≥ 0

where F : Rd → Rd is an operator representing the
method. Near a stationary point ω∗, the behavior of
the iterates is mainly governed by the properties of
∇F (ω∗) as F (ω) − ω∗ ≈ ∇F (ω∗)(ω − ω∗) . This is
formalized by the following classical result:

Theorem 1 (Polyak (1987)). Let F : Rd −→ Rd
be continuously differentiable and let ω∗ ∈ Rd be a
fixed point of F . If ρ(∇F (ω∗)) < 1, then for ω0 in
a neighborhood of ω∗, the iterates (ωt)t defined by
ωt+1 = F (ωt) for all t ≥ 0 converge linearly to ω∗

at a rate of O((ρ(∇F (ω∗)) + ε)t) for all ε > 0.

This theorem means that to derive a local rate of con-
vergence for a given method, one needs only to focus on
the eigenvalues of ∇F (ω∗). Note that if the operator
F is linear, there exists slightly stronger results such
as Thm. 10 in Appendix C.

Gradient method. Following Gidel et al. (2019b), we
define GD as the application of the operator Fη(ω) :=
ω − ηv(ω), for ω ∈ Rd. Thus we have:

ωt+1 = Fη(ωt) = ωt − ηv(ωt) . (GD)

Proximal point. For v monotone (Minty, 1962; Rock-
afellar, 1976), the proximal point operator can be de-
fined as Pη(ω) = (Id +ηv)−1(ω) and therefore can be
seen as an implicit scheme: ωt+1 = ωt − ηv(ωt+1).

Extragradient. EG was introduced by Korpelevich
(1976) in the context of variational inequalities. Its
update rule is

ωt+1 = ωt − ηv(ωt − ηv(ωt)) . (EG)

It can be seen as an approximation of the implicit up-
date of the proximal point method. Indeed Nemirovski
(2004) showed a rate of O(1/t) for extragradient by
treating it as a “good enough” approximation of the

proximal point method. To see this, fix ω ∈ Rd. Then
Pη(ω) is the solution of z = ω − ηv(z). Equivalently,
Pη(ω) is the fixed point of

ϕη,ω : z 7−→ ω − ηv(z) , (1)

which is a contraction for η > 0 small enough. From
Picard’s fixed point theorem, one gets that the proxi-
mal point operator Pη(ω) can be obtained as the limit
of ϕkη,ω(ω) when k goes to infinity. What Nemirovski
(2004) showed is that ϕ2

η,ω(ω), that is to say the ex-
tragradient update, is close enough to the result of
the fixed point computation to be used in place of the
proximal point update without affecting the sublinear
convergence speed. Our analysis of multi-step extrap-
olation methods will encompass all the iterates ϕkη,ω
and we will show that a similar phenomenon happens
for linear convergence rates.

Optimistic gradient. Originally introduced in the
online learning literature (Chiang et al., 2012; Rakhlin
and Sridharan, 2013) as a two-steps method, Daskalakis
et al. (2018) reformulated it with only one step in the
unconstrained case:

wt+1 = wt − 2ηv(wt) + ηv(wt−1) . (OG)

Consensus optimization. Introduced by Mescheder
et al. (2017) in the context of games, consensus opti-
mization is a second-order yet efficient method, as it
only uses a Hessian-vector multiplication whose cost
is the same as two gradient evaluations (Pearlmutter,
1994). We define the CO update as:

ωt+1 = ωt − (αv(ωt) + β∇H(ωt)) (CO)

where H(ω) = 1
2‖v(ω)‖22 and α, β > 0 are step sizes.

3.3 p-SCLI framework for game optimization

In this section, we present an extension of the frame-
work of Arjevani et al. (2016) to derive lower bounds
for game optimization (also see §G). The idea of this
framework is to see algorithms as the iterated applica-
tion of an operator. If the vector field is linear, this
transformation is linear too and so its behavior when
iterated is mainly governed by its spectral radius. This
way, showing a lower bound for a class of algorithms is
reduced to lower bounding a class of spectral radii.

We consider Vd the set of linear vector fields v : Rd →
Rd, i.e., vector fields v whose Jacobian ∇v is a constant
d× d matrix.1 The class of algorithms we consider is
the class of 1-Stationary Canonical Linear Iterative
algorithms (1-SCLI). Such an algorithm is defined by

1With a slight abuse of notation, we also denote by ∇v
this matrix.
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a mapping N : Rd×d → Rd×d. The associated update
rule can be defined through,

FN (ω) = w +N (∇v)v(ω) ∀ω ∈ Rd , (2)

This form of the update rule is required by the con-
sistency condition of Arjevani et al. (2016) which is
necessary for the algorithm to converge to stationary
points, as discussed in §G. Also note that 1-SCLI are
first-order methods that use only the last iterate to
compute the next one. Accelerated methods such as
accelerated gradient descent (Nesterov, 2004) or the
heavy ball method (Polyak, 1964) belong in fact to the
class of 2-SCLI, which encompass methods which uses
the last two iterates.

As announced above, the spectral radius of the operator
gives a lower bound on the speed of convergence of the
iterates of the method on affine vector fields, which is
sufficient to include bilinear games, quadratics and so
strongly monotone settings too.

Theorem 2 (Arjevani et al. (2016)). For all v ∈ Vd,
for almost every2 initialization point ω0 ∈ Rd, if (ωt)t
are the iterates of FN starting from ω0,

‖ωt − ω∗‖ ≥ Ω(ρ(∇FN )t‖ω0 − ω∗‖).

4 Revisiting GD for games

In this section, our goal is to illustrate the precision
of the spectral bounds and the complexity of the in-
teractions between players in games. We first give a
simplified version of the bound on the spectral radius
from Gidel et al. (2019b) and show that their results
also imply that this rate is tight.

Theorem 3. Let ω∗ be a stationary point of v and
denote by σ∗ the spectrum of ∇v(ω∗). If the eigenvalues
of ∇v(ω∗) all have positive real parts, then

(i). (Gidel et al., 2019b) For η = minλ∈σ∗ <(1/λ), the
spectral radius of Fη can be upper-bounded as

ρ(∇Fη(ω∗))2 ≤ 1− min
λ∈σ∗

<(1/λ) min
λ∈σ∗

<(λ) .

(ii). For all η > 0, the spectral radius of the gradient
operator Fη at ω∗ is lower bounded by

ρ(∇Fη(ω∗))2 ≥ 1− 4 min
λ∈σ∗

<(1/λ) min
λ∈σ∗

<(λ) .

This result is stronger than what we need for a standard
lower bound: using Thm. 2, this yields a lower bound
on the convergence of the iterates for all games with
affine vector fields.

We then consider a saddle-point problem, and under
some assumptions presented below, one can interpret

2For any measure absolutely continuous w.r.t. the
Lebesgue measure.

the spectral rate of the gradient method mentioned
earlier in terms of the standard strong convexity and
Lipschitz-smoothness constants. There are several
cases, but one of them is of special interest to us as it
demonstrates the precision of spectral bounds.

Example 2 (Highly adversarial saddle-point problem).
Consider minx∈Rm maxy∈Rm f(x, y) with f twice differ-
entiable such that

(i). f satisfies, with µ1, µ2 and µ12 non-negative,

µ1I 4 ∇2
xf 4 L1I , µ2I 4 −∇2

yf 4 L2I

µ2
12I 4 (∇x∇yf)T (∇x∇yf) 4 L2

12I ,

such that µ12 > 2 max(L1 − µ2, L2 − µ1).

(ii). There exists a stationary point ω∗ = (x∗, y∗)
and at this point, ∇2

yf(ω∗) and ∇x∇yf(ω∗)
commute and ∇2

xf(ω∗), ∇2
yf(ω∗) and

(∇x∇yf(ω∗))T (∇x∇yf(ω∗)) commute.

Assumption (i) corresponds to a highly adversarial
setting as the coupling (represented by the cross deriva-
tives) is much bigger than the Hessians of each player.
Assumption (ii) is a technical assumption needed to
compute a precise bound on the spectral radius and
holds if, for instance, the objective is separable, i.e.
f(x, y) =

∑m
i=1 fi(xi, yi). Using these assumptions, we

can upper bound the rate of Thm. 3 as follows:

Corollary 1. Under the assumptions of Thm. 3 and
Ex. 2,

ρ(∇Fη(ω∗))2 ≤ 1− 1
4

(µ1+µ2)2

L2
12+L1L2

. (3)

What is surprising is that, in some regimes, this result
induces faster local convergence rates than the existing
upper-bound for EG (Tseng, 1995):

1− min(µ1,µ2)
4Lmax

where Lmax = max(L1, L2, L12) . (4)

If, say, µ2 goes to zero, that is to say the game becomes
unbalanced, the rate of EG goes to 1 while the one of (3)
stays bounded by a constant which is strictly less than
1. Indeed, the rate of Cor. 1 involves the arithmetic
mean of µ1 and µ2, which is roughly the maximum of
them, while (4) makes only the minimum of the two
appear. This adaptivity to the best strong convexity
constant is not present in the standard convergence
rates of the EG method. We remedy this situation
with a new analysis of EG in the following section.

5 Spectral analysis of multi-step EG

In this section, we study the local dynamics of EG
and, more generally, of extrapolation methods. Define
a k-extrapolation method (k-EG) by the operator

Fk,η : ω 7→ ϕkη,ω(ω) with ϕη,ω : z 7→ ω − ηv(z) . (5)
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We are essentially considering all the iterates of the
fixed point computation discussed in §3.2. Note that
F1,η is GD while F2,η is EG. We aim at studying the
local behavior of these methods at stationary points
of the gradient dynamics, so fix ω∗ s.t. v(ω∗) = 0 and
let σ∗ = Sp∇v(ω∗). We compute the spectra of these
operators at this point and this immediately yields the
spectral radius on the proximal point operator:

Lemma 1. The spectra of the k-extrapolation operator
and the proximal point operator are given by:

Sp∇Fη,k(ω∗) =
{∑k

j=0(−ηλ)j | λ ∈ σ∗
}

and Sp∇Pη(ω∗) =
{

(1 + ηλ)−1 | λ ∈ σ∗
}
.

Hence, for all η > 0, the spectral radius of the operator
of the proximal point method is equal to:

ρ(∇Pη(ω∗))2 = 1− min
λ∈σ∗

2η<λ+η2|λ|2
|1+ηλ|2 . (6)

Again, this shows that a k-EG is essentially an ap-
proximation of proximal point for small step sizes as
(1 + ηλ)−1 =

∑k
j=0(−ηλ)j +O

(
|ηλ|k+1

)
. This could

suggest that increasing the number of extrapolations
might yield better methods but we will actually see
that k = 2 is enough to achieve a similar rate to proxi-
mal. We then bound the spectral radius of ∇Fη,k(ω∗):

Theorem 4. Let σ∗ = Sp∇v(ω∗). If the eigenvalues
of ∇v(ω∗) all have non-negative real parts, the spectral
radius of the k-extrapolation method for k ≥ 2 satisfies:

ρ(∇Fη,k(ω∗))2 ≤ 1− min
λ∈σ∗

2η<λ+
7
16η

2|λ|2

|1+ηλ|2 , (7)

∀η ≤ 1

4
1
k−1

1
maxλ∈σ∗ |λ|

. For η = (4 maxλ∈σ∗ |λ|)−1, this

can be simplified as (noting ρ := ρ(∇Fη,k(ω∗))):

ρ2 ≤ 1− 1
4

(
minλ∈σ∗ <λ
maxλ∈σ∗ |λ|

+ 1
16

minλ∈σ∗ |λ|2
maxλ∈σ∗ |λ|2

)
. (8)

The zone of convergence of extragradient as provided
by this theorem is illustrated in Fig. 1.

The bound of (8) involves two terms: the first term
can be seen as the strong monotonicity of the problem,
which is predominant in convex minimization problems,
while the second shows that even in the absence of it,
this method still converges, such as in bilinear games.
Furthermore, in situation in between, this bound shows
that the extragradient method exploits the biggest of
these quantities as they appear as a sum as illustrated
by the following simple example.

Example 3 (“In between” example).

min
x∈R

max
y∈R

ε
2 (x2 − y2) + xy , for 1 ≥ ε > 0

Though for ε close to zero, the dynamics will behave as
such, this is not a purely bilinear game. The associated

Figure 1: Illustration of
the three quantities in-
volved in Thm. 4. The
magenta dots are an ex-
ample of eigenvalues be-
longing to σ∗. Note that
σ∗ is always symmetric
with respect to the real
axis because the Jaco-
bian is a real matrix (and
thus non-real eigenvalues
are complex conjugates).
Note how min<λ may be
significantly smaller that
min |λ|.

min<λ

min |λ| max |λ|

vector field is only ε-strongly monotone and convergence
guarantees relying only on strong monotonicity would
give a rate of roughly 1− ε/4. However Thm. 4 yields a
convergence rate of roughly 1− 1/64 for extragradient.

Similarity to the proximal point method. First,
note that the bound (7) is surprisingly close to the one
of the proximal method (6). However, one can wonder
why the proximal point converges with any step size
— and so arbitrarily fast — while it is not the case for
the k-EG, even as k goes to infinity. The reason for
this difference is that for the fixed point iterates to
converge to the proximal point operator, one needs
ϕη,ω to be a contraction and so to have η small enough,
at least η < (maxλ∈σ∗ |λ|)−1 for local guarantees. This
explains the bound on the step size for k-EG .

Comparison with the gradient method. We can
now compare this result for EG with the convergence
rate of the gradient method Thm. 3 which was shown to
be tight. In general minλ∈σ∗ <(1/λ) ≤ (maxλ∈σ∗ |λ|)−1

and, for adversarial games, the first term can be ar-
bitrarily smaller than the second one. Hence, in this
setting which is of special interest to us, EG has a
much faster convergence speed than GD.

Recovery of known rates. If v is µ-strongly mono-
tone and L-Lipschitz, this bound is at least as precise
as the standard one 1− µ/(4L) as µ lower bounds the
real part of the eigenvalues of the Jacobian, and L
upper bounds their magnitude, as shown in Lem. 8 in
§F.2. We empirically evaluate the improvement over
this standard rate on synthetic examples in Appendix J.
On the other hand, Thm. 4 also recovers the standard
rates for the bilinear problem,3 as shown below:

Corollary 2 (Bilinear game). Consider Ex. 1. The it-
erates of the k-extrapolation method with k ≥ 2 converge

3Note that by exploiting the special structure of the
bilinear game and the fact that k = 2, one could derive a
better constant in the rate. Moreover, our current spectral
tools cannot handle the singularity which arises if the two
players have a different number of parameters. We provide
sharper results to handle this difficulty in Appendix I.
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globally to ω∗ at a linear rate of O
((

1− 1
64

σmin(A)2

σmax(A)2

)t)
.

Note that this rate is similar to the one derived by
Gidel et al. (2019b) for alternating gradient descent
with negative momentum. This raises the question of
whether general acceleration exists for games, as we
would expect the quantity playing the role of the con-
dition number in Cor. 2 to appear without the square
in the convergence rate of a method using momentum.

Finally it is also worth mentioning that the bound of
Thm. 4 also displays the adaptivity discussed in §4.
Hence, the bound of Thm. 4 can be arbitrarily better
than the rate (4) for EG from the literature and also
better than the global convergence rate we prove below.

Lower bounds for extrapolation methods. We
now show that the rates we proved for EG are tight
and optimal by deriving lower bounds of convergence
for general extrapolation methods. As described in
§3.3, a 1-SCLI method is parametrized by a polynomial
N . We consider the class of methods where N is any
polynomial of degree at most k − 1, and we will derive
lower bounds for this class. This class is large enough
to include all the k′-extrapolation methods for k′ ≤ k
with possibly different step sizes for each extrapolation
step (see §H for more examples).

Our main result is that no method of this class can sig-
nificantly beat the convergence speed of EG of Thm. 4
and Thm. 6. We proceed in two steps: for each of
the two terms of these bounds, we provide an exam-
ple matching it up to a factor. In (i) of the following
theorem, we give an example of convex optimization
problem which matches the real part, or strong mono-
tonicity, term. Note that this example is already an
extension of Arjevani et al. (2016) as the authors only
considered constant N . Next, in (ii), we match the
other term with a bilinear game example.

Theorem 5. Let 0 < µ, γ < L. (i) If d − 2 ≥ k ≥ 3,
there exists v ∈ Vd with a symmetric positive Jacobian
whose spectrum is in [µ,L], such that for any N real

polynomial of degree at most k−1, ρ(FN ) ≥ 1− 4k3

π
µ
L .

(ii) If d/2 − 2 ≥ k/2 ≥ 3 and d is even, there exists
v ∈ Vd L-Lipschitz with minλ∈Sp∇v |λ| = σmin(∇v) ≥
γ corresponding to a bilinear game of Example 1 with
m = d/2, such that, for any N real polynomial of degree

at most k − 1, ρ(FN ) ≥ 1− k3

2π
γ2

L2 .

First, these lower bounds show that both our conver-
gence analyses of EG are tight, by looking at them
for k = 3 for instance. Then, though these bounds
become looser as k grows, they still show that the
potential improvements are not significant in terms
of conditioning, especially compared to the change of
regime between GD and EG . Hence, they still essen-

tially match the convergence speed of EG of Thm. 4 or
Thm. 6. Therefore, EG can be considered as optimal
among the general class of algorithms which uses at
most a fixed number of composed gradient evaluations
and only the last iterate. In particular, there is no need
to consider algorithms with more extrapolation steps
or with different step sizes for each of them as it only
yields a constant factor improvement.

6 Unified global proofs of convergence

We have shown in the previous section that a spec-
tral analysis of EG yields tight and unified conver-
gence guarantees. We now demonstrate how, combin-
ing the strong monotonicity assumption and Tseng’s
error bound, global convergence guarantees with the
same unifying properties might be achieved.

6.1 Global Assumptions

Tseng (1995) proved linear convergence results for EG
by using the projection-type error bound Tseng (1995,
Eq. 5) which, in the unconstrained case, i.e. for v(ω∗) =
0, can be written as,

γ‖ω − ω∗‖2 ≤ ‖v(ω)‖2 ∀ω ∈ Rd. (9)

The author then shows that this condition holds for
the bilinear game of Example 1 and that it induces a
convergence rate of 1− cσmin(A)2/σmax(A)2 for some
constant c > 0. He also shows that this condition
is implied by strong monotonicity with γ = µ. Our
analysis builds on the results from Tseng (1995) and
extends them to cover the whole range of games and
recover the optimal rates.

To be able to interpret Tseng’s error bound (9), as a
property of the Jacobian ∇v, we slightly relax it to,

γ‖ω − ω′‖2 ≤ ‖v(ω)− v(ω′)‖2, ∀ω, ω′ ∈ Rd . (10)

This condition can indeed be related to the properties
of ∇v as follows:

Lemma 2. Let v be continuously differentiable and
γ > 0 : (10) holds if and only if σmin(∇v) ≥ γ.

Hence, γ corresponds to a lower bound on the singular
values of ∇v. This can be seen as a weaker “strong
monotonicity” as it is implied by strong monotonicity,
with γ = µ, but it also holds for a square non-singular
bilinear example of Example 1 with γ = σmin(A).

As announced, we will combine this assumption with
the strong monotonicity to derive unified global conver-
gence guarantees. Before that, note that this quantities
can be related to the spectrum of Sp∇v(ω∗) as follows
– see Lem. 8 in Appendix F.1,

µ ≤ <(λ), γ ≤ |λ| ≤ L , ∀λ ∈ Sp∇v(ω∗) . (11)
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Hence, theses global quantities are less precise than the
spectral ones used in Thm. 4, so the following global
results will be less precise than the previous ones.

6.2 Global analysis EG and OG

We can now state our global convergence result for EG:

Theorem 6. Let v : Rd → Rd be continuously differ-
entiable and (i) µ-strongly monotone for some µ ≥ 0,
(ii) L-Lipschitz, (iii) such that σmin(∇v) ≥ γ for
some γ > 0. Then, for η ≤ (4L)−1, the iterates (ωt)t
of (EG) converge linearly to ω∗ as, for all t ≥ 0,

‖ωt − ω∗‖22 ≤
(
1− ηµ− 7

16η
2γ2
)t ‖ω0 − ω∗‖22 .

As for Thm. 4, this result not only recovers both the
bilinear and the strongly monotone case, but shows
that EG actually gets the best of both world when in
between. Furthermore this rate is surprisingly similar
to the result of Thm. 4 though less precise, as discussed.

Combining our new proof technique and the analysis
provided by Gidel et al. (2019a), we can derive a similar
convergence rate for the optimistic gradient method.

Theorem 7. Under the same assumptions as in
Thm. 6, for η ≤ (4L)−1, the iterates (ωt)t of (OG)
converge linearly to ω∗ as, for all t ≥ 0,

‖ωt − ω∗‖22 ≤ 2
(
1− ηµ− 1

8η
2γ2
)t+1 ‖ω0 − ω∗‖22 .

Interpretation of the condition numbers. As in
the previous section, this rate of convergence for EG
is similar to the rate of the proximal point method for
a small enough step size, as shown by Prop. 1 in §F.2.
Moreover, the proof of the latter gives insight into the
two quantities appearing in the rate of Thm. 6. Indeed,
the convergence result for the proximal point method
is obtained by bounding the singular values of ∇Pη,
and so we compute,4

(∇Pη)T∇Pη =
(
Id + ηH(∇v) + η2∇v∇vT

)−1

where H(∇v) := ∇v+∇vT
2 . This explains the quantities

L/µ and L2/γ2 appear in the convergence rate, as the
first corresponds to the condition number ofH(∇v) and
the second to the condition number of ∇v∇vT . Thus,
the proximal point method uses information from both
matrices to converge, and so does EG, explaining why
it takes advantage of the best conditioning.

6.3 Global analysis of consensus optimization

In this section, we give a unified proof of CO. A global
convergence rate for this method was proven by Aber-
nethy et al. (2019). However it used a perturbation

4We dropped the dependence on ω for compactness.

analysis of HGD. The drawbacks are that it required
that the CO update be sufficiently close to the one of
HGD and could not take advantage of strong mono-
tonicity. Here, we combine the monotonicity µ with
the lower bound on the singular value γ.

As this scheme uses second-order5 information, we need
to replace the Lipschitz hypothesis with one that also
controls the variations of the Jacobian of v: we use L2

H ,
the Lispchitz smoothness of H. See Abernethy et al.
(2019) for how it might be instantiated.

Theorem 8. Let v : Rd → Rd be continuously dif-
ferentiable such that (i) v is µ- strongly monotone
for some µ ≥ 0, (ii) σmin(∇v) ≥ γ for some
γ > 0 (iii) H is L2

H Lipschitz-smooth. Then, for

α = (µ +
√
µ2 + 2γ2)/(4L2

H), β = (2L2
H)−1 the it-

erates of CO defined by (CO) satisfy, for all t ≥ 0,

H(ωt) ≤
(

1− µ2

2L2
H
−
(

1 + µ
γ

)
γ2

2L2
H

)t
H(ω0) .

This result shows that CO has the same unifying prop-
erties as EG, though the dependence on µ is worse.

This result also encompasses the rate of HGD (Aber-
nethy et al., 2019, Lem. 4.7). The dependance in µ is on
par with the standard rate for the gradient method (see
Nesterov and Scrimali (2006, Eq. 2.12) for instance).
However, this can be improved using a sharper assump-
tion, as discussed in Remark 1 in Appendix F.3, and
so our result is not optimal in this regard.

7 Conclusion

In this paper, we studied the dynamics of EG, both
locally and globally and extended our global guarantees
to other promising methods such as OG and CO. Our
analysis is tight for EG and unified as they cover the
whole spectrum of games from bilinear to purely cooper-
ative settings. They show that in between, these meth-
ods enjoy the best of both worlds. We confirm that,
unlike in convex minimization, the behaviors of EG
and GD differ significantly. The other lower bounds
show that EG can be considered as optimal among
first-order methods that use only the last iterate.

Finally, as mentioned in §5, the rate of alternating gra-
dient descent with negative momentum from Gidel et al.
(2019b) on the bilinear example essentially matches the
rate of EG in Cor. 2. Thus the question of an ac-
celeration for adversarial games similar to the one in
the convex case using Polyak (Polyak, 1964) or Nes-
terov’s (Nesterov, 2004) momentum remains open.

5W.r.t. the losses.
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A Notation

We denote by Sp(A) the spectrum of a matrix A. Its spectral radius is defined by ρ(A) = max{|λ| | λ ∈ Sp(A)}.
We write σmin(A) for the smallest singular value of A, and σmax(A) for the largest. < and = denote respectively
the real part and the imaginary part of a complex number. We write A 4 B for two symmetric real matrices if
and only if B −A is positive semi-definite. For a vector X ∈ Cd, denote its transpose by XT and its conjugate
transpose by XH . ‖.‖ denotes an arbitrary norm on Rd unless specified. We sometimes denote min(a, b) by
a ∧ b and max(a, b) by a ∨ b. For f : Rd → Rd, we denote by fk the composition of f with itself k times, i.e.
fk(ω) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

k times

(ω).

B Interpretation of spectral quantities in a two-player zero-sum game

In this appendix section, we are interested in interpreting spectral bounds in terms of the usual strong convexity
and Lipschitz continuity constants in a two-player zero-sum game:

min
x∈Rm

max
y∈Rp

f(x, y) (12)

with f is two times continuously differentiable.

Assume,

µ1Im 4 ∇2
xf 4 L1Im (13)

µ2Ip 4 −∇2
yf 4 L2Ip (14)

µ2
12Ip 4 (∇x∇yf)T (∇x∇yf) 4 L2

12Ip (15)

where µ1, µ2 and µ12 are non-negative constants. Let ω∗ = (x∗, y∗) be a stationary point. To ease the presentation,
let,

∇v(ω∗) =

(
∇2
xf(ω∗) (∇x∇yf(ω∗))T

−(∇x∇yf(ω∗)) ∇2
yf(ω∗)

)
=

(
S1 A
−AT S2

)
. (16)

Now, more precisely, we are interested in lower bounding <(λ) and |λ| and upper bounding |λ| for λ ∈ Sp∇v(ω∗).

B.1 Commutative and square case

In this subsection we focus on the square and commutative case as formalized by the following assumptions:

Assumption 1 (Square and commutative case). The following holds: (i) p = m = d
2 ; (ii) S2 and AT commute;

(iii) S1, S2 and AAT commute.

Assumption 1 holds if, for instance, the objective is separable, i.e. f(x, y) =
∑m
i=1 fi(xi, yi). Then, using

a well-known linear algebra theorem, Assumption 1 implies that there exists U ∈ Rd×d unitary such that
S1 = U diag(α1, . . . , αm)UT , S2 = U diag(β1, . . . , βm)V T and AAT = U diag(σ2

1 , . . . , σ
2
d)U

T where α1, . . . , αm
are the eigenvalues of S1, β1, . . . , βm are the eigenvalues of S2 and σ1, . . . , σp are the singular values of A. See
Lax (2007, p. 74) for instance.

Define,

µ =

(
µ1 µ12

−µ12 µ2

)
L =

(
L1 L12

−L12 L2

)
.

Denote by |µ| and |L| the determinants of theses matrices, and by Trµ and TrL their traces.

In this case we get an exact characterization of the spectrum ∇v(ω∗), which we denote by σ∗ = Sp∇v(ω∗):

Lemma 3. Under Assumption 1, λ ∈ sigma∗ if and only if there exists some i ≤ d such that λ is a root of

Pi = X2 − (αi + βi)X + αiβi + σ2
i
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Proof. We compute the characteristic polynomial of ∇v(ω∗) using that S2 and AT commute, using the formula
for the determinant of a block matrix, which can be found in Zhang (2005, Section 0.3) for instance.∣∣∣∣XI − S1 −A

AT XI − S2

∣∣∣∣ = |(XI − S1)(XI − S2) +AAT |

= |X2I −X(S1 + S2) + S1S2 +AAT |

=
∏
i

(
X2 − (αi + βi)X + αiβi + σ2

i

)

Theorem 9. Under Assumption 1, we have the following results on the eigenvalues of ∇v(ω∗).

(a) For i ≤ m, if (αi − βi)2 < 4σ2
i , the roots of Pi satisfy:

Trµ

2
≤ <(λ), detµ ≤ |λ|2 ≤ detL , ∀λ ∈ C s.t. Pi(λ) = 0 . (17)

(b) For i ≤ m, if (αi − βi)2 ≥ 4σ2
i , the roots of Pi are real non-negative and satisfy :

max

(
µ1 ∧ µ2,

detµ

TrL

)
≤ λ ≤ L1 ∨ L2 , ∀λ ∈ C s.t. Pi(λ) = 0 . (18)

(c) Hence, in general,
µ1 ∧ µ2 ≤ <λ, |λ|2 ≤ 2L2

max ∀λ ∈ σ∗ , (19)

where Lmax = max(L1, L2, L12).

Proof. (a) Assume that (αi−βi)2 < 4σ2
i , i.e. the discriminant of the polynomial Pi of Lem. 3 is negative. Consider

λ a root of Pi. Then <λ = αi+βi
2 and |λ|2 = αiβi + σ2

i . Hence <λ ≥ 1
2 Trµ and detµ ≤ |λ|2 ≤ detL.

(b) Assume that (αi − βi)2 ≥ 4σ2
i , i.e. the discriminant of the polynomial Pi of Lem. 3 is non-negative. This

implies that ∆ = (TrL)
2 − 4 detµ ≥ 0.

Denote by λ+ and λ− the two real roots of Pi. Then

λ± =
αi + βi ±

√
(αi + βi)2 − 4(αiβi + σ2

i )

2

Hence

λ+ ≥ λ− ≥ min
max(Trµ, 4 detµ)≤x≤TrL

x−
√
x2 − 4 detµ

2

As x 7→ x−
√
x2 − 4 detµ is decreasing on its domain, the minimum is reached at TrL and is TrL−

√
∆

2 ≥ 0.
However this lower bound is quite loose when A = 0. So note that

λ− =
αi + βi −

√
(αi + βi)2 − 4(αiβi + σ2

i )

2
(20)

≥
αi + βi −

√
(αi − βi)2

2
= αi ∧ βi (21)

≥ µ1 ∧ µ2 (22)

(23)

Similarly,

λ+ ≤
αi + βi +

√
(αi − βi)2

2
= αi ∨ βi ≤ L1 ∨ L2 (24)
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Finally:

L1 ∨ L2 ≥ λ+ ≥ λ− ≥ max

(
TrL−

√
∆

2
, µ1 ∧ µ2

)
. (25)

Moreover,

TrL−
√

∆ =

(
TrL−

√
∆
)(

TrL+
√

∆
)

TrL+
√

∆
(26)

=
4 detµ

TrL+
√

∆
(27)

≥ 2 detµ

TrL
, (28)

which yields the result.

(c) These assertions are immediate corollaries of the two previous ones.

We need the following lemma to be able to interpret Thm. 6 in the context of Example 2, whose assumptions
imply Assumption 1.

Lemma 4. Under Assumption 1, the singular values of ∇v(ω∗) can be lower bounded as:

µ12(µ12 −max(L1 − µ2, L2 − µ1)) ≤ σmin(∇v(ω∗))2 . (29)

In particular, if µ12 > 2 max(L1 − µ2, L2 − µ1), this becomes

1

2
µ2

12 ≤ σmin(∇v(ω∗))2 . (30)

Proof. To prove this we compute the eigenvalues of (∇v(ω∗))T∇v(ω∗). We have that,

(∇v(ω∗))T∇v(ω∗) =

(
S2

1 +AAT S1A−AS2

ATS1 − S2A
T ATA+ S2

2

)
. (31)

As in the proof of Lem. 3, as Assumption 1 implies that ATS1 − S2A
T and ATA+ S2

2 commute,

|XI − (∇v(ω∗))T∇v(ω∗)| =
∣∣(XI − S2

1 −AAT )(XI − S2
2 −ATA)− (S1 − S2)2AAT

∣∣ (32)

=
∏
i

(
(XI − α2

i − σ2
i )(XI − β2

i − σ2
i )− (αi − βi)2σ2

i

)
. (33)

Let Qi(X) = (XI − α2
i − σ2

i )(XI − β2
i − σ2

i )− (αi − βi)2σ2
i . Its discriminant is

∆′i = (α2
i + β2

i + 2σ2
i )2 − 4

(
(α2
i + σ2

i )(β2
i + σ2

i )− (αi − βi)2)σ2
i

)
(34)

= (αi − βi)2((αi + βi)
2 + 4σ2

i ) ≥ 0 . (35)

Hence the roots of Qi are:

λi± =
1

2

(
α2
i + β2

i + 2σ2
i ±

√
(αi − βi)2((αi + βi)2 + 4σ2

i )

)
. (36)

The smallest is λi− which can be lower bounded by

λi− =
1

2

(
α2
i + β2

i + 2σ2
i −

√
(αi + βi)2((αi + βi)2 + 4σ2

i )

)
(37)

≥ 1

2

(
α2
i + β2

i − |α2
i − β2

i |+ 2σi(σi − |αi − βi|)
)

(38)

≥ σi(σi − |αi − βi|) (39)

≥ µ12(µ12 −max(L1 − µ2, L2 − µ1)) . (40)
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C Complement for §3

The convergence result of Thm. 1 can be strengthened if the Jacobian is constant as shown below. A proof of this
classical result in linear algebra can be found in Arjevani et al. (2016) for instance.

Theorem 10. Let F : Rd −→ Rd be a linear operator. If ρ(∇F ) < 1, then for all ω0 ∈ Rd, the iterates (ωt)t
defined as above converge linearly to ω∗ at a rate of O((ρ(∇F ))t).

D Convergence results of §4

Let us restate Thm. 3 for clarity.

Theorem 3. Let ω∗ be a stationary point of v and denote by σ∗ the spectrum of ∇v(ω∗). If the eigenvalues of
∇v(ω∗) all have positive real parts, then

(i). (Gidel et al., 2019b) For η = minλ∈σ∗ <(1/λ), the spectral radius of Fη can be upper-bounded as

ρ(∇Fη(ω∗))2 ≤ 1− min
λ∈σ∗

<(1/λ) min
λ∈σ∗

<(λ) .

(ii). For all η > 0, the spectral radius of the gradient operator Fη at ω∗ is lower bounded by

ρ(∇Fη(ω∗))2 ≥ 1− 4 min
λ∈σ∗

<(1/λ) min
λ∈σ∗

<(λ) .

In this subsection, we quickly show how to obtain (i) of Thm. 3 from Theorem 2 of Gidel et al. (2019b), whose
part which interests us now is the following:

Theorem (Gidel et al. (2019b, part of Theorem 2)). If the eigenvalues of ∇v(ω∗) all have positive real parts,
then for η = <(1/λ1) one has

ρ(∇Fη(ω∗))2 ≤ 1−<(1/λ1)δ (41)

where δ = min1≤j≤m |λj |2(2<(1/λj)−<(1/λ1)) and Sp∇v(ω∗) = {λ1, . . . , λm} sorted such that 0 < <(1/λ1) ≤
<(1/λ2) ≤ · · · ≤ <(1/λm).

Proof of (i) of Thm. 3. By definition of the order on the eigenvalues,

δ = min
1≤j≤m

|λj |2(<(1/λj) + <(1/λj)−<(1/λ1)) (42)

≥ min
1≤j≤m

|λj |2(<(1/λj)) (43)

= min
1≤j≤m

<(λj) (44)

To prove the second part of Thm. 3, we rely on a different part of Gidel et al. (2019b, Theorem 2) which we recall
below:

Theorem (Gidel et al. (2019b, part of Theorem 2)). The best step-size η∗, that is to say the solution of the
optimization problem

min
η
ρ(∇Fη(ω∗))2 , (45)

satisfy:
min
λ∈σ∗

<(1/λ) ≤ η∗ ≤ 2 min
λ∈σ∗

<(1/λ) . (46)

(ii) of Thm. 3 is now immediate.

Proof of (ii) of Thm. 3. By definition of the spectral radius,

ρ(∇Fη∗(ω∗))2 = max
λ∈Sp(∇v(ω∗)

|1− η∗λ|2 (47)

= 1− min
λ∈Sp(∇v(ω∗)

2η∗<λ− |η∗λ|2 (48)

≥ 1− min
λ∈Sp(∇v(ω∗)

2η∗<λ (49)

≥ 1− 4 min
λ∈Sp(∇v(ω∗)

<λ min
λ∈σ∗

<(1/λ) (50)
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Corollary 1. Under the assumptions of Thm. 3 and Ex. 2,

ρ(∇Fη(ω∗))2 ≤ 1− 1
4

(µ1+µ2)2

L2
12+L1L2

. (3)

Proof. Note that the hypotheses stated in §4 correspond to the assumptions of §B.1. Moreover, with the
notations of this subsection, one has that 4σ2

i ≥ 4µ2
12 and max(L1, L2)2 ≥ (αi − βi)2. Hence the condition

2µ12 ≥ max(L1, L2) implies that all the eigenvalues of ∇v(ω∗) satisfy the case (a) of Thm. 9. Then, using Thm. 3,

ρ(∇Fη(ω∗))2 ≤ 1− min
λ∈σ∗

<(1/λ) min
λ∈σ∗

<(λ) (51)

≤ 1−
(

minλ∈σ∗ <(λ)

maxλ∈σ∗ |λ|

)2

(52)

≤ 1− 1

4

(µ1 + µ2)2

L2
12 + L1L2

. (53)

E Spectral analysis of §5

We prove Lem. 1.

Lemma 5. Assuming that the eigenvalues of ∇v(ω∗) all have non-negative real parts, the proximal point operator
Pη is continuously differentiable in a neighborhood of ω∗ . Moreover, the spectra of the k-extrapolation operator
and the proximal point operator are given by:

Sp∇Fη,k(ω∗) =
{∑k

j=0(−ηλ)j | λ ∈ σ∗
}

(54)

and Sp∇Pη(ω∗) =
{

(1 + ηλ)−1 | λ ∈ σ∗
}
. (55)

Hence, for all η > 0, the spectral radius of the operator of the proximal point method is equal to:

ρ(∇Pη(ω∗))2 = 1− min
λ∈σ∗

2η<λ+η2|λ|2
|1+ηλ|2 . (56)

To prove the result about the k-extrapolation operator, we first show the following lemma, which will be used
again later.

Recall that we defined ϕη,ω : z 7→ ω − ηv(z). We drop the dependence on η in ϕη,ω for compactness.

Lemma 6. The Jacobians of ϕkω(z) with respect to z and ω can be written as

∇zϕkω(z) = (−η)k∇v(ϕk−1
ω (z))∇v(ϕk−2

ω (z)) . . .∇v(ϕ0
ω(z)) (57)

∇ωϕkω(z) =

k−1∑
j=0

(−η)j∇v(ϕk−1
ω (z))∇v(ϕk−2

ω (z)) . . .∇v(ϕk−jω (z)) . (58)

Proof. We prove the result by induction:

• For k = 1, ϕω(z) = ω − ηv(z) and the result holds.

• Assume this result holds for k ≥ 0. Then,

∇zϕk+1
ω (z) = ∇zϕω(ϕkω(z))∇zϕkω(z) (59)

= −η∇v(ϕkω(z))(−η)k∇v(ϕk−1
ω (z)) . . .∇v(ϕ0

ω(z)) (60)

= (−η)k+1∇v(ϕkω(z))∇v(ϕk−1
ω (z)) . . .∇v(ϕ0

ω(z)) . (61)
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For the derivative with respect to ω, we use the chain rule:

∇ωϕk+1
ω (z) = ∇ωϕω(ϕkω(z)) +∇zϕω(ϕkω(z))∇ωϕkω(z) (62)

= Id − ηv(ϕkω(z))

k−1∑
j=0

(−η)j∇v(ϕk−1
ω (z)) . . .∇v(ϕk−jω (z)) (63)

= Id +

k−1∑
j=0

(−η)j+1∇v(ϕkω(z))∇v(ϕk−1
ω (z)) . . .∇v(ϕk−jω (z)) (64)

= Id +

k∑
j=1

(−η)j∇v(ϕkω(z))∇v(ϕk−1
ω (z)) . . .∇v(ϕk+1−j

ω (z)) (65)

=

k∑
j=0

(−η)j∇v(ϕkω(z))∇v(ϕk−1
ω (z)) . . .∇v(ϕk+1−j

ω (z)) (66)

In the proof of Lem. 1 and later we will use the spectral mapping theorem, which we state below for reference:

Theorem 11 (Spectral Mapping Theorem). Let A ∈ Cd×d be a square matrix, and P be a polynomial. Then,

SpP (A) = {P (λ) | λ ∈ SpA} . (67)

See for instance Lax (2007, Theorem 4, p. 66 ) for a proof.

Proof of Lem. 1. First we compute ∇Fη,k(ω∗). As ω∗ is a stationary point, it is a fixed point of the extrapolation

operators, i.e. ϕjω∗(ω
∗) = ω∗ for all j ≥ 0. Then, by the chain rule,

∇Fη,k(ω∗) = ∇zϕkω∗(ω∗) +∇ωϕkω∗(ω∗) (68)

= (−η∇v(ω∗))k +

k−1∑
j=0

(−η∇v(ω∗))j (69)

=

k∑
j=0

(−η∇v(ω∗))j . (70)

Hence ∇Fη,k(ω∗) is a polynomial in ∇v(ω∗). Using the spectral mapping theorem (Thm. 11), one gets that

Sp∇Fη,k(ω∗) =


k∑
j=0

(−η)jλj | λ ∈ Sp∇v(ω∗)

 (71)

For the proximal point operator, first let us prove that it is differentiable in a neighborhood of ω∗. First notice
that,

Sp(Id + η∇v(ω∗)) = {1 + ηλ | λ ∈ Sp∇v(ω∗)} . (72)

If the eigenvalues of ∇v(ω∗) all have non-negative real parts, this spectrum does not contain zero. Hence
ω 7→ ω + ηv(ω) is continuously differentiable and has a non-singular differential at ω∗. By the inverse function
theorem (see for instance Rudin (1976)), ω 7→ ω + ηv(ω) is invertible in a neighborhood of ω∗ and its inverse,
which is Pη, is continuously differentiable there. Moreover,

∇Pη(ω∗) = (Id + η∇v(ω∗))−1 . (73)

Recall that the eigenvalues of a non-singular matrix are exactly the inverses of the eigenvalues of its inverse.
Hence,

Sp∇Pη(ω∗) = {λ−1 | λ ∈ Sp(Id + η∇v(ω∗))} =
{

(1 + ηλ)−1 | λ ∈ Sp∇v(ω∗)
}
, (74)
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where the last equality follows from the spectral mapping theorem applied to Id + η∇v(ω∗). Now, the bound on
the spectral radius of the proximal point operator is immediate. Indeed, its spectral radius is:

ρ(∇Pη(ω∗))2 = max
λ∈σ∗

1

|1 + ηλ|2
(75)

= 1− min
λ∈σ∗

(
2η<λ+ η2|λ|2

|1 + ηλ|2

)
(76)

which yields the result.

Theorem 4. Let σ∗ = Sp∇v(ω∗). If the eigenvalues of ∇v(ω∗) all have non-negative real parts, the spectral
radius of the k-extrapolation method for k ≥ 2 satisfies:

ρ(∇Fη,k(ω∗))2 ≤ 1− min
λ∈σ∗

2η<λ+
7
16η

2|λ|2

|1+ηλ|2 , (7)

∀η ≤ 1

4
1
k−1

1
maxλ∈σ∗ |λ|

. For η = (4 maxλ∈σ∗ |λ|)−1, this can be simplified as (noting ρ := ρ(∇Fη,k(ω∗))):

ρ2 ≤ 1− 1
4

(
minλ∈σ∗ <λ
maxλ∈σ∗ |λ|

+ 1
16

minλ∈σ∗ |λ|2
maxλ∈σ∗ |λ|2

)
. (8)

Proof. Let L = maxλ∈σ∗ |λ| and η = τ
L for some τ > 0. For λ ∈ σ∗,∣∣∣∣∣∣

k∑
j=0

(−η)jλj

∣∣∣∣∣∣
2

=
|1− (−η)k+1λk+1|2

|1 + ηλ|2
(77)

=
1 + 2(−1)kηk+1<(λk+1) + η2(k+1)|λ|2(k+1)

|1 + ηλ|2
(78)

= 1− 2η<λ+ η2|λ|2 − 2(−1)kηk+1<(λk+1)− η2(k+1)|λ|2(k+1)

|1 + ηλ|2
(79)

= 1−
2η<λ+ η2|λ|2

(
1− 2(−1)kηk−1<(λk+1)

|λ|2 − η2(k−1)|λ|2(k−1)
)

|1 + ηλ|2
(80)

Now we focus on lower bounding the terms in between the parentheses. By definition of η, we have ηk−1 |<(λk+1)|
|λ|2 ≤

τk−1 and η2(k−1)|λ|2(k−1) ≤ τ2(k−1). Hence

1 + 2(−1)kηk−1<(λk+1)

|λ|2
+ η2(k−1)|λ|2(k−1)) ≥ 1− 2ηk−1 |<(λk+1)|

|λ|2
− η2(k−1)|λ|2(k−1) (81)

≥ 1− 2τk−1 − τ2(k−1) (82)

(83)

Notice that if k = 1, i.e. for the gradient method, we cannot control this quantity. However, for k ≥ 2, if

τ ≤ ( 1
4 )

1
k−1 , one gets that

1− 2τk−1 − τ2(k−1) ≥ 1− 1

2
− 1

16
=

7

16
(84)

which yields the first assertion of the theorem. For the second one, take η = 1
4L , i.e. the maximum step-size

authorized for extragradient, and one gets that

|1 + ηλ|2 = 1 + 2η<λ+ η2|λ|2 (85)

≤ 1 + 2
1

4
+

1

16
=

25

16
. (86)
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Then,

2η<λ+ 7
16η

2|λ|2

|1 + ηλ|2
≥ 1

4

(
2

16

25

<λ
L

+
7

100

|λ|2

L2

)
(87)

≥ 1

4

(
<λ
L

+
7

112

|λ|2

L2

)
(88)

≥ 1

4

(
<λ
L

+
1

16

|λ|2

L2

)
, (89)

which yields the desired result.

Corollary 2 (Bilinear game). Consider Ex. 1. The iterates of the k-extrapolation method with k ≥ 2 converge

globally to ω∗ at a linear rate of O
((

1− 1
64

σmin(A)2

σmax(A)2

)t)
.

First we need to compute the eigenvalues of ∇v.

Lemma 7. Let A ∈ Rm×m and

M =

(
0m A
−AT 0m

)
. (90)

Then,

SpM = {±iσ | σ2 ∈ SpAAT } . (91)

Proof. Assumption 1 of Appendix B.1 holds so we can apply Lem. 3 which yields the result.

Proof of Cor. 2. The Jacobian is constant here and has following the form:

∇v =

(
0m A
−AT 0m

)
. (92)

Applying Lem. 7 yields

Sp∇v = {±iσ | σ2 ∈ SpAAT } . (93)

Hence minλ∈Sp∇v |λ|2 = σmin(A)2 and maxλ∈Sp∇v |λ|2 = σmax(A)2. Using Thm. 4, we have that,

ρ(∇Fη,k(ω∗))2 ≤
(

1− 1

64

σmin(A)2

σmax(A)2

)
. (94)

Finally, Thm. 10 implies that the iterates of the k-extrapolation converge globally at the desired rate.

Corollary 3. Under the assumptions of Cor. 1, the spectral radius of the n-extrapolation method operator is
bounded by

ρ(∇Fη,k(ω∗))2 ≤ 1− 1

4

(1

2

µ1 + µ2√
L2

12 + L1L2

+
1

16

µ2
12 + µ1µ2

L2
12 + L1L2

)
. (95)

Proof. This is a direct consequence of Thm. 4 and Thm. 9, as the latter gives that for any λ ∈ Sp∇v(ω∗),

Trµ

2
≤ <λ, |µ| ≤ |λ|2 ≤ |L| , (96)

as discussed in the proof of Cor. 1.

F Global convergence proofs

In this section, ‖.‖ denotes the Euclidean norm.



Wäıss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien, Gauthier Gidel

F.1 Alternative characterizations and properties of the assumptions

Lemma 2. Let v be continuously differentiable and γ > 0 : (10) holds if and only if σmin(∇v) ≥ γ.

Let us recall (10) here for simplicity:

‖ω − ω′‖ ≤ γ−1‖v(ω)− v(ω′)‖ ∀ω, ω′ ∈ Rd . (10)

The proof of this lemma is an immediate consequence of a global inverse theorem from Hadamard (1906); Levy
(1920). Let us recall its statement here:

Theorem 12 (Hadamard (1906); Levy (1920)). Let f : Rd → Rd be a continuously differentiable map. Assume
that, for all ω ∈ Rd, ∇f is non-singular and σmin(∇f) ≥ γ > 0. Then f is a C1-diffeomorphism, i.e. a one-to-one
map whose inverse is also continuously differentiable.

A proof of this theorem can be found in Rheinboldt (1969, Theorem 3.11). We now proceed to prove the lemma.

Proof of Lem. 2. First we prove the direct implication. By the theorem stated above, v is a bijection from Rd to
Rd, its inverse is continuously differentiable on Rd and so we have, for all ω ∈ Rd:

∇v−1(v(ω)) = (∇v(ω))−1 . (97)

Hence ‖∇v−1(v(ω))‖ = (σmin(∇v(ω)))−1 ≤ γ−1.

Consider ω, ω′ ∈ Rd and let u = v(ω) and u′ = v(ω′). Then

‖ω − ω′‖ = ‖v−1(u)− v−1(u′)‖ (98)

=

∥∥∥∥∫ 1

0

∇v−1(tu+ (1− t)u′)(u− u′)
∥∥∥∥ (99)

≤ γ−1‖u− u′‖ (100)

= γ−1‖v(ω)− v(ω′)‖ (101)

which proves the result.

Conversely, if (10) holds, fix u ∈ Rd with ‖u‖ = 1. Taking ω′ = ω + tu in (10) with t 6= 0 and rearranging yields:

γ ≤
∥∥∥∥v(ω + tu)− v(ω)

t

∥∥∥∥ .
Taking the limit when t goes to 0 gives that γ ≤ ‖∇v(ω)u‖. As it holds for all u such that ‖u‖ = 1 this implies
that γ ≤ σmin(∇v).

With the next lemma, we relate the quantities appearing in Thm. 6 to the spectrum of ∇v. Note that the first
part of the proof is standard — it can be found in Facchinei and Pang (2003, Prop. 2.3.2) for instance — and we
include it only for completeness.

Lemma 8. Let v : Rd → Rd be continuously differentiable and (i) µ-strongly monotone for some µ ≥ 0,
(ii) L-Lispchitz, (iii) such that σmin(∇v) ≥ γ for some γ ≥ 0.. Then, for all ω ∈ Rd,

µ‖u‖2 ≤ (∇v(ω)u)Tu , γ‖u‖ ≤ ‖∇v(ω)u‖ ≤ L‖u‖ , ∀u ∈ Rd , (102)

and
µ ≤ <(λ), γ ≤ |λ| ≤ L , ∀λ ∈ Sp∇v(ω) . (103)

Proof. By definition of µ-strong monotonicity, and L-Lispchitz one has that, for any ω, ω′ ∈ Rd,

µ‖ω − ω′‖2 ≤ (v(ω)− v(ω′))T (ω − ω′) (104)

‖v(ω)− v(ω′)‖ ≤ L‖ω − ω′‖ . (105)
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Fix ω ∈ Rd, u ∈ Rd such that ‖u‖ = 1. Taking ω′ = ω + tu for t > 0 in the previous inequalities and dividing by
t yields

µ ≤ 1

t
(v(ω)− v(ω + tu))Tu (106)

1

t
‖v(ω)− v(ω + tu)‖ ≤ L . (107)

Letting t goes to 0 gives

µ ≤ (∇v(ω)u)Tu (108)

‖∇v(ω)u‖ ≤ L . (109)

Furthermore, by the properties of the singular values,

‖∇v(ω)u‖ ≥ γ . (110)

Hence, by homogeneity, we have that, for all u ∈ Rd,

µ‖u‖2 ≤ (∇v(ω)u)Tu , γ‖u‖ ≤ ‖∇v(ω)u‖ ≤ L‖u‖ . (111)

Now, take λ ∈ Sp∇v(ω) an eigenvalue of ∇v(ω) and let Z ∈ Cd \ {0} be one of its associated eigenvectors. Note
that Z can be written as Z = X + iY with X,Y ∈ Rd. By definition of Z, we have

∇v(ω)Z = λZ . (112)

Now, taking the real and imaginary part yields:{
∇v(ω)X = <(λ)X −=(λ)Y

∇v(ω)Y = =(λ)X + <(λ)Y
(113)

Taking the squared norm and developing the right-hand sides yields{
‖∇v(ω)X‖2 = <(λ)2‖X‖2 + =(λ)2‖Y ‖2 − 2<(λ)=(λ)XTY

‖∇v(ω)Y ‖2 = =(λ)2‖X‖2 + <(λ)2‖Y ‖2 + 2<(λ)=(λ)XTY .
(114)

Now summing these two equations gives

‖∇v(ω)X‖2 + ‖∇v(ω)Y ‖2 = |λ|2(‖X‖2 + ‖Y ‖2) . (115)

Finally, apply (111) for u = X and u = Y :

γ2(‖X‖2 + ‖Y ‖2) ≤ |λ|2(‖X‖2 + ‖Y ‖2) ≤ L2(‖X‖2 + ‖Y ‖2) . (116)

As Z 6= 0, ‖X‖2 + ‖Y ‖2 > 0 and this yields γ ≤ |λ| ≤ L. To get the inequality concerning γ, multiply on the left
the first line of (113) by XT and the second one by Y T :{

XT (∇v(ω)X) = <(λ)‖X‖2 −=(λ)XTY

Y T (∇v(ω)Y ) = =(λ)Y TX + <(λ)‖Y ‖2 .
(117)

Again, summing these two lines and using (111) yields:

µ(‖X‖2 + ‖Y ‖2) ≤ <(λ)(‖X‖2 + ‖Y ‖2) . (118)

As Z 6= 0, ‖X‖2 + ‖Y ‖2 > 0 and so µ ≤ <(λ).
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F.2 Proofs of §6: extragradient, optimistic and proximal point methods

We now prove a slightly more detailed version of Thm. 6.

Theorem 13. Let v : Rd → Rd be continuously differentiable and (i) µ-strongly monotone for some µ ≥ 0,
(ii) L-Lipschitz, (iii) such that σmin(∇v) ≥ γ for some γ > 0. Then, for η ≤ (4L)−1, the iterates of the
extragradient method (ωt)t converge linearly to ω∗ the unique stationary point of v,

‖ωt − ω∗‖22 ≤
(
1−

(
ηµ+ 7

16η
2γ2
))t ‖ω0 − ω∗‖22 . (119)

For η = (4L)−1, this can be simplified as: ‖ωt − ω∗‖22 ≤
(

1− 1
4

(
µ
L + 1

16
γ2

L2

))t
‖ω0 − ω∗‖22.

The proof is inspired from the ones of Gidel et al. (2019a); Tseng (1995).

We will use the following well-known identity. It can be found in Gidel et al. (2019a) for instance but we state it
for reference.

Lemma 9. Let ω, ω′, u ∈ Rd. Then

‖ω + u− ω′‖2 = ‖ω − ω′‖2 + 2uT (ω + u− ω′)− ‖u‖2 (120)

Proof.

‖ω + u− ω′‖2 = ‖ω − ω′‖2 + 2uT (ω − ω′) + ‖u‖2 (121)

= ‖ω − ω′‖2 + 2uT (ω + u− ω′)− ‖u‖2 (122)

Proof Thm. 13. First note that as γ > 0, by Thm. 12, v has a stationary point ω∗ and it is unique.

Fix any ω0 ∈ Rd, and denote ω1 = ω0 − ηv(ω0) and ω2 = ω0 − ηv(ω1). Applying Lem. 9 for (ω, ω′, u) =
(ω0, ω

∗,−ηv(ω1)) and (ω, ω′, u) = (ω0, ω2,−ηv(ω0)) yields:

‖ω2 − ω∗‖2 = ‖ω0 − ω∗‖2 − 2ηv(ω1)T (ω2 − ω∗)− ‖ω2 − ω0‖2 (123)

‖ω1 − ω2‖2 = ‖ω0 − ω2‖2 − 2ηv(ω0)T (ω1 − ω2)− ‖ω1 − ω0‖2 (124)

Summing these two equations gives:

‖ω2 − ω∗‖2 = (125)

‖ω0 − ω∗‖2 − 2ηv(ω1)T (ω2 − ω∗)− 2ηv(ω0)T (ω1 − ω2)− ‖ω1 − ω0‖2 − ‖ω1 − ω2‖2 (126)

Then, rearranging and using that v(ω∗) = 0 yields that,

2ηv(ω1)T (ω2 − ω∗) + 2ηv(ω0)T (ω1 − ω2) (127)

= 2η(v(ω1))T (ω1 − ω∗) + 2η(v(ω0)− v(ω1))T (ω1 − ω2) (128)

= 2η(v(ω1)− v(ω∗))T (ω1 − ω∗) + 2η(v(ω0)− v(ω1))T (ω1 − ω2) (129)

≥ 2ηµ‖ω1 − ω∗‖2 − 2η‖v(ω0)− v(ω1)‖‖ω1 − ω2‖ (130)

where the first term is lower bounded using strong monotonicity and the second one using Cauchy-Schwarz’s
inequality. Using in addition the fact that v is Lipschitz continuous we obtain:

2ηv(ω1)T (ω2 − ω∗) + 2ηv(ω0)T (ω1 − ω2) (131)

≥ 2ηµ‖ω1 − ω∗‖2 − 2ηL‖ω0 − ω1‖‖ω1 − ω2‖ (132)

≥ 2ηµ‖ω1 − ω∗‖2 − (η2L2‖ω0 − ω1‖2 + ‖ω1 − ω2‖2) (133)

where the last inequality comes from Young’s inequality. Using this inequality in (125) yields:

‖ω2 − ω∗‖2 ≤ ‖ω0 − ω∗‖2 − 2ηµ‖ω1 − ω∗‖2 + (η2L2 − 1)‖ω0 − ω1‖2 . (134)
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Now we lower bound ‖ω1 − ω∗‖ using ‖ω0 − ω∗‖. Indeed, from Young’s inequality we obtain

2‖ω1 − ω∗‖2 ≥ ‖ω0 − ω∗‖2 − 2‖ω0 − ω1‖2 . (135)

Hence, we have that,

‖ω2 − ω∗‖2 ≤ (1− ηµ)‖ω0 − ω∗‖2 + (η2L2 + 2ηµ− 1)‖ω0 − ω1‖2 . (136)

Note that if η ≤ 1
4L , as µ ≤ L, η2L2 + 2ηµ− 1 ≤ − 7

16 . Therefore, with c = 7
16 ,

‖ω2 − ω∗‖2 ≤ (1− ηµ)‖ω0 − ω∗‖2 − c‖ω0 − ω1‖2 (137)

= (1− ηµ)‖ω0 − ω∗‖2 − cη2‖v(ω0)‖2 . (138)

Finally, using (iii) and Lem. 2, we obtain:

‖ω2 − ω∗‖2 ≤ (1− ηµ− cη2γ2)‖ω0 − ω∗‖2 (139)

which yields the result.

Proposition 1. Under the assumptions of Thm. 6, the iterates of the proximal point method method (ωt)t with
η > 0 converge linearly to ω∗ the unique stationary point of v,

‖ωt − ω∗‖2 ≤
(

1− 2ηµ+ η2γ2

1 + 2ηµ+ η2γ2

)t
‖ω0 − ω∗‖2 ∀t ≥ 0 . (140)

Proof. To proof this convergence result, we upper bound the singular values of the proximal point operator Pη.
As v is monotone, by Lem. 8, the eigenvalues of ∇v have all non-negative real parts everywhere. As in the proof
of Lem. 1, ω 7→ ω + ηv(ω) is continuously differentiable and has a non-singular differential at every ω0 ∈ Rd. By
the inverse function theorem, ω 7→ ω + ηv(ω) has a continuously differentiable inverse in a neighborhood of ω0.
Its inverse is exactly Pη and it also satisfies

∇Pη(ω0) = (Id + η∇v(ω0))−1 . (141)

The singular values ∇Pη(ω0) are the eigenvalues of (∇Pη(ω0))T (∇Pη(ω0)). The latter is equal to:

(∇Pη(ω0))T (∇Pη(ω0)) =
(
Id + η∇v(ω0) + η(∇v(ω0))T + η2(∇v(ω0))T (∇v(ω0))

)−1
. (142)

Now, let λ ∈ R be an eigenvalue of (∇Pη(ω0))T (∇Pη(ω0)) and let X 6= 0 be one of its associated eigenvectors. As
∇Pη(ω0) is non-singular, λ 6= 0 and applying the previous equation yields:

λ−1X =
(
Id + η∇v(ω0) + η(∇v(ω0))T + η2(∇v(ω0))T (∇v(ω0))

)
X . (143)

Finally, multiply this equation on the left by XT :

λ−1‖X‖2 = ‖X‖2 + ηXT (∇v(ω0) + (∇v(ω0))T )X + η2‖∇v(ω0))X‖2 . (144)

Applying the first part of Lem. 8 yields

λ−1‖X‖2 ≥ (1 + 2ηµ+ η2γ2)‖X‖2 . (145)

Hence, as X 6= 0, we have proven that,

σmax(∇v(ω0)) ≤ (1 + 2ηµ+ η2γ2)−1 . (146)

This implies that, for all ω, ω′ ∈ Rd,

‖Pη(ω)− Pη(ω′)‖2 =

∥∥∥∥∫ 1

0

∇v(ω′ + t(ω − ω′))(ω − ω′)
∥∥∥∥2

(147)

≤ (1 + 2ηµ+ η2γ2)−1‖ω − ω′‖2 . (148)

Hence, as Pη(ω∗) = ω∗, taking ω′ = ω∗ gives the desired global convergence rate.
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Now let us prove the result Thm. 7 regarding Optimistic method.

Theorem 7. Under the same assumptions as in Thm. 6, for η ≤ (4L)−1, the iterates (ωt)t of (OG) converge
linearly to ω∗ as, for all t ≥ 0,

‖ωt − ω∗‖22 ≤ 2
(
1− ηµ− 1

8η
2γ2
)t+1 ‖ω0 − ω∗‖22 .

Proof. For the beginning of this proof we follow the proof of Gidel et al. (2019a, Theorem 1) using their notation:

ω′t = ωt − ηv(ω′t−1) (149)

ωt+1 = ωt − ηv(ω′t) (150)

Note that, with this notation, summing the two upates steps, we recover (OG)

ω′t+1 = ω′t − 2ηv(ω′t) + ηv(ω′t−1) . (151)

Let us now recall Gidel et al. (2019a, Equation 88) for a constant step-size ηt = η,

‖ωt+1 − ω∗‖22 ≤ (1− ηµ) ‖ωt − ω∗‖22 + η2L2(4η2L2‖ω′t−1 − ω′t−2‖22 − ‖ω′t−1 − ω′t‖22)

− (1− 2ηµ− 4η2L2)‖ω′t − ωt‖22 (152)

we refer the reader to the proof of Gidel et al. (2019a, Theorem 1) for the details on how to get to this equation.
Thus with η ≤ (4L)−1, using the update rule ω′t = ωt − ηv(ω′t−1), we get,

(1− 2ηtµ− 4η2
tL

2)‖ω′t − ωt‖22 ≥
1

4
‖ω′t − ωt‖22 =

η2

4
‖v(ω′t−1)‖22 ≥

η2γ2

4
‖ω′t−1 − ω∗‖22 (153)

where for the last inequality we used that σmin(∇v) ≥ γ and Lemma 2. Using Young’s inequality, the update rule
and the Lipchitzness of v, we get that,

2‖ω′t−1 − ω∗‖22 ≥ ‖ωt − ω∗‖22 − 2‖ω′t−1 − ωt‖22 (154)

= ‖ωt − ω∗‖22 − 2η2‖v(ω′t−1)− v(ω′t−2)‖22 (155)

≥ ‖ωt − ω∗‖22 − 2η2L2‖ω′t−1 − ω′t−2‖22 (156)

Thus combining (152), (153) and (156), we get with a constant step-size η ≤ (4L)−1,

‖ωt+1 − ω∗‖22 ≤
(

1− ηµ− η2γ2

8

)
‖ωt − ω∗‖22 + η2L2

(
(4η2L2 + η2γ2

4 )‖ω′t−1 − ω′t−2‖22 − ‖ω′t−1 − ω′t‖22
)

This leads to,

‖ωt+1 − ω∗‖22 + η2L2‖ω′t−1 − ω′t‖22 ≤
(

1− ηµ− η2γ2

8

)
‖ωt − ω∗‖22 + η2(4L2 + γ2

4 )η2L2‖ω′t−1 − ω′t−2‖22 (157)

In order to get the theorem statement we need a rate on ω′t. We first unroll this geometric decrease and notice
that

‖ω′t − ω∗‖22 ≤ 2‖ωt+1 − ω∗‖22 + 2‖ω′t − ωt+1‖22 (158)

= 2‖ωt+1 − ω∗‖22 + 2η2‖v(ω′t−1)− v(ω′t)‖22 (159)

= 2‖ωt+1 − ω∗‖22 + 2η2L2‖ω′t−1 − ω′t‖22 (160)

to get (using the fact that ω′0 = ω′−1),

‖ω′t − ω∗‖22 ≤ 2‖ωt+1 − ω∗‖22 + 2η2L2‖ω′t−1 − ω′t‖22 (161)

≤ 2 max
{

1− ηµ− η2γ2

8L2
, 4η2L2 +

η2γ2

4

}t+1

‖ω0 − ω∗‖22 . (162)

With η ≤ (4L)−1 we can use the fact that max(µ, γ) ≤ L to get,

1− ηµ− η2γ2

8
≥ 1− 1

4

(µ
L

+
γ2

32L2

)
≥ 3

4
− 1

32
≥ 1

4
+

1

64
≥ 4η2L2 +

η2γ2

4
(163)
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Thus,

max
{

1− ηµ− η2γ2

8
, 4η2L2 +

η2γ2

4

}
= 1− ηµ− η2γ2

8
, ∀η ≤ (4L)−1 (164)

leading to the statement of the theorem. Finally, for η = (4L)−1 that can be simplified into,

‖ω′t − ω∗‖22 ≤ 2 max
{

1− 1

4

(µ
L

+
γ2

32L2

)
,

1

4
+

γ2

64L2

}t+1

‖ω0 − ω∗‖22 . (165)

= 2
(

1− 1

4

(µ
L

+
γ2

32L2

))t+1

‖ω0 − ω∗‖22 (166)

F.3 Proof of §6.3: consensus optimization

Let us recall (CO) here,

ωt+1 = ωt − (αv(ωt) + β∇H(ωt)) . (CO)

where H is the squared norm of v. We prove a more detailed version Thm. 8.

Theorem 14. Let v : Rd → Rd be continuously differentiable such that (i) v is µ- strongly monotone for some
µ ≥ 0, (ii) σmin(∇v) ≥ γ for some γ > 0 (iii) H is L2

H Lipschitz-smooth. Then, for

α2 ≤ 1

2

(
αµ

LH
+
βγ2

2LH

)
,

and β ≤ (2LH)−1, the iterates of CO defined by (CO) satisfy,

H(ωt) ≤
(
1− αµ− 1

2βγ
2
)
H(ω0) . (167)

In particular, for

α =
µ+

√
µ2 + 2γ2

4LH
,

and β = (2LH)−1,

H(ωt) ≤
(

1− µ2

2LH
− γ2

2L2
H

(
1 +

µ

γ

))
H(ω0) . (168)

Proof. As H is L2
H Lipschitz smooth, we have,

H(ωt+1)−H(ωt) ≤ ∇H(ωt)
T (ωt+1 − ωt) +

L2
H

2
‖ωt+1 − ωt‖2 .

Then, replacing ωt+1 − ωt by its expression and using Young’s inequality,

H(ωt+1)−H(ωt) ≤ −α∇H(ωt)
T v(ωt)− β‖∇H(ωt)‖2 + L2

Hα
2‖v(ωt)‖2 + L2

Hβ
2‖∇H(ωt)‖2 .

Note that, crucially, ∇H(ωt) = ∇v(ωt)
T v(ωt). Using the first part of Lem. 8 to introduce µ and assuming

β ≤ (2L2
H)−1,

H(ωt+1)−H(ωt) ≤ −αµ‖v(ωt)‖2 −
β

2
‖∇H(ωt)‖2 + L2

Hα
2‖v(ωt)‖2 .

Finally, using Lem. 8 to introduce γ,

H(ωt+1)−H(ωt) ≤ −αµ‖v(ωt)‖2 −
βγ2

2
‖v(ωt)‖2 + L2

Hα
2‖v(ωt)‖2

= −2

(
αµ+

βγ2

2
− L2

Hα
2

)
H(ωt) .
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Hence, if

α2 ≤ 1

2

(
αµ

L2
H

+
βγ2

2L2
H

)
, (169)

then the decrease of H becomes,
H(ωt) ≤

(
1− αµ− 1

2βγ
2
)
H(ω0) .

Now, note that (169) is a second-order polynomial condition on α, so we can compute the biggest α which satisfies
this condition. This yields,

α =

µ
2 +

√
µ2

4 + L2
Hβγ

2

2L2
H

=
µ+

√
µ2 + 2γ2

4L2
H

,

where in the second line we defined β = (2L2
H)−1. Then the rate becomes,

αµ+
1

2
βγ2 =

µ2

4L2
H

+
µ
√
µ2 + 2γ2

4L2
H

+
γ2

4L2
H

≥ µ2

4L2
H

+
µ2

4
√

2L2
H

+
µγ

4L2
H

+
γ2

4L2
H

,

where we use Young’s inequality:
√

2
√
a+ b ≥

√
a+
√
b. Noting that 1

2 (1 + 1√
2
) ≥ 1 yields the result.

Remark 1. A common convergence result for the gradient method for variational inequalities problem – see

Nesterov and Scrimali (2006) for instance – is that the iterates convergence as O

((
1− µ2

L2

)t)
where µ is the

monotonicty constant of v and L its Lipschitz constant. However, this rate is not optimal, and also not satisfying
as it does not recover the convergence rate of the gradient method for strongly convex optimization. One way to
remedy this situation is to use the co-coercivity or inverse strong monotonicity assumption:

`(v(ω)− v(ω′))T (ω − ω′) ≥ ‖v(ω)− v(ω′)‖2 ∀ω, ω′ .

This yields a convergence rate of O
((

1− µ
`

)t)
which can be significantly better than the former since ` can take

all the values of [L,L2/µ] (Facchinei and Pang, 2003, §12.1.1). On one hand, if v is the gradient of a convex
function, ` = L and so we recover the standard rate in this case. On the other, one can consider for example the

operator v(w) = Aw with A =

(
a −b
b a

)
with a > 0 and b 6= 0 for which µ = a, L =

√
a2 + b2 anf ` = µ/L2.

G The p-SCLI framework for game optimization

The approach we use to prove our lower bounds comes from Arjevani et al. (2016). Though their whole framework
was developed for convex optimization, a careful reading of their proof shows that most of their results carry on
to games, at least those in their first three sections. However, we work only in the restricted setting of 1-SCLI
and so we actually rely on a very small subset of their results, more exactly two of them.

The first one is Thm. 2 and is crucially used in the derivation of our lower bounds. We state it again for clarity.

Theorem 2 (Arjevani et al. (2016)). For all v ∈ Vd, for almost every6 initialization point ω0 ∈ Rd, if (ωt)t are
the iterates of FN starting from ω0,

‖ωt − ω∗‖ ≥ Ω(ρ(∇FN )t‖ω0 − ω∗‖).

Actually, as FN : Rd → Rd is an affine operator and ω∗ is one of its fixed point, this theorem is only a reformulation
of Arjevani et al. (2016, Lemma 10), which is a standard result in linear algebra. So we actually do not rely on
their most advanced results which were proven only for convex optimization problems. For completeness, we
state this lemma below and show how to derive Thm. 2 from it.

6For any measure absolutely continuous w.r.t. the Lebesgue measure.
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Lemma 10 (Arjevani et al. (2016, Lemma 10)). Let A ∈ Rd×d. There exists c > 0, d ≥ m ≥ 1 integer and
r ∈ Rd, r 6= 0 such that for any u ∈ Rd such that uT r 6= 0, for sufficiently large t ≥ 1 one has:

‖Atu‖ ≥ ctm−1ρ(A)t‖u‖ . (170)

Proof of Thm. 2. FN is affine so it can be written as FN (ω) = ∇FNω + FN (0).

Moreover, as v(ω∗) = 0, FN (ω∗) = ω∗ +N (∇v)v(ω∗) = ω∗. Hence, for all ω ∈ Rd,

FN (ω)− ω∗ = FN (ω)− FN (ω∗) = ∇FN (ω − ω∗) . (171)

Therefore, for t ≥ 0,
‖ωt − w∗‖ = ‖(∇FN )t(ω − ω∗)‖ . (172)

Finally, apply the lemma above to A = ∇FN . The condition (ω0 − ω∗)T r 6= 0 is not satisfied only on an affine
subset of dimension 1, which is of measure zero for any measure absolutely continuous w.r.t. the Lebesgue measure.
Hence for almost every ω0 ∈ Rd w.r.t. to such measure, (ω0 − ω∗)T r 6= 0 and so one has, for t ≥ 1 large enough,

‖ωt − w∗‖ ≥ ctm−1ρ(∇FN )t‖ωt − ω∗‖ (173)

≥ cρ(∇FN )t‖ωt − ω∗‖ , (174)

which is the desired result.

The other result we use is more anecdotal : it is their consistency condition, which is a necessary condition for an
p-SCLI method to converge to a stationary point of the gradient dynamics. Indeed, general 1-SCLI as defined in
Arjevani et al. (2016) are given not by one but by two mappings C,N : Rd×d → Rd×d and the update rule is

FN (ω) = C(∇v)w +N (∇v)v(0) ∀ω ∈ Rd . (175)

However, they show in Arjevani et al. (2016, Thm. 5) that, for a method to converge to a stationary point of v,
at least for convex problems, that is to say symmetric positive semi-definite ∇v, C and N need to satisfy:

Id − C(∇v) = −N (∇v)∇v . (176)

If C and N are polynomials, this equality for all symmetric positive semi-definite ∇v implies the equality on all
matrices. Injecting this result in (175) yields the definition of 1-SCLI we used.

H Proofs of lower bounds

The class of methods we consider, that is to say the methods whose coefficient mappings N are any polynomial
of degree at most k − 1, is very general. It includes:

- the k′-extrapolation methods Fk′,η for k′ ≤ k as defined by (5).

- extrapolation methods with different step sizes for each extrapolation:

ω 7−→ ϕη1,ω ◦ ϕη2,ω ◦ · · · ◦ ϕηk,ω(ω) , (177)

- cyclic Richardson iterations (Opfer and Schober, 1984): methods whose update is composed of successive
gradient steps with possibly different step sizes for each

ω 7−→ Fη1 ◦ Fη2 ◦ · · · ◦ Fηk(ω) , (178)

and any combination of these with at most k composed gradient evaluations.

The lemma below shows how k-extrapolation algorithms fit into the definition of 1-SCLI:

Lemma 11. For a k-extrapolation method, N (∇v) = −η
∑k−1
j=0 (−η∇v)k.
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Proof. This result is a direct consequence of Lem. 6. For ω ∈ Rd, one gets, by the chain rule,

∇Fη,k(ω) = ∇zϕkω(ω) +∇ωϕkω(ω) (179)

= (−η∇v)k +

k−1∑
j=0

(−η∇v)j (180)

=

k∑
j=0

(−η∇v)j . (181)

as ∇v is constant. Hence, as expected, Fη,k is linear so write that, for all ω ∈ Rd,

Fη,k(ω) = ∇Fη,kω + b . (182)

If v has a stationary point ω∗, evaluating at ω∗ yields

ω∗ =

k∑
j=0

(−η∇v)jω∗ + b . (183)

Using that v(ω∗) = 0 and so (∇v)ω∗ = −v(0), one gets that

b = −η
k∑
j=1

(−η∇v)j−1v(0) , (184)

and so

Fη,k(ω) = ω − η
k∑
j=1

(−η∇v)j−1v(ω) , (185)

which yields the result for affine vector fields with a stationary point. In particular it holds for vector fields such
that ∇v is non-singular. As the previous equality is continuous in ∇v, by density of non-singular matrices, the
result holds for all affine vector fields.

Theorem 5. Let 0 < µ, γ < L. (i) If d − 2 ≥ k ≥ 3, there exists v ∈ Vd with a symmetric positive Jacobian

whose spectrum is in [µ,L], such that for any N real polynomial of degree at most k − 1, ρ(FN ) ≥ 1− 4k3

π
µ
L .

(ii) If d/2 − 2 ≥ k/2 ≥ 3 and d is even, there exists v ∈ Vd L-Lipschitz with minλ∈Sp∇v |λ| = σmin(∇v) ≥ γ
corresponding to a bilinear game of Example 1 with m = d/2, such that, for any N real polynomial of degree at

most k − 1, ρ(FN ) ≥ 1− k3

2π
γ2

L2 .

To ease the presentation of the proof of the theorem, we rely on several lemmas. We first prove (i) and (ii) will
follow as a consequence.

In the following, we denote by Rk−1[X] the set of real polynomials of degree at most k − 1.

Lemma 12. For, v ∈ Vd,

min
N∈Rk−1[X]

1

2
ρ(FN )2 = min

a0,...,ak−1∈R
max

λ∈Sp∇v

1

2
|1 +

k−1∑
l=0

alλ
l+1|2 . (186)

Proof. Recall the definition of FN , which is affine by assumption,

∀ω ∈ Rd, FN (ω) = w +N (∇v)v(ω) . (187)

Then ∇FN = Id +N (∇v)∇v. As N is a polynomial, by the spectral mapping theorem (Thm. 11),

Sp∇FN = {1 +N (λ)λ | λ ∈ Sp∇v} , (188)

which yields the result.
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Lemma 13. Assume that Sp∇v = {λ1, . . . , λm} ⊂ R. Then (186) can be lower bounded by the value of the
following problem:

max

m∑
j=1

νj(ξj −
1

2
ξ2
j )

s.t. νj ≥ 0, ξj ∈ R, ∀1 ≤ j ≤ m
m∑
j=1

νjξjλ
l
j = 0, ∀1 ≤ l ≤ k

m∑
j=1

νj = 1

(189)

Proof. The right-hand side of (186) can be written as a constrained optimization problem as follows:

min
t,a0,...,ak−1,z1,...,zm∈R

t

s.t. t ≥ 1

2
z2
j , ∀ 1 ≤ j ≤ m

zj = 1 +

k−1∑
l=0

alλ
l+1
j , ∀ 1 ≤ j ≤ m.

(190)

By weak duality, see Boyd and Vandenberghe (2004) for instance, we can lower bound the value of this problem
by the value of its dual. So let us write the Lagrangian of this problem:

L(t, a0, . . . , ak−1, z1, . . . , zm, ν1, . . . , νm, χ1, . . . , χm)

= t+

m∑
j=0

νj(
1

2
z2
j − t) + χj(1 +

k−1∑
l=0

alλ
l+1
j − zj) .

(191)

The Lagrangian is convex and quadratic so its minimum with respect to t, a0, . . . , ak−1, z1, . . . , zm is characterized
by the first order condition. Moreover, if there is no solution to the first order condition, its minimum is −∞ (see
for instance Boyd and Vandenberghe (2004, Example 4.5)).

One has that, for any 1 ≤ j ≤ m and 0 ≤ l ≤ k − 1,

∂tL = 1−
m∑
j=0

νj (192)

∂alL =

m∑
j=0

χjλ
l+1
j (193)

∂zjL = νjzj − χj . (194)

Setting these quantities to zero yields the following dual problem:

max

m∑
j=1, νj 6=0

χj −
1

2νj
χ2
j

s.t. νj ≥ 0, χj ∈ R, ∀1 ≤ j ≤ m
m∑
j=1

χjλ
l
j = 0, ∀1 ≤ l ≤ k

νj = 0 =⇒ χj = 0
m∑
j=1

νj = 1

(195)
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Taking νjξj = χj yields the result:

max

m∑
j=1

νj(ξj −
1

2
ξ2
j )

s.t. νj ≥ 0, ξj ∈ R, ∀1 ≤ j ≤ m
m∑
j=1

νjξjλ
l
j = 0, ∀1 ≤ l ≤ k

m∑
j=1

νj = 1 .

(196)

The next lemma concerns Vandermonde matrices and Lagrange polynomials.

Lemma 14. Let λ1, . . . , λd be distinct reals. Denote the Vandermonde matrix by

V (λ1, . . . , λd) =


1 λ1 λ2

1 . . . λd−1
1

1 λ2 λ2
2 . . . λd−1

2
...

...
...

...

1 λ1 λ2
1 . . . λd−1

1

 . (197)

Then

V (λ1, . . . , λd)
−1 =


L

(0)
1 L

(0)
2 . . . L

(0)
d

L
(1)
1 L

(1)
2 . . . L

(1)
d

...
...

...

L
(d−1)
1 L

(d−1)
2 . . . L

(d−1)
d

 (198)

where L1, L2, . . . , Ld are the Lagrange interpolation polynomials associated to λ1, . . . , λd and Lj =
∑d−1
l=0 L

(l)
j X

l

for 1 ≤ j ≤ d.

A proof of this result can be found at Atkinson (1989, Theorem 3.1).

The next lemma is the last one before we finally prove the theorem. Recall that in Thm. 5 we assume that
k + 1 ≤ d.

Lemma 15. Assume that Sp∇v = {λ1, . . . , λk+1} where λ1, . . . , λk+1 are distinct non-zero reals. Then the
problem of (186) is lower bounded by

1

2

 1−
∑k
j=1

λk+1

λj
Lj(λk+1)

1 +
∑k
j=1 |

λk+1

λj
Lj(λk+1)|

2

, (199)

where L1, . . . , Lk are the Lagrange interpolation polynomials associated to λ1, . . . , λk.

Proof. To prove this lemma, we start from the result of Lem. 13 and we provide feasible (νj)j and (ξj)j . First,
any feasible (νj)j and (ξj)j must satisfy the k constraints involving the powers of the eigenvalues, which can be
rewritten as:

V (λ1, . . . , λk)T


ν1ξ1λ1

ν2ξ2λ2

...
νkξkλk

 = −νk+1ξk+1


λk+1

λ2
k+1

. . .
λkk+1

 . (200)
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Using the previous lemma yields, for 1 ≤ j ≤ k,

νjξj = −νk+1ξk+1
1

λj

(
L

(0)
j L

(1)
j . . . L

(k−1)
j

)
λk+1

λ2
k+1

. . .
λkk+1

 (201)

= −νk+1ξk+1
λk+1

λj
Lj(λk+1) . (202)

Hence the problem can be rewritten only in terms of the (νj)j and ξk+1. Let cj = λk+1

λj
Lj(λk+1). The objective

becomes:
m∑
j=1

νj

(
ξj −

1

2
ξ2
j

)
= νk+1ξk+1

1−
k∑
j=1

cj

− 1

2
νk+1ξ

2
k+1

1 +

k∑
j=0

νk+1

νj
c2j

 . (203)

Choosing ξk+1 =
1−

∑k
j=1 cj

1+
∑k
j=0

νk+1
νj

c2j
to maximize this quadratic yields:

m∑
j=1

νj

(
ξj −

1

2
ξ2
j

)
=

1

2
νk+1

(
1−

∑k
j=1 cj

)2

1 +
∑k
j=0

νk+1

νj
c2j
. (204)

Finally take νj =
|cj |

1+
∑k
j=1 |cj |

for j ≤ k and νk+1 = 1
1+

∑k
j=1 |cj |

which satisfy the hypotheses of the problem of

Lem. 13. With the feasible (νj)j and (ξj)j defined this way, the value of the objective is

1

2

(
1−

∑k
j=1 cj

1 +
∑k
j=1 |cj |

)2

, (205)

which is the desired result.

We finally prove (i) of Thm. 5.

Proof of (i) of Thm. 5. To prove the theorem, we build on the result of Lem. 15. We have to choose λ1, . . . , λk+1 ∈
[µ,L] positive distinct such that (199) is big. One could try to distribute the eigenvalues uniformly across the
interval but this leads to a lower bound which decreases exponentially in k. To make things a bit better, we use
Chebyshev points of the second kind studied by Salzer (1971). However we will actually refer to the more recent
presentation of Berrut and Trefethen (2004).

For now, assume that k is even and so k ≥ 4. We will only use that d− 1 ≥ k (and not that d− 2 ≥ k). Define,
for 1 ≤ j ≤ k, λj = µ+L

2 − L−µ
2 cos j−1

k−1π. Using the barycentric formula of Berrut and Trefethen (2004, Eq. 4.2),
the polynomial which interpolates f1, . . . , fk at the points λ1, . . . , λk can be written as:

P (X) =

∑k
j=1

wj
X−λj fj∑k

j=1
wj

X−λj

, (206)

where

wj =

{
(−1)j−1 if 2 ≤ j ≤ k − 1
1
2 (−1)j−1 if j ∈ {1, k} .

(207)

Define Z(X) =
∑k
j=1

wj
X−λj .

Now,
∑k
j=1

λk+1

λj
Lj(λk+1) can be seen as the polynomial interpolating λk+1

λ1
, . . . , λk+1

λk
at the points λ1, . . . , λj

evaluated at λk+1. Hence, using the barycentric formula,

k∑
j=1

λk+1

λj
Lj(λk+1) =

1

Z(λk+1)

k∑
j=1

wj
λk+1 − λj

λk+1

λj
. (208)
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Similarly,
∑k
j=1 |

λk+1

λj
Lj(λk+1)| can be seen as the polynomial interpolating

|λk+1

λ1
| sign(L1(λk+1)), . . . , |λk+1

λk
| sign(Lk(λk+1)) at the points λ1, . . . , λj evaluated at λk+1. However,

from Berrut and Trefethen (2004, Section 3),

Lj(λk+1) =

 k∏
j=1

(λk+1 − λj)

 wj
λk+1 − λj

, (209)

and by Berrut and Trefethen (2004, Eq. 4.1),

1 =

 k∏
j=1

(λk+1 − λj)

Z(λk+1) . (210)

Hence

sign(Lj(λk+1)) = signZ(λk+1) sign

(
wj

λk+1 − λj

)
. (211)

Therefore, using the barycentric formula again,

k∑
j=1

λk+1

λj
|Lj(λk+1)| = 1

|Z(λk+1)|

k∑
j=1

∣∣∣∣ wj
λk+1 − λj

∣∣∣∣ λk+1

λj
. (212)

Hence, (199) becomes:

1

2

 1−
∑k
j=1

λk+1

λj
Lj(λk+1)

1 +
∑k
j=1 |

λk+1

λj
Lj(λk+1)|

2

(213)

=
1

2

 1− 1
Z(λk+1)

∑k
j=1

wj
λk+1−λj

λk+1

λj

1 + 1
|Z(λk+1)|

∑k
j=1

∣∣∣ wj
λk+1−λj

∣∣∣ λk+1

λj

2

(214)

=
1

2

1−
1

|Z(λk+1)|
∑k
j=1

∣∣∣ wj
λk+1−λj

∣∣∣ λk+1

λj

(
1 + signZ(λk+1) sign

(
wj

λk+1−λj

))
1 + 1

|Z(λk+1)|
∑k
j=1

∣∣∣ wj
λk+1−λj

∣∣∣ λk+1

λj

2

. (215)

Now take any λk+1 such that λ1 < λk+1 < λ2. Then, from (210), signZ(λk+1) = (−1)k+1 = −1 as we assume
that k is even. By definition of the coefficients wj , sign w1

λk+1−λ1
= +1. Hence 1 + signZ(λk+1) sign w1

λk+1−λ1
= 0.

Similarly, sign w2

λk+1−λ2
= +1 and so 1 + signZ(λk+1) sign w2

λk+1−λ2
= 0 too7.

As the quantity inside the parentheses of (215) is non-negative, we can focus on lower bounding it. Using the

7We could do without this, but it is free and gives slightly better constants.
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considerations on signs we get:

1
|Z(λk+1)|

∑k
j=1

∣∣∣ wj
λk+1−λj

∣∣∣ λk+1

λj

(
1 + signZ(λk+1) sign

(
wj

λk+1−λj

))
1 + 1

|Z(λk+1)|
∑k
j=1

∣∣∣ wj
λk+1−λj

∣∣∣ λk+1

λj

(216)

=

1
|Z(λk+1)|

∑k
j=3

∣∣∣ wj
λk+1−λj

∣∣∣ λk+1

λj

(
1 + signZ(λk+1) sign

(
wj

λk+1−λj

))
1 + 1

|Z(λk+1)|
∑k
j=1

∣∣∣ wj
λk+1−λj

∣∣∣ λk+1

λj

(217)

≤ 2

∑k
j=3

∣∣∣ 1
λk+1−λj

∣∣∣ λk+1

λj

|Z(λk+1)|+
∑k
j=1

∣∣∣ wj
λk+1−λj

∣∣∣ λk+1

λj

(218)

≤ 2

∑k
j=3

∣∣∣ 1
λk+1−λj

∣∣∣ λk+1

λj

1
2

∣∣∣ 1
λk+1−λ1

∣∣∣ λk+1

λ1

(219)

≤ 2
(k − 2)

∣∣∣ 1
λk+1−λ3

∣∣∣ λk+1

λ3

1
2

∣∣∣ 1
λk+1−λ1

∣∣∣ λk+1

λ1

(220)

(221)

where we used that, for j ≥ 3,
∣∣∣ 1
λk+1−λj

∣∣∣ λk+1

λj
≤
∣∣∣ 1
λk+1−λ3

∣∣∣ λk+1

λ3
as λ1 < λk+1 < λ2 < λ3 < · · · < λk. Now,

recalling that λ1 = µ, and using that λ1 < λk+1 < λ2 < λ3 for the inequality,

2
(k − 2)

∣∣∣ 1
λk+1−λ3

∣∣∣ λk+1

λ3

1
2

∣∣∣ 1
λk+1−λ1

∣∣∣ λk+1

λ1

= 4(k − 2)
µ

λ3

|λk+1 − λ1|
|λk+1 − λ3|

(222)

≤ 4(k − 2)
µ

λ3

|λ2 − λ1|
|λ2 − λ3|

(223)

= 4(k − 2)
µ

1
2L(1− cos 2π

k−1 ) + 1
2µ(1 + cos 2π

k−1 )

| cos π
k−1 − 1|

| cos π
k−1 − cos 2π

k−1 |
(224)

≤ 8(k − 2)
µ

L(1− cos π
k−1 )

| cos π
k−1 − 1|

| cos π
k−1 − cos 2π

k−1 |
(225)

= 8(k − 2)
µ

L

1

| cos π
k−1 − cos 2π

k−1 |
(226)

by definition of the interpolation points. Now, for k ≥ 4, the sinus is non-negative on [ π
k−1 ,

2π
k−1 ] and reaches its

minimum at π
k−1 . Hence,

∣∣∣∣cos
π

k − 1
− cos

2π

k − 1

∣∣∣∣ =

∣∣∣∣∣
∫ 2π/(k−1)

π/(k−1)

sin tdt

∣∣∣∣∣ (227)

=

∫ 2π/(k−1)

π/(k−1)

sin tdt (228)

≥ π

k − 1
sin

π

k − 1
(229)

≥ 2
π

(k − 1)2
(230)
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as 0 ≥ π
k−1 ≥

π
2 . Putting everything together yields,

1

2

 1−
∑k
j=1

λk+1

λj
Lj(λk+1)

1 +
∑k
j=1 |

λk+1

λj
Lj(λk+1)|

2

≥ 1

2

(
1− 4(k − 1)2(k − 2)

π

µ

L

)2

(231)

≥ 1

2

(
1− 4(k − 1)3)

π

µ

L

)2

, (232)

which yields the desired result by the definition of the problem of (186).

The lower bound holds for any v such that Sp∇v = {λ1, . . . , λk+1}. As {λ1, . . . , λk+1} ⊂ [µ,L], one can
choose v of the form v = ∇f where f : Rd → R is a µ-strongly convex and L-smooth quadratic function with
Sp∇2f = {λ1, . . . , λk+1}.

Now, we tackle the case k odd, with k ≥ 3 and d− 1 ≥ k + 1. Note that if N is a real polynomial of degree at
most k − 1, it is also a polynomial of degree at most (k + 1)− 1. Applying the result above yields that there
exists v ∈ Vd with the desired properties such that,

ρ(FN ) ≥ 1− k3

2π

γ2

L2
. (233)

Hence, (i) holds for any d− 2 ≥ k ≥ 3.

Then, (ii) is essentially a corollary of (i).

Proof of (ii) of Thm. 5. For a square zero-sum two player game, the Jacobian of the vector field can be written
as,

∇v =

(
0m A
−AT 0m

)
(234)

where A ∈ Rm×m. By Lem. 3,

Sp∇v = {i
√
λ | λ ∈ SpAAT } ∪ {−i

√
λ | λ ∈ SpAAT } . (235)

Using Lem. 12, one gets that:

min
N∈Rk−1[X]

1

2
ρ(FN )2 = min

a0,...,ak−1∈R
max

λ∈SpAAT

1

2
max

∣∣∣∣∣1 +

k−1∑
l=0

al(i
√
λ)l+1

∣∣∣∣∣
2

,

∣∣∣∣∣1 +

k−1∑
l=0

al(−i
√
λ)l+1

∣∣∣∣∣
2
 (236)

≥ min
a0,...,ak−1∈R

max
λ∈SpAAT

1

2

∣∣∣∣∣1 +

k−1∑
l=0

al(i
√
λ)l+1

∣∣∣∣∣
2

(237)

≥ min
a0,...,ak−1∈R

max
λ∈SpAAT

1

2

(
<

(
1 +

k−1∑
l=0

al(i
√
λ)l+1

))2

(238)

= min
a0,...,ak−1∈R

max
λ∈SpAAT

1

2

1 +

bk/2c∑
l=1

a2l−1(−1)lλl

2

(239)

= min
a0,...,abk/2c−1∈R

max
λ∈SpAAT

1

2

1 +

bk/2c∑
l=1

al−1λ
l

2

. (240)

Using Lem. 12 again,

min
a0,...,abk/2c−1∈R

max
λ∈SpAAT

1

2

1 +

bk/2c∑
l=1

al−1λ
l

2

= min
N∈Rbk/2c−1[X]

1

2
ρ(F̃N )2 . (241)
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where F̃N is the 1-SCLI operator of N , as defined by (2) applied to the vector field ω 7→ AATω. Let S ∈ Rm×m
be a symmetric positive definite matrix given by (i) of this theorem applied with (µ,L) = (γ2, L2) and

⌊
k
2

⌋
instead of k and so such that SpS ⊂ [γ2, L2]. Now choose A ∈ Rm×m such that ATA = S, for instance by taking
a square root of S (see Lax (2007, Chapter 10)). Then,

min
N∈Rbk/2c−1[X]

1

2
ρ(F̃N )2 ≥ 1

2

(
1− k3

2π

µ

L

)
. (242)

Moreover, by computing ∇vT∇v and using that SpAAT = SpATA, one gets that minλ∈Sp∇v |λ| = σmin(∇v) =
σmin(A) ≥ γ and σmax(∇v) = σmax(A) ≤ L.

Remark 2. Interestingly, the examples we end up using have a spectrum similar to the one of the matrix Nesterov
uses in the proofs of his lower bounds in Nesterov (2004). The choice of the spectrum of the Jacobian of the
vector field was indeed the choice of interpolation points. Following Salzer (1971); Berrut and Trefethen (2004)
we used points distributed across the interval as a cosinus as it minimizes oscillations near the edge of the interval.
Therefore, this links the hardness Nesterov’s examples to the well-conditioning of families of interpolation points.

I Handling singularity

The following theorem is a way to use spectral techniques to obtain geometric convergence rates even if the
Jacobian of the vector field at the stationary point is singular. We only need to ensure that the vector field is
locally null along these directions of singularity.

In this subsection, for A ∈ Rm×p, KerA = {x ∈ Rp |Ax = 0} denotes the kernel (or the nullspace) of A.

The following theorem is actually a combination of the proof of Nagarajan and Kolter (2017, Thm. A.4), which
only proves asymptotic statibility in continuous time with no concern for the rate, and the classic Thm. 1.

Theorem 15. Consider h : Rm × Rp → Rm × Rp twice continuously differentiable vector field and write
h(θ, ϕ) = (hθ(θ, ϕ), hϕ(θ, ϕ)). Assume that (0, 0) is a stationary point, i.e. h(0, 0) = (0, 0) and that there exists
τ > 0 such that,

∀ϕ ∈ Rp ∩B(0, τ), h(0, ϕ) = (0, 0) . (243)

Let ρ∗ = ρ(∇θ(Id +hθ)(0, 0)) and define the iterates (θt, ϕt)t by

(θt+1, ϕt+1) = (θt, ϕt) + h(θt, ϕt) . (244)

Then, if ρ∗ < 1, for all ε > 0, there exists a neighborhood of (0, 0) such that for any initial point in this
neighborhood, the distance of the iterates (θt, ϕt)t to a stationary point of h decreases as O((ρ∗ + ε)t) . If v is
linear, this is satisfied with the whole space as a neighborhood for all ε > 0.

The following proof is inspired from the ones of Nagarajan and Kolter (2017, Thm. 4) and Gidel et al. (2019b,
Thm. 1).

Proof. Let J = ∇θh(0, 0) ∈ R(m+p)×m, Jθ = ∇θhθ(0, 0) ∈ Rm×m and Jϕ = ∇θhϕ(0, 0) ∈ Rp×m. Let ε > 0 and
suppose ρ∗ + ε < 1. By Bertsekas (1999, Prop. A.15) there exists a norm ‖.‖ on Rm such that the induced matrix
norm on Rm×m satisfy:

‖ Id +Jθ‖ ≤ ρ∗ +
ε

2
. (245)

On the contrary the norm on Rp can be chosen arbitrarily.

The extension of these norms to Rm×Rp is chosen such that ‖θ, ϕ‖ = ‖θ‖+‖ϕ‖ for simplicity (but this is without
loss of generality). In this proof, we denote the d-dimensional balls by Bd(x, r) = {y ∈ Rd | ‖x− y‖ ≤ r} with
x ∈ Rd, r > 0.

• Let J = ∇θh(0, 0) ∈ R(m+p)×m.

We first show that, for all η > 0 there exists τ ≥ δ > 0 such that,

∀(θ, ϕ) ∈ Bm+p((0, 0), δ) : ‖h(θ, ϕ)− Jθ‖ ≤ η‖θ‖ . (246)
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The interesting thing here is that we are completely getting rid of the dependence on ϕ, both in the
linearization and in the bound.

Let ϕ ∈ Bp(0, τ). Then, using that h(0, ϕ) = 0, the Taylor development of h(θ, ϕ) w.r.t. to θ yields:

h(θ, ϕ) = ∇θh(0, ϕ)θ +R(θ, ϕ) (247)

= Jθ + (∇θh(0, ϕ)−∇θh(0, 0))θ +R(θ, ϕ) . (248)

(249)

We now deal with the last two terms. First the rest R(θ, ϕ). As v is assumed to be continuously differentiable,
there exists c > 0 constant (which depends on τ) such that, for any θ ∈ Rm:

∀ϕ ∈ Bp(0, δ) : ‖R(θ, ϕ)‖ ≤ c‖θ‖2 , (250)

Hence, for θ ∈ B(0, η2c ), we get that:

∀ϕ ∈ Bp(0, δ) : ‖R(θ, ϕ)‖ ≤ η

2
‖θ‖ . (251)

Concerning the other term, by continuity, ∇θh(0, ϕ)−∇θh(0, 0) goes to zero as ϕ goes to zero. Hence, there
exists δ > 0, δ ≤ min(τ, η2c ) such that for any ϕ ∈ Bp(0, δ), ‖(∇θh(0, ϕ)−∇θh(0, 0))θ‖ ≤ η

2‖θ‖. Combining
the two bounds yields the desired result.

• We now apply the previous result with η = ε/2. We first examine what this means for (θt+1, ϕt+1) when
(θt, ϕt) is in Bm+p((0, 0), δ). However, the neighborhood Bm+p((0, 0), δ) is not necessarily stable, so we
will again restrict it afterwards. See the proof (Nagarajan and Kolter, 2017, Thm. 4) for a more detailed
discussion on this. Assume for now that (θt, ϕt) ∈ Bm+p((0, 0), δ). Then,

‖θt+1‖ = ‖(Id +Jθ)θt + (hθ(θt, ϕt)− Jθθt)‖ (252)

≤ ‖(Id +Jθ)θt‖+ ‖(hθ(θt, ϕt)− Jθθt)‖ (253)

≤ (ρ∗ + ε)‖θt‖ . (254)

(255)

Consider now the other coordinate ϕt+1, still under the assumption that (θt, ϕt) ∈ Bm+p((0, 0), δ). Then,

‖ϕt+1 − ϕt‖ = ‖Jϕθt + (hϕ(θt, ϕt)− Jϕθt)‖ (256)

≤ ‖Jϕθt‖+ ‖(hϕ(θt, ϕt)− Jϕθt)‖ (257)

≤ (‖Jϕ‖+
ε

2
)‖θt‖ . (258)

(259)

Now let V = {(θ, ϕ) ∈ Rm × Rp |(θ, ϕ) ∈ B((0, 0), δ), (1 +
‖Jϕ‖+ ε

2

1−ρ∗−ε )‖θ‖+ ‖ϕ‖ < δ} neighborhood of (0, 0).

We show, by induction, that if (θ0, ϕ0) ∈ V , then the iterates stay in Bm+p((0, 0), δ).

Assume (θ0, ϕ0) ∈ V . By construction, (θ0, ϕ0) ∈ Bm+p((0, 0), δ). Now assume that
(θ0, ϕ0), (θ1, ϕ1), . . . , (θt, ϕt) are in Bm+p((0, 0), δ) for some t ≥ 0. By what has been proven above, first,
‖θt+1‖ ≤ (ρ∗ + ε)t+1‖θ0‖ ≤ ‖θ0‖. Then,

‖ϕt+1‖ ≤ ‖ϕ0‖+

t∑
k=0

‖ϕk+1 − ϕk‖ (260)

≤ ‖ϕ0‖+ (‖Jϕ‖+
ε

2
)

t∑
k=0

‖θk‖ (261)

≤ ‖ϕ0‖+ (‖Jϕ‖+
ε

2
)

t∑
k=0

(ρ∗ + ε)k‖θ0‖ (262)

≤ ‖ϕ0‖+
‖Jϕ‖+ ε

2

1− ρ∗ − ε
‖θ0‖ (263)

(264)
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Hence, putting the two coordinates together,

‖(θt+1, ϕt+1)‖ = ‖θt+1‖+ ‖ϕt+1‖ (265)

≤ ‖ϕ0‖+

(
1 +
‖Jϕ‖+ ε

2

1− ρ∗ − ε

)
‖θ0‖ (266)

< δ . (267)

by definition of V . Hence, (θt+1, ϕt+1) ∈ Bm+p((0, 0), δ) which concludes the induction and the proof.

For the linear operator case, note that we can choose τ = +∞, c = 0, η = 0 and δ = +∞. Then we have
V = Rm × Rp.

By a linear base change, we get the more practical corollary:

Corollary 4. Let F : Rd → Rd be twice continuously differentiable and ω∗ ∈ Rd be a fixed point. Assume
that there exists δ > 0 such that for all ξ ∈ Ker(∇F (ω∗) − Id) ∩ B(0, δ), ω∗ + ξ is still a fixed point and that
Ker(∇F (ω∗)− Id)2 = Ker(∇F (ω∗)− Id). Define

ρ∗ = max{|λ| |λ ∈ Sp∇F (ω∗), λ 6= 1} , (268)

and assume ρ∗ < 1. Consider the iterates (ωt)t built from ω0 ∈ Rd as:

ωt+1 = F (ωt) ∀t ≥ 0 . (269)

Then, for all ε > 0, for any ω0 in a neighborhood of ω∗, the distance of the iterates (ωt)
t to fixed points of F

decreases in O((ρ∗ + ε)t).

Moreover, if F is linear, we can take this neighborhood to be the whole space and ε = 0.

Proof. We consider the spaces Ker(∇F (ω∗)− λId)mλ , λ ∈ Sp∇F (ω∗) where mλ denotes the multiplicity of the
eigenvalue λ as root of the characteristic polynomial of ∇F (ω∗). Then, we have,

Rd =
⊕

λ∈Sp∇F (ω∗)

Ker(∇F (ω∗)− λId)mλ ,

see Lax (2007, Chap. 6) for instance.

Now, using that Ker(∇F (ω∗) − Id)
2 = Ker(∇F (ω∗) − Id), we have that Ker(∇F (ω∗) − Id)

m1 =
Ker(∇F (ω∗) − Id). Hence, the whole space can be decomposed as Rd = Ker(∇F (ω∗) − Id) ⊕ E where
E =

⊕
λ∈Sp∇F (ω∗)\{1}Ker(∇F (ω∗) − λId)mλ . Note that E is stable by ∇F (ω∗) and so ρ(∇F (ω∗)|E) = ρ∗

as defined in the statement of the theorem. Denote by P ∈ Rd × Rd the (invertible) change of basis such that
Ker(∇F (ω∗)− Id) is sent on the subspace Rm × {0}p and E on the subspace {0}m × Rp, where m and p are the
respective dimensions of Ker(∇F (ω∗)− Id) and E. Then, we apply the previous theorem Thm. 15 with h defined
by,

(θ, ϕ) + h(θ, ϕ) = PF
(
ω∗ + P−1(θ, ϕ)

)
.

which concludes the proof.

Remark 3. In general the condition Ker(∇F (ω∗)− Id)2 = Ker(∇F (ω∗)− Id) will be equivalent to Ker∇v(ω∗)2 =
Ker∇v(ω∗) where v is the game vector field. We keep this remark informal but we prove this for extragradient
below as an example. Indeed, as seen with 1−SCLI in §3.3 with (2), ∇F (ω∗) is of the form Id +N (∇v(ω∗))∇v(ω∗)
where N is a polynomial. Hence, (∇F (ω∗)− Id)j = N (∇v(ω∗))j∇v(ω∗)j . Moreover, in practice, N (∇v(ω∗)) will
be chosen — e.g. by the choice of the step-size — to be non-singular. Hence, Ker(∇F (ω∗)− Id)j = Ker∇v(ω∗)j

and so Ker(∇F (ω∗)− Id)2 = Ker(∇F (ω∗)− Id) will be equivalent to Ker∇v(ω∗)2 = Ker∇v(ω∗).

We now prove a lemma concerning extragradient which as a first step before apply Cor. 4. We could have proven
this result for k-extrapolation methods but we focus on extragradient for simplicity.
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Lemma 16. Let F2,η : ω → ω − ηv(ω − ηv(ω)) denote the extragradient operator. Assume that v is L-Lipschitz.
Then, if 0 < η < 1

L , for ω∗ stationary point of v,

Ker(∇F2,η(ω∗)− Id) = Ker∇v(ω∗) ,

and
Ker(∇F2,η(ω∗)− Id)2 = Ker(∇F2,η(ω∗)− Id) ⇐⇒ Ker∇v(ω∗)2 = Ker∇v(ω∗) .

Proof. We have ∇F2,η(ω∗) = Id − η∇v(ω∗)(Id − η∇v(ω∗)) and so ∇F2,η(ω∗)− Id = −η∇v(ω∗)(Id − η∇v(ω∗)).
As ∇v(ω∗) and Id − η∇v(ω∗)) commute, for j ∈ {1, 2},

(∇F2,η(ω∗)− Id)j = (−η (Id − η∇v(ω∗)))
j ∇v(ω∗)j .

By the choice of η, η(Id − η∇v(ω∗)) is non-singular and so Ker(∇F2,η(ω∗)− Id)j = Ker∇v(ω∗)j which yields the
result.

The whole framework developed implies in particular that Thm. 4 actually also yields convergence guarantees for
extragradient on more general bilinear games than those considered in Example 2.

Example 4 (Bilinear game with potential singularity). A saddle-point problem of the form:

min
x∈Rm

max
y∈Rp

xTAy + bTx+ cT y (270)

with A ∈ Rm×p not null, b ∈ Rm, c ∈ Rp.
Corollary 5. Consider the bilinear game of Example 4. The iterates of extragradient with η = (4σmax(A))

converge globally to ω∗ at a linear rate of O
((

1− 1
64

σ̃min(A)2

σmax(A)2

)t)
where σ̃min(A) is the smallest non-zero singular

value of A.

Proof. Let ω∗ be a stationary point of the associated vector field v. Then, ∇v(ω∗) =

(
O A
−AT 0

)
which is

skew-symmetric. Note that if η = (4σmax(A))−1, then 0 < η < L where L is the Lipschitz constant of v.

We check that Ker∇v(ω∗)2 = Ker∇v(ω∗). Let X ∈ Rm+p such that ∇v(ω∗)2X = 0. As ∇v(ω∗) is skew-
symmetric, this is equivalent to ∇v(ω∗)T∇v(ω∗)X = 0 which implies that ‖∇v(ω∗)‖ = 0 which implies our claim.
By Lem. 16, this implies that Ker(∇F2,η(ω∗)− Id)2 = Ker(∇F2,η(ω∗)− Id). Moreover, if ξ ∈ Ker(∇F (ω∗)− Id)
then by Lem. 16, ξ ∈ Ker∇v(ω∗) and so v(ω∗ + ξ) = 0 too. Hence the hypothesises of Cor. 4 are satisfied. Then,
by our choice of η and Lem. 1,

ρ∗ = max{|λ| |λ ∈ Sp∇F2,η(ω∗), λ 6= 1}
= max{|1− ηλ(1− ηλ)| |λ ∈ Sp∇v(ω∗), λ 6= 0}
= max{|1− ηλ(1− ηλ)| |λ = ±iσ, σ2 ∈ SpAAT , σ 6= 0} ,

by a similar reasoning as Lem. 7 since SpAAT \ {0} = SpATA \ {0}.

The result is now a consequence of the proof of Thm. 4.

J Improvement of global rate

In this section we study experimentally the importance of the term η2γ2 in the global rate of Thm. 6. For this we
generate two player zero-sum random montone matrix games, that is to say saddle-point problems of the form

min
ω1∈Rd1

max
ω2∈Rd2

(
ω1 ω2

)( S1 A
−AT S2

)(
ω1

ω2

)
, (271)

where S1 and S2 are symmetric semi-definite positive. To generate a symmetric semi-definite positive matrix of
dimension m, we first draw independently m non-negative scalars λ1, . . . , λm according to the chi-squared law.
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(a) d1 = 450 and d2 = 50
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(b) d1 = 350 and d2 = 150
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(c) d1 = 250 and d2 = 250

Figure 2: We keep d1 + d2 = 500 fixed and vary the balance between the two players.

Then, we draw an orthogonal matrix O according to the uniform distribution over the orthogonal group. The
result is S = OT diag(λ1, . . . , λm)O. The coefficients of A are chosen independently according to a normal law
N (0, 1).

To study how the use of Tseng’s error bound improves the standard rate which uses the strong monotonicty
only, we compute, for each such matrix game, the ratio ηµ

ηµ+ 7
16η

2γ2 with η = (4L)−1 (with the same notations as

Thm. 6). This ratio lies between 0 and 1: if it close to 0, it means that η2γ2 is much bigger than ηµ so that our
new convergence rate improves the previous one a lot, while if its near 1, it means that η2γ2 is much smaller than
ηµ and so that our new result does not improve much.

We realize two sets of graphics, each time keeping a different parameter fixed. These histograms are constructed
from N = 500 samples.

What observe is that, as soon as none of the dimensions are too small, our new rate improves the previous one in
many situations. This is greatly amplified if d1 and d2 are similar.
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(a) d1 = 100 and d2 = 100
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(b) d1 = 100 and d2 = 200
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(c) d1 = 100 and d2 = 300
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(d) d1 = 100 and d2 = 400
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(e) d1 = 100 and d2 = 500

Figure 3: We keep d1 = 100 fixed and make d2 vary.
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