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A Deferred Proofs

Proof (Theorem 2.2). Since L̂ε0(gA) is an average of
m i.i.d random variables with expectation equal to
Lε0(gA) we may use Hoeffdingen’s inequality, yielding

P(x,y)∼D

[
L̂ε0(gA)− Lε0(gA) ≥ τ

]
≤ exp

(
−2mτ2) .

Note that |A| = exp(log |A|). Then, let us choose
τ =

√
log|A|
m and take an union bound over all A ∈ A,

leading to

P(x,y)∼D

[
L̂ε0(gA)− Lε0(gA) ≥

√
log |A|
m

]
≤ exp(− log |A|) .

Since f is (γ, ε,S)-compressible via g, then

∀x ∈ S : |`ε(f ; x, y)− `ε(gA; x, y)| ≤ γ ,

which implies that

L̂ε0(gA) ≤ L̂εγ(f) .

Combining these results we get that

Lε0(gA) ≤ L̂εγ(f) +O
(√

log |A|
m

)
with probability at least 1−exp(− log |A|) = 1−1/ |A|,
which we consider as high probability.

Proof (Lemma 3.2). Note that E[ŵi] = wi

pi
E[zi] = wi

thus E[ŵ] = w. Similarly, E[|ŵi|] =
∣∣∣wi

pi

∣∣∣E[zi] = |wi|
and since ŵi’s are independent, we get E[‖ŵ‖1] =
‖w‖1. This implies that

E
[
`ε(fŵ; x, y)

]
= E [〈ŵ,x〉 − ε ‖ŵ‖1]
= 〈w,x〉 − ε ‖w‖1 = `ε(fw; x, y) .

Now lets compute the variance of ŵi as

Var [ŵi] = E
[
ŵ2
i

]
− E [ŵi]2

= (wi/pi)2pi − w2
i = 1− pi

pi
w2
i .

The same calculation yields

Var [|ŵi|] = 1− pi
pi

w2
i .

The covariance between |ŵi| and ŵi is

Cov (|ŵi| , ŵi) = E [|ŵi|ŵi]− E[|ŵi|]E[ŵi]

= 1− pi
pi
|wi| · wi .

Now putting all together we get

Var [ŵixi − ε|ŵi|]
= x2

iVar[ŵi]− 2εxiCov(ŵi, |ŵi|) + ε2Var[|wi|2]

= 1− pi
pi

(
x2
iw

2
i − 2εxi|wi|wi + ε2w2

i

)
≤ w2

i

pi

(
x2
i + 2ε|xi|+ ε2)

= δγ2

(1 + ε)2 |wi|
(
x2
i + 2ε|xi|+ ε2) .

Since ŵi’s are independent, we get

Var [〈ŵ,x〉 − ε ‖ŵ‖1]

= Var
[

n∑
i=1

ŵixi − ε|ŵi|

]

=
n∑
i=1

Var [ŵixi − ε|ŵi|]

≤ δγ2

(1 + ε)2

n∑
i=1
|wi|

(
x2
i + 2ε|xi|+ ε2)

= δγ2

(1 + ε)2

(〈
|w|,x2〉+ 2ε 〈|u|, |c|〉+ ε2 ‖w‖1

)
≤ δγ2

(1 + ε)2

(
‖w‖1

∥∥x2∥∥
∞ + 2ε ‖w‖1 ‖x‖∞ + ε2 ‖w‖1

)
≤ δγ2

(1 + ε)2 (1 + 2ε+ ε2) = δγ2 ,

where x2 denotes the entry-wise raise to the power of
2. By Chebyshev’s inequality we get

P [|(〈ŵ,x〉 − ε ‖ŵ‖1)− 〈w,x〉 − ε ‖w‖1 | > γ] ≤ δ .
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On the other hand, the expected number of non-zero
entries in ŵ is given by

E [‖ŵ‖0] =
n∑
i=1

pi =
n∑
i=1

|wi|
δγ2 (1 + ε2) = (1 + ε)2

δγ2 .

Then, by Hoefdingen’s inequality the number of non-
zero entries in ŵ is less than O((logn)(1 + ε)2/δγ2)
with high probability.

Proof (Lemma 3.3). We start by bounding the error
incurred by clipping, that is

|`ε(fw; x, y)− `ε(fw′ ; x, y)|
≤ |〈w,x〉 − 〈w′,x〉|+ ε |‖w‖1 − ‖w

′‖1|
≤ |〈w−w′,x〉|+ ε ‖w−w′‖1
≤ ‖w−w′‖1 ‖x‖∞ + ε ‖w−w′‖1
≤ ‖w−w′‖1 (1 + ε)

≤ γ

4n(1 + ε)n(1 + ε) = γ/4 .

Similarly, the error incurred by discretizing w̃ is
bounded by∣∣`ε(fw̃; x, y)− `ε(fŵ; x, y)

∣∣ ≤ ‖w̃− ŵ‖1 (1 + ε)

≤ γ

2n(1 + ε)
n

2 (1 + ε)

= γ/4 .

By Lemma 3.2, we know that with probability at least
1− δ we have that∣∣`ε(fw̃; x, y)− `ε(fŵ; x, y)

∣∣ ≤ γ/2 .
Combining these three results yields

|`ε(fw; x, y)− `ε(fŵ;x, y)|
≤ |`ε(fw; x, y)− `ε(fw′ ; x, y)|

+
∣∣`ε(fw′ ; x, y)− `ε(fw̃; x, y)

∣∣
+
∣∣`ε(fw̃; x, y)− `ε(fŵ; x, y)

∣∣
≤ γ/4 + γ/2 + γ/4 ≤ γ

with probability at least 1− δ.

Proof (Theorem 3.4). Let A be the set of vectors with
at most O((logn)(1+ε)2/δγ2) non-zero entries, where
each entry is a multiple of 2γ/2n(1 + ε) between
−δγ2/(1 + ε)2 and δγ2/(1 + ε)2. Then, |A| = rq with

r = 2 δγ
2/(1 + ε)2

2γ/2n(1 + ε) = 4nδγ
(1 + ε) , q = (1 + ε)2

δγ2 .

Let ŵ be defined as in Lemma 3.3. Then, by Lemma
3.2, we have that Pŵ[ŵ ∈ A] ≤ 1 − δ. We define
G = {fŵ : ŵ ∈ A}. Note that the mapping from fw to

fŵ fails (i.e., ŵ /∈ A) with probability at most δ, thus
corollary 2.2.1 yields

Lε0(fŵ)

≤ L̂εγ(fw) +O


√√√√ (1 + ε)2 log(n) log

(
4nδγ
(1+ε)

)
δγ2m

+ δ

= L̂εγ(fw) + Õ
(√

(1 + ε)2

δγ2m

)
+ δ

with high probability. Then, we choose δ = ((1 +
ε)2/γ2m)1/3 which leads to

Lε0(fŵ) ≤ L̂εγ(fw) + Õ
((

(1 + ε)2

γ2m

)1/3)

with high probability.

Proof (Lemma 3.7). Let us first bound how much does
sparsifying w affects inner products, that is

|〈w,x〉 − 〈w′,x〉| ≤ ‖w−w′‖1 ‖x‖∞ ≤ ‖w−w′‖1 .

This distorts the adversarial margin as follows:

|`ε(fw; x, y)− `ε(fw′ ; x, y)|
≤ |〈w,x〉 − 〈w′,x〉|+ ε |‖w‖1 − ‖w

′‖1|
≤ ‖w−w′‖1 + ε ‖w−w′‖1 (triangle inequality)
= (1 + ε) ‖w−w′‖1

≤ (1 + ε) 1
4s ‖w‖1/2 (Lemma 3.6)

≤ (1 + ε) s4s ‖w‖1 (Definition 3.5)

= γ/2 . (Choice of s)

Similarly,∣∣`ε(fw′ ; x, y)− `ε(fŵ; x, y)
∣∣ ≤ (1 + ε) ‖w′ − ŵ‖1

≤ (1 + ε)s1
2

(
γ

s(1 + ε)

)
= γ/2 .

Putting all together, we get

|`ε(fw; x, y)− `ε(fŵ; x, y)|
≤ |`ε(fw; x, y)− `ε(fw′ ; x, y)|

+
∣∣`ε(fw′ ; x, y)− `ε(fŵ; x, y)

∣∣
≤ γ/2 + γ/2 = γ ,

which completes the proof.
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Proof (Theorem 3.8). Let A be the set of vectors with
at most s(1+ε)/2γ non-zero entries, where each entry
is a multiple of γ/s(1 + ε) between −1 and 1. Then,
|A| = rq with

r = 2
γ/s(1 + ε) = 2

γ2/2s(1 + ε)2 = 4s(1 + ε)2

γ2

and
q = s = s(1 + ε)/2γ .

Let us define the set

G = {fŵ : ŵ defined as in Lemma 3.7 with w ∈ Bn1,1}.

Then, by Lemma 3.7 we know that fw is (γ, ε,S)-
compressible via G, thus Theorem 2.2 yields

Lε0(fŵ) ≤ L̂εγ(fw) +O


√√√√2s(1 + ε) log

(
4s(1+ε)2

γ2

)
γm


= L̂εγ(fw) + Õ

(√
(1 + ε)s
γm

)

with high probability.

The following lemma allows us to quantify how much
error is incurred by perturbing the input of a layer, or
by switching the matrix W to a different one.
Lemma A.1. If φ is a 1-Lipschitz activation function,
then for any W , Ŵ the following inequalities hold∥∥∥φ(W>x)− φ(W> (x + η))

∥∥∥
∞
≤ ‖W ‖1,∞ ‖η‖∞ ,∥∥∥φ(W>x)− φ(Ŵ

>
x)
∥∥∥
∞
≤
∥∥∥W − Ŵ

∥∥∥
1,∞
‖x‖∞ .

Given this Lipschitz condition, proving this Lemma is
trivial. Nevertheless, we provide the proof for com-
pleteness.

Proof (Lemma A.1). Since φ is 1-Lipschitz, we have
that for any vector w of the same size as η, it holds

|φ(〈w,x〉)− φ(〈w,x + η〉)| ≤ |〈w,η〉| ≤ ‖w‖1 ‖η‖∞ .

This proves the first inequality of the lemma. Simi-
larly, for any w and ŵ it follows

|φ(〈w,x〉)− φ(〈ŵ,x〉)| ≤ |〈w− ŵ,x〉|
≤ ‖w− ŵ‖1 ‖x‖∞ ,

thus implying the second inequality.

Proof (Lemma 3.10). Since W is effectively joint
sparse, we can bound

∥∥W −W
∥∥

1,∞ as follows

∥∥W −W
∥∥

1,∞ ≤
1
s2
‖W ‖1,1 (Lemma 3.6)

≤ s2

s2
‖W ‖1,∞ . (Definition 3.9)

Similarly, since the remaining non-zero columnsW are
effectively sparse, we get∥∥∥W − W̃

∥∥∥
1,∞

= inf
X:‖X‖0,∞=s1

∥∥W −X
∥∥

1,∞

≤ 1
4s1

∥∥W∥∥
1/2,∞ (Lemma 3.6)

≤ s1

4s1

∥∥W∥∥
1,∞ . (Definition 3.5)

By the definition of Ŵ , we have that
∥∥∥W̃ − Ŵ

∥∥∥
1,∞
≤

γ/3. Combining all these statements, the choice of s1
and s2 (see Algorithm 1) yields∥∥∥W − Ŵ

∥∥∥
1,∞
≤
∥∥W −W

∥∥
1,∞

+
∥∥∥W − W̃

∥∥∥
1,∞

+
∥∥∥W̃ − Ŵ

∥∥∥
1,∞

≤ s1

4s1
‖W ‖1,∞ + s2

s2
‖W ‖1,∞ + γ

3
≤ γ

3 + γ

3 + γ

3 = γ .

It remains to bound the covering number of
W with the mixed (1,∞)-norm, denoted by
N (W, ‖·‖1,∞ , γ/3). By definition, the set W is com-
posed of all matrices W̃ with at most s2 non-zero
columns, where each column has at most s1 non-zero
entries and `1-norm not greater than one. Since any
W̃ ∈ W has at most s2 non-zero columns, we get

N (W, ‖·‖1,∞ , γ/3)

≤
(
n2

s2

)
N (γ/3,Bn1

1,1 ∩ B
n1
0,s1

, ‖·‖1)s2

≤
(
n2

s2

)[(
n1

s1

)
N (γ/3,Bs1

1,1, ‖·‖1)
]s2

≤
(
en2

s2

)s2 [(en1

s1

)s1

N (γ/3,Bs1
1,1, ‖·‖1)

]s2

≤
(
en2

s2

)s2 (en1

s1

)s1s2 (
1 + 6

γ

)s1s2

.

This leads to

logN (W, ‖·‖1,∞ , γ/3) ≤ Õ (s1s2)

= Õ
(
‖W ‖2

1,∞ s1s2/γ
2
)
.
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choosing C to be the covering set of W completes the
proof.

Proof (Theorem 3.11). By assumption, the activation
functions are all set to be the ReLU activation φ.
Then, due to its positive homogeneity property, we re-
balance the network by setting

∥∥W i
∥∥

1,∞ = 1 for all
i = 1, . . . , d without altering the classification func-
tion. For any given adversarial noise η1 with `∞-
norm bounded by ε, let us re-define xi as in (1) but
with x0 = x + η1. Similarly, for another adversar-
ial noise η2 with `∞-norm bounded by ε and com-
pressed matrices Ŵ

i
, let us define the error vector of

the i-th layer ηi in a recursive fashion, that is ηi :=
φ(W i>xi−1) − φ(Ŵ

i>

(xi−1 + ηi−1)) for i = 1, . . . , d
with η0 := η2−η1. Note that

∥∥η0
∥∥
∞ ≤ 2ε. With this

definition of xi, since

∥∥∥φ(W i>xi−1)
∥∥∥
∞
≤
∥∥∥W i>xi−1

∥∥∥
∞

≤
∥∥∥W i>

∥∥∥
∞

∥∥xi−1∥∥
∞

=
∥∥W i

∥∥
1,∞

∥∥xi−1∥∥
∞

we have that
∥∥xi
∥∥
∞ ≤

∥∥x0
∥∥
∞
∏i
j=1

∥∥W j
∥∥

1,∞ ≤ 1+ε.

Our first goal is to bound
∥∥ηi∥∥∞ for i = 1, 2, . . . , d,

which we do by induction. For any i > 0, let us assume
that

∥∥ηi−1
∥∥ ≤ εi−1 where εi−1 is some positive value.

Given some εi > εi−1, we compress W i as Ŵ
i

=
MatrixCompress((εi−εi−1)/(1+ε+εi−1),W i). Then,
using Lemma A.1, we get

∥∥ηi∥∥∞ =
∥∥∥∥φ(W i>xi−1)− φ(Ŵ

i>

(xi−1 + ηi−1))
∥∥∥∥
∞

=
∥∥∥φ(W i>xi−1)− φ(W i>(xi−1 + ηi−1))

∥∥∥
∞

+
∥∥∥∥φ(W i>(xi−1 + ηi−1))− φ(Ŵ

i>

(xi−1 + ηi−1))
∥∥∥∥
∞

≤
∥∥W i

∥∥
1,∞

∥∥ηi−1∥∥
∞

+
∥∥∥W i − Ŵ

i
∥∥∥

1,∞

∥∥xi−1 + ηi−1∥∥
∞ (Lemma A.1)

≤ εi−1 +
∥∥∥W i − Ŵ

i
∥∥∥

1,∞
(1 + ε+ εi−1)

≤ εi . (Definition of Ŵ
i
)

Given y and fW , let us define f̃W (x) := [fW (x)]j 6=y.

By setting ε0 := 2ε and εd := γ/2, we get

∣∣∣`ε(fW ; x, y)− `ε(fŴ
; x, y)

∣∣∣
=
∣∣∣[fW (x + η1)]y −max

j 6=y
[fW (x + η1)]j

− [f
Ŵ

(x + η2)]y + max
j 6=y

[f
Ŵ

(x + η2)]j
∣∣∣

=
∣∣∣[fW (x + η1)]y −

∥∥∥f̃W (x + η1)
∥∥∥
∞

− [f
Ŵ

(x + η2)]y +
∥∥∥f̃

Ŵ
(x + η2)

∥∥∥
∞

∣∣∣
≤
∣∣∣[fW (x + η1)]y − [f

Ŵ
(x + η2)]y

∣∣∣
+
∣∣∣∥∥∥f̃W (x + η1)

∥∥∥
∞
−
∥∥∥f̃

Ŵ
(x + η2)

∥∥∥
∞

∣∣∣
≤
∥∥∥fW (x + η1)− f

Ŵ
(x + η2)

∥∥∥
∞

+
∥∥∥f̃W (x + η1)− f̃

Ŵ
(x + η2)

∥∥∥
∞

≤ 2
∥∥∥fW (x + η1)− f

Ŵ
(x + η2)

∥∥∥
∞

= 2
∥∥ηd∥∥∞ ≤ γ .

We are free to choose ε1, . . . , εd−1 without loosing
this bound on

∣∣∣`ε(fW ; x, y)− `ε(fŴ
; x, y)

∣∣∣, as long
as εi > εi−1. However, the choice of these values
will determine the sample complexity of the com-
pressed function class. A naive way of choosing εi, like
εi := i(γ/2 − 2ε)/d + 2ε, will lead sample complexity
of O(d2) instead of O(d). Therefore, we choose these
parameters in a smarter way, that is

ε0 := 2ε , εi := εi−1 +
√
si1s

i
2∑d

j=1

√
sj1s

j
2

(γ/2− 2ε) ,

so that more error is allocated to the layers with more
effective parameters. Note that this selection implies
εd = γ/2 and εi > εi−1, so fW is (γ, ε,S)-compressible
via G = {f

Ŵ
: Ŵ = MatrixCompress((εi− εi−1)/(1 +

ε+εi−1),W )}. In the same manner as in Lemma A.1,
for all i = 1, . . . , d let us define Ci to be the set of all
possible Ŵ

i
. With this choice, the logarithm of the
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cardinality of the compressed function class is

log |G| = log
d∏
i=1

∣∣Ci∣∣ =
d∑
i=1

log
∣∣Ci∣∣

≤ Õ

(
d∑
i=1

si1s
i
2(1 + ε+ εi−1)2/(εi − εi−1)2

)

≤ Õ


d∑
i=1

si1s
i
2(1 + ε+ γ/2− 2ε)2

(∑d
j=1

√
sj1s

j
2

)2

(
(γ/2− 2ε)

√
si1s

i
2

)2



= Õ


d∑
i=1

(1 + γ/2− ε)2
(∑d

j=1

√
sj1s

j
2

)2

(γ/2− 2ε)2


= Õ

d(1 + γ/2− ε
γ/2− 2ε

)2
 d∑
j=1

√
sj1s

j
2

2
 .

Finally, we apply Theorem 2.2, yielding

Lε0(f
Ŵ

) ≤ L̂εγ(fW )

+ Õ


√√√√√ d

m

(
1 + γ/2− ε
γ/2− 2ε

)2
 d∑
j=1

√
sj1s

j
2

2


which proves the theorem.

B Details about Experiments

We train a fully connected neural network of 3 layers
with ReLU activations on the MNIST and CIFAR-10
datasets. After preprocessing, the inputs are 1024-
dimensional vectors with `∞-norm bounded by one.
The weight matrices are of size 1024× 500, 500× 150,
and 150× 10. To estimate the adversarial risk, we use
the projected gradient descent (PGD) attack (Madry
et al. 2018) with `∞-norm bounded by 0.2 and pertur-
bations computed through 10 iterations of the PGD
algorithm. This PGD method is the state of the art
algorithm for adversarial training.

In Figure 1(a), the network is first trained, on the
MNIST dataset, without using adversarial examples.
Then, after 50% of the training time, we start intro-
ducing adversarial examples to the training set. The
same procedure is done in Figure 1(b) for the CIFAR-
10 dataset, but adversarial examples are introduced
after 33% of the training time. We split training into
these two phases to distinguish between bounds that
correlate with adversarial error and ones that correlate
with standard error. These experiments are carried

out using the PGD method as described above, except
for 0.1 bound on the perturbation’s `∞-norm. Instead,
we start with a 0.05 norm bound and slowly increase
it until reaching 0.1.

The source code for these experiments is available at
github.com/ebalda/adversarial-risk-bounds

github.com/ebalda/adversarial-risk-bounds
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