Appendix of "Hypothesis Testing Interpretations and Rényi Differential Privacy"

Borja Balle Gilles Barthe Marco Gaboardi
Justin Hsu Tetsuya Sato

February 29, 2020

A Weak version of Birkhoff-von Neumann Theorem (Theorem 11)

Theorem 1 (Weak Birkhoff-von Neumann theorem). Let $k, l \in \mathbb{N}$ and $k>l$. For any $\gamma: k \rightarrow \operatorname{Prob}(l)$, there are $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}: k \rightarrow l$ and $0 \leq a_{1}, a_{2}, \ldots, a_{N} \leq 1$ such that $\sum_{m=1}^{N} a_{m}=1$ and $\gamma(i)=\sum_{m=1}^{N} a_{m} \mathbf{d}_{\gamma_{m}(i)}$ for any $1 \leq i \leq k$.

The cardinal k can be relaxed to countable infinite cardinal ω, and then the families $\left\{\gamma_{j}\right\}_{j}$ and $\left\{a_{j}\right\}_{j}$ may be countable infinite.

Proof. Consider the following matrix representation f of γ :

$$
f=\left(\begin{array}{ccc}
f_{1,1} & \cdots & f_{l, 1} \\
\vdots & & \vdots \\
f_{1, k} & \cdots & f_{l, k}
\end{array}\right) .
$$

where $f_{i, j}=\gamma(i)(j)$ and $\sum_{j=1}^{N} f_{i, j}=1$ for any $1 \leq i \leq l$.
For any $h: k \rightarrow l$, the matrix representation g of $\left(\left\{x \mapsto \mathbf{d}_{x}\right\} \circ h\right)$ is

$$
g=\left(\begin{array}{ccc}
g_{1,1} & \cdots & g_{l, 1} \\
\vdots & & \vdots \\
g_{1, k} & \cdots & g_{l, k}
\end{array}\right)
$$

satisfying that for any $1 \leq i \leq l$, there is exactly $1 \leq j \leq k$ such that $g_{i, j}=1$ and $g_{i, s}=0$ for $s \neq j$. Conversely, any matrix g satisfying this condition corresponds to some function $h: k \rightarrow l$. Consider the family G of matrix representations of maps of the form $\left(\left\{x \mapsto \mathbf{d}_{x}\right\} \circ h\right)$. We give an algorithm decomposing f to a convex sum of g :

1. Let $r_{0}=1$ and $\tilde{f}_{0}=f$. We have $\sum_{j}\left(\tilde{f}_{0}\right)_{i, j}=r_{0}$ for all $1 \leq i \leq l$.
2. For given $0 \leq r_{m} \leq 1$ and \tilde{f}_{m} satisfying $\sum_{j}\left(\tilde{f}_{m}\right)_{i, j}=r_{m}$ for all $1 \leq i \leq l$,
we define $g_{m+1} \in G, \alpha_{m+1} \in[0,1], \tilde{f}_{m+1}$ and $r_{m+1} \in[0,1]$ as follows:

$$
\begin{aligned}
& \alpha_{m+1}=\min _{s} \max _{t}\left(\tilde{f}_{m}\right)_{s, t}, \quad r_{m+1}=r_{m}-\alpha_{m+1}, \\
& \left(g_{m+1}\right)_{i, j}=\left\{\begin{array}{ll}
1 & j=\underset{s}{\operatorname{argmax}}\left(\tilde{f}_{m}\right)_{i, s} \\
0 & \text { (otherwise) }
\end{array}, \quad \tilde{f}_{m+1}=\tilde{f}_{m}-\alpha_{m+1} \cdot g_{m+1} .\right.
\end{aligned}
$$

3. If $r_{s+1}=0$ then we terminate. Otherwise, we repeat the previous step.

In each step, we obtain the following conditions:

- We have $g_{m+1} \in G$ because g_{m+1} can be written as $g_{m+1}=\left\{x \mapsto \mathbf{d}_{x}\right\} \circ$ ($\left.\lambda i . \operatorname{argmax}\left(f_{m}\right)_{i, s}\right)$.
- We have $0<\alpha_{m+1}$ whenever $0<r_{m}$ because

$$
\alpha_{m+1}=0 \Longleftrightarrow \exists i . \max _{j}\left(\tilde{f}_{m}\right)_{i, j}=0 \Longrightarrow \exists i . r_{m}=\sum_{j}\left(\tilde{f}_{m}\right)_{i, j}=0 .
$$

- We have $0 \leq\left(\tilde{f}_{m+1}\right)_{i, j} \leq 1$ for any (i, j) from the following equation:

$$
\left(\tilde{f}_{m+1}\right)_{i, j}= \begin{cases}\left(\tilde{f}_{m}\right)_{i, j}-\min _{t} \max _{s}\left(\tilde{f}_{m}\right)_{t, s} & \text { if } j=\underset{s}{\operatorname{argmax}}\left(\tilde{f}_{m}\right)_{i, s} \\ \left(\tilde{f}_{m}\right)_{i, j} & \text { otherwise }\end{cases}
$$

When $i=\underset{s}{\operatorname{argmin}} \max _{t}\left(\tilde{f}_{m}\right)_{s, t}$ and $j=\underset{s}{\operatorname{argmax}}\left(\tilde{f}_{m}\right)_{i, s}$, we obtain $\left(\tilde{f}_{m+1}\right)_{i, j}=$ 0 while $0<\left(\stackrel{s}{\tilde{f}_{m+1}}\right)_{i, j}$. This implies that the number of 0 in \tilde{f}_{m} increases in this operation.

- We also have $\sum_{j}\left(\tilde{f}_{m+1}\right)_{i, j}=r_{m+1}$ for all $1 \leq i \leq k$ because

$$
\sum_{j}\left(\tilde{f}_{m+1}\right)_{i, j}=\sum_{j}\left(\tilde{f}_{m}\right)_{i, j}-\alpha_{m+1} \cdot \sum_{j}\left(\tilde{g}_{m+1}\right)_{i, j}=r_{m}-\alpha_{m+1} \cdot 1=r_{m+1} .
$$

Therefore the construction of $g_{l} \in G, \alpha_{l} \in[0,1], \tilde{f}_{l}$ and $r_{l} \in[0,1]$ terminates within $k \cdot l$ steps. When the construction terminates at the step $N\left(r_{N}=0\right.$ also holds), we have a convex decomposition of f by $f=\sum_{m=1}^{N} \alpha_{m} \cdot g_{m}$ where $\sum_{m=1}^{N} \alpha_{m}=1$. This implies By taking $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}: k \rightarrow l$ such that g_{m} is a matrix representation of $\left(\left\{x \mapsto \mathbf{d}_{x}\right\} \circ \gamma_{m}\right)$, we obtain $\gamma(i)=\sum_{m=1}^{N} a_{m} \mathbf{d}_{\gamma_{m}(i)}$ for any $1 \leq i \leq k$ with $0 \leq a_{1}, a_{2}, \ldots, a_{N} \leq 1$ and $\sum_{m=1}^{N} a_{m}=1$.

B Omitted Proofs

B. 1 Compositions of probabilistic processes

For simplicity, we introduce the composition operator of probabilistic processes (inspired from Giry, 1982). For any $\gamma_{1}: X \rightarrow \operatorname{Prob}(Z)$ and $\gamma: Z \rightarrow \operatorname{Prob}(Y)$, we define their composition $\left(\gamma \bullet \gamma_{1}\right): X \rightarrow \operatorname{Prob}(Z)$ by $\left(\gamma \bullet \gamma_{1}\right)(x) \stackrel{\text { def }}{=} \gamma\left(\gamma_{1}(x)\right)$. It is easy to check that the composition $\left(\gamma \bullet \gamma_{1}\right)$ satisfies $\left(\gamma \bullet \gamma_{1}\right)(\mu)=\gamma\left(\gamma_{1}(\mu)\right)$ for every $\mu \in \operatorname{Prob}(X)$.

- The composititon operator \bullet is associative: $\gamma \bullet\left(\gamma_{1} \bullet \gamma_{2}\right)=\left(\gamma \bullet \gamma_{1}\right) \bullet \gamma_{2}$ holds for all $\gamma_{2}: W \rightarrow \operatorname{Prob}(X), \gamma_{1}: X \rightarrow \operatorname{Prob}(Z)$, and $\gamma: Z \rightarrow \operatorname{Prob}(Y)$.
- The function $\eta_{X}: X \rightarrow \operatorname{Prob}(X)$ defined by $\eta_{X}=\left\{x \mapsto \mathbf{d}_{X}\right\}$ is the unit of operator \bullet : we have $\gamma \bullet \eta_{X}=\gamma$ and $\eta_{Y} \bullet \gamma=\gamma$ for all $\gamma: X \rightarrow \operatorname{Prob}(Y)$

Thanks to the unit law and associativity of \bullet as an abuse of notations, we define

- $\left(\gamma \bullet \gamma_{1}\right): X \rightarrow \operatorname{Prob}(Z)$ for $\gamma_{1}: X \rightarrow Z$ and $\gamma: Z \rightarrow \operatorname{Prob}(Y)$ by $\gamma \bullet\left(\eta_{Z} \circ \gamma_{1}\right)$.
- $\left(\gamma \bullet \gamma_{1}\right): X \rightarrow \operatorname{Prob}(Z)$ for $\gamma_{1}: X \rightarrow \operatorname{Prob}(Z)$ and $\gamma: Z \rightarrow Y$ by $\left(\eta_{Y} \circ \gamma\right) \bullet \gamma_{1}$.
- $\left(\gamma \bullet \gamma_{1}\right): X \rightarrow \operatorname{Prob}(Z)$ for $\gamma_{1}: X \rightarrow Z$ and $\gamma: Z \rightarrow Y$ by $\left(\eta_{Y} \circ \gamma\right) \bullet\left(\eta_{Z} \circ \gamma_{1}\right)$, which is equal to $\eta_{Y} \circ\left(\gamma \circ \gamma_{1}\right)$.

Notice that, $\gamma(\mu) \in \operatorname{Prob}(Y)$ defined under $\gamma: X \rightarrow Y$ and $\mu \in \operatorname{Prob}(X)$ is exactly $\left(\eta_{Y} \circ \gamma\right)(\mu)$.

B. 2 Proof of the data-processing inequality of k-cuts

Lemma 2. For any divergence Δ, every k-cut $\bar{\Delta}^{k}$ satisfies data-processing inequality.

Proof. We consider the k-cut of Δ with respect to a set Y satisfying $|Y|=k$

$$
\bar{\Delta}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right) \stackrel{\text { def }}{=} \sup _{\gamma: X \rightarrow \operatorname{Prob}(Y)} \Delta_{Y}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) .
$$

For every pair $\mu_{1}, \mu_{2} \in \operatorname{Prob}(X)$, and any function $\gamma_{1}: X \rightarrow \operatorname{Prob}(Z)$, we obtain the data-processing inequality

$$
\begin{aligned}
\bar{\Delta}_{Z}^{k}\left(\gamma_{1}\left(\mu_{1}\right) \| \gamma_{1}\left(\mu_{2}\right)\right) & =\sup _{\gamma: Z \rightarrow \operatorname{Prob}(Y)} \Delta_{Y}\left(\gamma\left(\gamma_{1}\left(\mu_{1}\right)\right) \| \gamma\left(\gamma_{1}\left(\mu_{2}\right)\right)\right) \\
& =\sup _{\gamma: Z \rightarrow \operatorname{Prob}(Y)} \Delta_{Y}\left(\left(\gamma \bullet \gamma_{1}\right)\left(\mu_{1}\right) \|\left(\gamma \bullet \gamma_{1}\right)\left(\mu_{2}\right)\right) \\
& \leq \sup _{\gamma^{\prime}: X \rightarrow \operatorname{Prob}(Y)} \Delta_{Y}\left(\gamma^{\prime}\left(\mu_{1}\right) \| \gamma^{\prime}\left(\mu_{2}\right)\right)=\bar{\Delta}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right)
\end{aligned}
$$

The inequality is obtained by the inclusion

$$
\left\{\left(\gamma \bullet \gamma_{1}\right): X \rightarrow \operatorname{Prob} Y \mid \gamma: Z \rightarrow \operatorname{Prob}(Y)\right\} \subseteq\left\{\gamma^{\prime}: X \rightarrow \operatorname{Prob}(Y)\right\}
$$

B. 3 Proof of Lemma 10

Lemma 3 (Lemma 10). If a divergence Δ has the data-processing inequality, we have the inequality $\bar{\Delta}^{k} \leq \Delta$ and the equality $\bar{\Delta}_{Y}^{k}=\Delta_{Y}$ for any set Y with $|Y|=k$.
Proof. We consider the k-cut of Δ with respect to a set W satisfying $|W|=k$

$$
\bar{\Delta}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right) \stackrel{\text { def }}{=} \sup _{\gamma: X \rightarrow \operatorname{Prob}(W)} \Delta_{W}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
$$

Thanks to the data-processing inequality of Δ, we have $\bar{\Delta}^{k} \leq \Delta$: for every pair $\mu_{1}, \mu_{2} \in \operatorname{Prob}(X)$, we obtain

$$
\bar{\Delta}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right)=\sup _{\gamma: X \rightarrow \operatorname{Prob}(W)} \Delta_{W}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \leq \Delta_{X}\left(\mu_{1}, \mu_{2}\right)
$$

Now, we consider a set Y with $|Y|=k$. We already have $\bar{\Delta}_{Y}^{k} \leq \Delta_{Y}$. We want to prove $\Delta_{Y} \leq \bar{\Delta}_{Y}^{k}$ Since $|Y|=|W|=k$, there is a bijection $f: Y \rightarrow W$. We then obtain for every pair $\nu_{1}, \nu_{2} \in \operatorname{Prob}(Y)$,

$$
\Delta_{Y}\left(\nu_{1} \| \nu_{2}\right)=\Delta_{Y}\left(f^{-1}\left(f\left(\nu_{1}\right)\right) \| f^{-1}\left(f\left(\nu_{2}\right)\right)\right) \leq \Delta_{W}\left(f\left(\nu_{1}\right) \| f\left(\nu_{2}\right)\right) \leq \bar{\Delta}_{Y}^{k}\left(\nu_{1} \| \nu_{2}\right)
$$

The first and second inequalities are obtained by the dataprocessing inequality and the definition of k-cut respectively.

B. 4 Proof of Lemma 13

Lemma 4 (Lemma 13). If $\Delta=\left\{\Delta_{X}\right\}_{X}$: set is k-generated, for any set $|Y|$ with $|Y|=k$, we have

$$
\Delta_{X}\left(\mu_{1} \| \mu_{2}\right)=\sup _{\gamma: X \rightarrow \operatorname{Prob}(Y)} \Delta_{Y}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
$$

Proof. Suppose that Δ is equal to the k-cut of Δ with respect to a set W satisfying $|W|=k$.

$$
\Delta_{X}\left(\mu_{1} \| \mu_{2}\right)=\bar{\Delta}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right)=\sup _{\gamma: X \rightarrow \operatorname{Prob}(W)} \Delta_{W}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
$$

Since $\bar{\Delta}^{k}$ always satisfies data-processing inequality, the divergence Δ itself do so. We fix an arbitrary set $|Y|$ with $|Y|=k$. Since $|Y|=|W|=k$, there is a bijection $f: Y \rightarrow W$. For every pair $\mu_{1}, \mu_{2} \in \operatorname{Prob}(X)$, we obtain

$$
\begin{aligned}
\Delta_{X}\left(\mu_{1} \| \mu_{2}\right) & =\sup _{\gamma: X \rightarrow \operatorname{Prob}(W)} \Delta_{W}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \\
& =\sup _{\gamma: X \rightarrow \operatorname{Prob}(W)} \Delta_{W}\left(f\left(f^{-1}\left(\gamma\left(\mu_{1}\right)\right)\right) \| f\left(f^{-1}\left(\gamma\left(\mu_{1}\right)\right)\right)\right) \\
& \leq \sup _{\gamma: X \rightarrow \operatorname{Prob}(W)} \Delta_{Y}\left(f^{-1}\left(\gamma\left(\mu_{1}\right)\right) \| f^{-1}\left(\gamma\left(\mu_{1}\right)\right)\right) \\
& =\sup _{\gamma: X \rightarrow \operatorname{Prob}(W)} \Delta_{Y}\left(\left(f^{-1} \bullet \gamma\right)\left(\mu_{1}\right) \|\left(f^{-1} \bullet \gamma\right)\left(\mu_{1}\right)\right) \\
& \leq \sup _{\gamma: X \rightarrow \operatorname{Prob}(Y)} \Delta_{Y}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \leq \Delta_{X}\left(\mu_{1} \| \mu_{2}\right)
\end{aligned}
$$

Here, the first and last inequalities are obtained from the data-processing inequality of Δ. The second inequality is proved from the inclusion

$$
\left\{\left(f^{-1} \bullet \gamma\right): X \rightarrow \operatorname{Prob}(Y) \mid \gamma: X \rightarrow \operatorname{Prob}(W)\right\} \subseteq\{\gamma: X \rightarrow \operatorname{Prob}(Y)\}
$$

B. 5 Proof of Basic Properties of k-generatedness (Lemma 14)

Lemma 5 (Lemma 14 (1)). If Δ is 1-generated, then Δ is constant, i.e. there exists $c \in[0, \infty]$ such that for every X and every $\mu_{1}, \mu_{2} \in \operatorname{Prob}(X)$, we have $\Delta_{X}\left(\mu_{1} \| \mu_{2}\right)=c$.

Proof. When Δ is 1-generated, there is a singleton set $\{a\}$ such that, for every pair $\mu_{1}, \mu_{2} \in \operatorname{Prob}(X)$,

$$
\Delta_{X}\left(\mu_{1} \| \mu_{2}\right)=\sup _{\gamma: X \rightarrow \operatorname{Prob}(\{a\})} \Delta_{\{a\}}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
$$

Now, the set $\operatorname{Prob}(\{a\})$ is a singleton set $\left\{\mathbf{d}_{a}\right\}$, and therefore both $\gamma\left(\mu_{1}\right)$ and $\gamma\left(\mu_{1}\right)$ are equal to \mathbf{d}_{a} for every $\gamma: X \rightarrow \operatorname{Prob}(\{a\})$ and every pair $\mu_{1}, \mu_{2} \in \operatorname{Prob}(X)$. Hence, $\Delta_{X}\left(\mu_{1} \| \mu_{2}\right)=c$ where $c=\Delta_{\{a\}}\left(\mathbf{d}_{a} \| \mathbf{d}_{a}\right)$.

Lemma 6 (Lemma 14 (2)). If Δ is k-generated, then it is also $k+1$-generated.
Proof. Suppose that Δ is equal to the k-cut of Δ with respect to a set W satisfying $|W|=k$.

$$
\Delta_{X}\left(\mu_{1} \| \mu_{2}\right)=\bar{\Delta}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right)=\sup _{\gamma: X \rightarrow \operatorname{Prob}(W)} \Delta_{W}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
$$

Let V be an arbitrary set with $|V|=k+1$. We define the $k+1$-cut of $\bar{\Delta}^{k}$ with respect to the set V.

$$
{\overline{\bar{\Delta}^{k}}}^{k+1}\left(\mu_{1} \| \mu_{2}\right) \stackrel{\text { def }}{=} \sup _{\gamma: X \rightarrow \operatorname{Prob}(V)} \bar{\Delta}_{V}^{k}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
$$

We then have

$$
\begin{aligned}
{\overline{\bar{\Delta}^{k}}}_{X}^{k+1}\left(\mu_{1} \| \mu_{2}\right) & =\sup _{\gamma: X \rightarrow \operatorname{Prob}(V)} \bar{\Delta}_{V}^{k}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \\
& =\sup _{\gamma: X \rightarrow \operatorname{Prob}(V) \gamma_{1}: V \rightarrow \operatorname{Prob}(W)} \sup _{W}\left(\gamma_{1}\left(\gamma\left(\mu_{1}\right)\right) \| \gamma_{1}\left(\gamma\left(\mu_{2}\right)\right)\right) \\
& =\sup _{\gamma: X \rightarrow \operatorname{Prob}(V) \gamma_{1}: V \rightarrow \operatorname{Prob}(W)} \Delta_{W}\left(\left(\gamma_{1} \bullet \gamma\right)\left(\mu_{1}\right) \|\left(\gamma_{1} \bullet \gamma\right)\left(\mu_{2}\right)\right) \\
& \stackrel{(*)}{=} \sup _{\gamma^{\prime}: X \rightarrow \operatorname{Prob}(W)} \Delta_{W}\left(\gamma^{\prime}\left(\mu_{1}\right) \| \gamma^{\prime}\left(\mu_{2}\right)\right)=\bar{\Delta}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right)
\end{aligned}
$$

The equality is obtained by the equality

$$
\left\{\left(\gamma_{1} \bullet \gamma\right): X \rightarrow \operatorname{Prob}(W) \left\lvert\, \begin{array}{l}
\gamma: X \rightarrow \operatorname{Prob}(V), \\
\gamma_{1}: V \rightarrow \operatorname{Prob}(W)
\end{array}\right.\right\}=\left\{\gamma^{\prime}: X \rightarrow \operatorname{Prob}(W)\right\}
$$

The inclusion \subseteq is obvious. We show the reverse inclusion \supseteq. Since $|V| \geq|W|$, there is a pair of function $f: W \rightarrow V$ and $g: V \rightarrow W$ such that $g \circ f=\mathrm{id}_{W}$. Then, every $\gamma^{\prime}: X \rightarrow \operatorname{Prob}(W)$ can be decomposed into $\gamma^{\prime}=\gamma_{1} \bullet \gamma$ where $\gamma=(f \bullet \gamma)$ and $\gamma_{1}=g$ (strictly, $\gamma=\left(\left(\eta_{V} \circ f\right) \bullet \gamma\right)$ and $\left.\gamma_{1}=\eta_{W} \circ g\right)$.

Lemma 7 (Lemma 14 (3)). If Δ has the data-processing inequality, then it is at least ∞-generated.

Proof. We fix a pair $\mu_{1}, \mu_{2} \in \operatorname{Prob}(X)$. The set $Y=\operatorname{supp}\left(\mu_{1}\right) \cup \operatorname{supp}\left(\mu_{1}\right)$ is at most countable. Hence there are two functions $f: X \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow X$ such that $(g \circ f)(x)=x$ for every $x \in Y$. We then have $\mu_{1}=(g \circ f)\left(\mu_{1}\right)$ and $\mu_{2}=(g \circ f)\left(\mu_{2}\right)$. Thus,

$$
\begin{aligned}
\Delta_{X}\left(\mu_{1} \| \mu_{2}\right) & =\Delta_{X}\left((g \circ f)\left(\mu_{1}\right) \|(g \circ f)\left(\mu_{2}\right)\right) \\
& \leq \Delta_{\mathbb{N}}\left(f\left(\mu_{1}\right) \| f\left(\mu_{2}\right)\right) \\
& \leq \sup _{\gamma: X \rightarrow \operatorname{Prob}(\mathbb{N})} \Delta_{\mathbb{N}}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \\
& \leq \Delta_{X}\left(\mu_{1} \| \mu_{2}\right)
\end{aligned}
$$

The last part is an ∞-cut. The first and last inequality is obtained by the data-processing inequality. The second one is obvious $(f: X \rightarrow \mathbb{N}$ is regarded as $\left.\left\{x \mapsto \mathbf{d}_{f(x)}\right\}: X \rightarrow \operatorname{Prob}(\mathbb{N})\right)$.

Lemma 8 (Lemma 14 (4)). Every k-cut of a divergence Δ is always k-generated.
Proof. We can prove ${\overline{\Delta^{k}}}^{k}=\bar{\Delta}^{k}$ in a almost the same way as Lemma 14 (2).
Continuity of divergence (Lemma $14(3)$ in general setting) We can extend the results on divergences in the discrete setting to general measurable setting using the continuity of divergences. We say that a divergence Δ is continuous if for any pair $\mu_{1}, \mu_{2} \in \operatorname{Prob}(X)$,

$$
\Delta_{X}\left(\mu_{1} \| \mu_{2}\right)=\sup _{n \in \mathbb{N} \gamma: X \rightarrow\{0,1,2, \ldots, n\}} \sup _{\{0,1,2, \ldots, n\}}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
$$

If Δ is continuous and satisfies data-processing inequality we have ∞-generatedness (moreover we show the "countable"-generatedness) as follows:

$$
\begin{aligned}
& \Delta_{X}\left(\mu_{1} \| \mu_{2}\right) \\
& =\sup _{n \in \mathbb{N} \gamma: X \rightarrow\{0,1,2, \ldots, n-1\}} \Delta_{\{0,1,2, \ldots, n-1\}}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \\
& =\sup _{n \in \mathbb{N} \gamma: X \rightarrow\{0,1,2, \ldots, n-1\}} \sup _{\{0,1,2, \ldots, n-1\}}\left(\left(g_{n} \circ f_{n}\right)\left(\gamma\left(\mu_{1}\right)\right) \|\left(g_{n} \circ f_{n}\right)\left(\gamma\left(\mu_{2}\right)\right)\right) \\
& =\sup _{n \in \mathbb{N} \gamma: X \rightarrow\{0,1,2, \ldots, n\}} \Delta_{\{0,1,2, \ldots, n-1\}}\left(g_{n}\left(\left(f_{n} \bullet \gamma\right)\left(\mu_{1}\right)\right) \| g_{n}\left(\left(f_{n} \bullet \gamma\right)\left(\mu_{1}\right)\right)\right) \\
& \leq \sup _{n \in \mathbb{N} \gamma: X \rightarrow\{0,1,2, \ldots, n-1\}} \Delta_{\mathbb{N}}\left(\left(f_{n} \bullet \gamma\right)\left(\mu_{1}\right) \|\left(f_{n} \bullet \gamma\right)\left(\mu_{1}\right)\right) \\
& \leq \sup _{\gamma: X \rightarrow \mathbb{N}} \Delta_{\mathbb{N}}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \leq \bar{\Delta}_{X}^{\infty}\left(\mu_{1}, \mu_{2}\right) \\
& \leq \Delta_{X}\left(\mu_{1}, \mu_{2}\right)
\end{aligned}
$$

Here $f_{n}:\{0,1,2, \ldots, n-1\} \rightarrow \mathbb{N}$ is the inclusion mapping, and $g_{n}: \mathbb{N} \rightarrow$ $\{0,1,2, \ldots, n-1\}$ is defined by $g_{n}(k)=k$ if $(k<n)$ and $g_{n}(k)=n-1$ otherwise. We have $\left(g_{n} \circ f_{n}\right)=\operatorname{id}_{\{0,1,2, \ldots, n-1\}}$.

The first and last inequalities are obtained from data-processing inequality. The second inequality is obvious.

B. 6 Proof of Lemma 15

Lemma 9 (Lemma 15). Consider a divergence Δ and a k-generated divergence Δ^{\prime}. For any k-cut $\bar{\Delta}^{k}$ of Δ,

$$
\Delta^{\prime} \leq \Delta \Longrightarrow \Delta^{\prime} \leq \bar{\Delta}^{k}
$$

Also, if Δ has the data-processing inequality, the k-cut is the greatest k-generated divergence below Δ :

$$
\Delta^{\prime} \leq \Delta \Longleftrightarrow \Delta^{\prime} \leq \bar{\Delta}^{k} \leq \Delta
$$

Proof. Since Δ^{\prime} is k-generated, for any choice of Y with $|Y|=k$, we have

$$
\Delta^{\prime} \leq \Delta \Longrightarrow \Delta_{Y}^{\prime} \leq \Delta_{Y} \Longrightarrow{\overline{\Delta^{\prime}}}^{k} \leq \bar{\Delta}^{k} \Longleftrightarrow \Delta^{\prime} \leq \bar{\Delta}^{k}
$$

The second statement is proved as follows: From the first statement of this lemma and Lemma 3 (Lemma 10 in the paper), We have

$$
\Delta^{\prime} \leq \Delta \Longrightarrow \Delta^{\prime} \leq \bar{\Delta}^{k} \leq \Delta
$$

The converse direction is obvious.

An extended version. We can extend this theorem to more suitable for conversion laws of differential privacy.

Lemma 10 (Lemma 15, extended). Consider a divergence Δ satisfying dataprocessing inequality and a k-generated divergence Δ^{\prime}.

$$
\begin{aligned}
& \forall X . \forall \mu_{1}, \mu_{2} \in \operatorname{Prob}(X) \cdot\left(\Delta_{X}\left(\mu_{1} \| \mu_{2}\right) \leq \delta \Longrightarrow \Delta_{X}^{\prime}\left(\mu_{1} \| \mu_{2}\right) \leq \rho\right) \\
& \quad \Longleftrightarrow \forall X . \forall \mu_{1}, \mu_{2} \in \operatorname{Prob}(X) \cdot\left(\bar{\Delta}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right) \leq \delta \Longrightarrow \Delta_{X}^{\prime}\left(\mu_{1} \| \mu_{2}\right) \leq \rho\right)
\end{aligned}
$$

Proof. (\Longleftarrow) Obvious from Lemma 3 (Lemma 10 in the paper). (\Longrightarrow) From the assumption, we obtain

$$
\begin{aligned}
& \forall X . \forall \mu_{1}, \mu_{2} \in \operatorname{Prob}(X) . \forall \gamma: X \rightarrow \operatorname{Prob}(Y) . \\
& \Delta_{Y}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \leq \delta \Longrightarrow \Delta_{Y}^{\prime}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \leq \rho .
\end{aligned}
$$

This implies

$$
\forall X . \forall \mu_{1}, \mu_{2} \in \operatorname{Prob}(X) \cdot\left(\bar{\Delta}_{X}^{k}\left(\mu_{1} \| \mu_{2} \leq \delta \Longrightarrow{\overline{\Delta^{\prime}}}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right) \leq \rho\right)\right.
$$

Thanks to the k-generatedness of Δ^{\prime}, we conclude the statement of this lemma.

B. 7 Proof of 2-generatedness of ε-divergence

Theorem 11. The ε-divergence Δ^{ε} is 2-generated for all ε.
Proof. We recall that the ε-divergence Δ^{ε} is quasi-convex (moreover, jointly convex) and satisfies data-processing inequality. We choose a set $Y=\{\operatorname{Acc}, \operatorname{Rej}\}$, and take the 2 -cut of Δ^{ε} by

$$
{\overline{\Delta^{\varepsilon}}}_{X}^{2}\left(\mu_{1} \| \mu_{2}\right)=\sup _{\gamma: X \rightarrow \operatorname{Prob}(\{\operatorname{Acc}, \text { Rej }\})} \Delta_{Y}^{\varepsilon}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
$$

We show this is equal to the original $\Delta_{X}^{\varepsilon}\left(\mu_{1} \| \mu_{2}\right)$. Without loss of generality we may assume X is at most countable. If X is an arbitrary set, we can restrict it to countable set in a similar way as the proof of Lemma 7 (Lemma 14(3) in the paper).

By the weak Birkhoff-von Neumann Theorem (Theorem 1 in the appendix), each $\gamma: X \rightarrow \operatorname{Prob}(\{\operatorname{Acc}, \operatorname{Rej}\})$ can be decomposed into a convex combination $\gamma(x)=\sum_{i \in I} \alpha_{i} \mathbf{d}_{\gamma_{i}(x)}$ of functions $\gamma_{i}: X \rightarrow\{\operatorname{Acc}, \operatorname{Rej}\}(i \in I)$ where I is a countable set and $\sum_{i \in I} \alpha_{i}=1$. By combining this and quasi-convexity and data-processing inequality of Δ^{ε}, we obtain

$$
\begin{aligned}
\Delta^{\varepsilon}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) & =\Delta^{\varepsilon}\left(\sum_{i \in I} \alpha_{i} \gamma_{i}\left(\mu_{1}\right) \| \sum_{i \in I} \alpha_{i} \gamma_{i}\left(\mu_{1}\right)\right) \\
& =\sup _{i \in I} \Delta^{\varepsilon}\left(\gamma_{i}\left(\mu_{1}\right) \| \gamma_{i}\left(\mu_{1}\right)\right) \\
& \leq \sup _{\gamma: X \rightarrow\{\operatorname{Acc}, \text { Rej }\}} \Delta_{X}^{\varepsilon}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) .
\end{aligned}
$$

This implies

$$
\begin{aligned}
{\overline{\Delta^{\varepsilon}}}_{X}^{2}\left(\mu_{1} \| \mu_{2}\right) & =\sup _{\gamma: X \rightarrow \operatorname{Prob}(\{\operatorname{Acc}, \operatorname{Rej}\})} \Delta^{\varepsilon}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \\
& =\sup _{\gamma: X \rightarrow\{\operatorname{Acc}, \operatorname{Rej}\}} \Delta_{\{\operatorname{Acc}, \operatorname{Rej}\}} \operatorname{Ra}^{\varepsilon}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \\
& =\sup _{\gamma: X \rightarrow\{\operatorname{Acc}, \operatorname{Rej}\}} \sup _{A \subseteq\{\operatorname{Acc}, \operatorname{Rej}\}}\left(\operatorname{Pr}\left[\gamma\left(\mu_{1}\right) \in A\right]-e^{\varepsilon} \operatorname{Pr}\left[\gamma\left(\mu_{2}\right) \in A\right]\right) \\
& =\sup _{\gamma: X \rightarrow\{\operatorname{Acc}, \operatorname{Rej}\}} \sup _{A \subseteq\{\operatorname{Acc}, \operatorname{Rej}\}}\left(\operatorname{Pr}\left[\mu_{1} \in \gamma^{-1}(A)\right]-e^{\varepsilon} \operatorname{Pr}\left[\mu_{2} \in \gamma^{-1}(A)\right]\right) \\
& \stackrel{(*)}{=} \sup _{S \subseteq X}\left(\operatorname{Pr}\left[\mu_{1} \in S\right]-e^{\varepsilon} \operatorname{Pr}\left[\mu_{2} \in S\right]\right) \\
& =\Delta_{X}^{\varepsilon}\left(\mu_{1} \| \mu_{2}\right)
\end{aligned}
$$

We have the 2-generatedness: ${\overline{\Delta^{\varepsilon}}}^{2}=\Delta^{\varepsilon}$. The equality $(*)$ is proved as follows: for given γ and A, we take $S=\gamma^{-1}$. Conversely, for any $S \subseteq X$ we take $A=\{$ Acc $\}$ and $\gamma=\chi_{S}$, which is the indicator function of S defined by $\chi_{S}(x)=1$ if $x \in S$ and $\chi_{S}(x)=0$ otherwise.

General version We can extend this result to general measurable setting by using the continuity of Δ^{ε} (see also Liese and Vajda, 2006), which is obtained by f-divergence characterization of Δ^{ε} Barthe and Olmedo, 2013. For general measurable sapce X and every pair $\mu_{1}, \mu_{2} \in \operatorname{Prob}(X)$ we have

$$
\begin{aligned}
\Delta_{X}^{\varepsilon}\left(\mu_{1} \| \mu_{2}\right) & =\sup _{\gamma: X \rightarrow \mathbb{N}} \Delta_{\mathbb{N}}^{\varepsilon}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \\
& =\sup _{\gamma: X \rightarrow \mathbb{N} \gamma^{\prime}: \mathbb{N} \rightarrow \operatorname{Prob}(\{\text { Acc,Rej }\})} \Delta_{\{\text {Acc,Rej }\}}^{\varepsilon}\left(\left(\gamma^{\prime} \bullet \gamma\right)\left(\mu_{1}\right) \|\left(\gamma^{\prime} \bullet \gamma\right)\left(\mu_{2}\right)\right) \\
& =\sup _{\gamma: X \rightarrow\{\operatorname{Acc}, \text { Re } j\}} \Delta_{\{\text {Acc,Rej }\}}^{\varepsilon}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
\end{aligned}
$$

Functions are assumed to be measurable.

B. 8 Counterexample: Rényi-divergence is not 2-generated

Theorem 12. There are $\mu_{1}, \mu_{2} \in \operatorname{Prob}(\{a, b, c\})$ such that

$$
{\overline{D^{\alpha}}}_{\{a, b, c\}}^{2}\left(\mu_{1} \| \mu_{2}\right)<D_{\{a, b, c\}}^{\alpha}\left(\mu_{1} \| \mu_{2}\right)
$$

Proof. Let $p=(1 / 2)^{\beta /(\alpha-1)}$ and $\alpha+1<\beta$ and define

$$
\begin{aligned}
& \mu_{1}=\frac{1}{3} \mathbf{d}_{a}+\frac{1}{3} \mathbf{d}_{b}+\frac{1}{3} \mathbf{d}_{c} \\
& \mu_{2}=\frac{p^{2}}{p^{2}+p+1} \mathbf{d}_{a}+\frac{p}{p^{2}+p+1} \mathbf{d}_{b}+\frac{1}{p^{2}+p+1} \mathbf{d}_{c}
\end{aligned}
$$

Since Rényi divergence is quasi-convex and satisfies data-processing inequality, it suffices to show the proper inequality $D_{\{\text {Acc,Rej }\}}^{\alpha}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)<D_{\{a, b, c\}}^{\alpha}\left(\mu_{1} \| \mu_{2}\right)$ holds for any deterministic decision rule $\gamma:\{a, b, c\} \rightarrow\{$ Acc, Rej $\}$. There are 8 cases of $\gamma:\{a, b, c\} \rightarrow\{\operatorname{Acc}, \operatorname{Rej}\}$, but thanks to the data-processing inequality and reflexivity of Rényi divergence, it suffices to consider 3 cases: $(\gamma(a), \gamma(b), \gamma(c))=(\operatorname{Acc}, \operatorname{Acc}, \operatorname{Rej}),(\operatorname{Acc}, \operatorname{Rej}, \operatorname{Acc}),(\operatorname{Rej}, \operatorname{Acc}, A c c)$. Hence,

$$
\begin{aligned}
& \quad \frac{\exp \left((\alpha-1) D_{\{a, b, c\}}^{\alpha}\left(\mu_{1} \| \mu_{2}\right)\right)}{\exp \left((\alpha-1) D_{\{\operatorname{Acc}, \text { Rej }\}}^{\alpha}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)\right.} \\
& \geq \min \left(\frac{p^{2(1-\alpha)}+p^{1-\alpha}+1}{2^{\alpha}\left(p^{2}+p\right)^{1-\alpha}+1}, \frac{p^{2(1-\alpha)}+p^{1-\alpha}+1}{2^{\alpha}\left(p^{2}+1\right)^{1-\alpha}+p^{1-\alpha}}, \frac{p^{2(1-\alpha)}+p^{1-\alpha}+1}{2^{\alpha}(p+1)^{1-\alpha}+p^{2(1-\alpha)}}\right) \\
& \geq \min \left(\frac{2^{\beta}+2^{-\beta}+1}{2^{\alpha}(p+1)^{1-\alpha}+2^{-\beta}}, \frac{2^{\beta}+2^{-\beta}+1}{2^{\alpha-\beta}\left(p^{2}+1\right)^{1-\alpha}+1}, \frac{2^{\beta}+2^{-\beta}+1}{2^{\beta}+2^{\alpha-\beta}(p+1)^{1-\alpha}}\right) \\
& \geq \min \left(\frac{2^{\beta}+2^{-\beta}+1}{2^{\alpha+1}}, \frac{2^{\beta}+2^{-\beta}+1}{2^{\beta}+1}\right)>1 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& D_{\{\mathrm{Acc}, \mathrm{Rej}\}}^{\alpha}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)+\frac{1}{\alpha-1} \log \min \left(\frac{2^{\beta}+2^{-\beta}+1}{2^{\alpha+1}}, \frac{2^{\beta}+2^{-\beta}+1}{2^{\beta}+1}\right) \\
& \leq D_{\{a, b, c\}}^{\alpha}\left(\mu_{1} \| \mu_{2}\right)
\end{aligned}
$$

holds for any $\gamma:\{a, b, c\} \rightarrow\{$ Acc, Rej $\}$. By the data-processing inequality of Rényi divergence, this discussion does not depend on the choice of $\{A c c, \operatorname{Rej}\}$. By weak Birkhoff-von Neumann theorem, and the quasi-convexity Rényi divergence, we conclude

$$
{\overline{D^{\alpha}}}_{X}^{2}\left(\mu_{1} \| \mu_{2}\right)+\frac{1}{\alpha-1} \log \min \left(\frac{2^{\beta}+2^{-\beta}+1}{2^{\alpha+1}}, \frac{2^{\beta}+2^{-\beta}+1}{2^{\beta}+1}\right) \leq D_{X}^{\alpha}\left(\mu_{1} \| \mu_{2}\right) .
$$

B. 9 Proof of ∞-generatedness of Rényi-divergence

f-divergences is a class of divergences that are characterized by convex functions. For a given convex function $f:[0, \infty) \rightarrow \mathbb{R}$ satisfying $\lim _{t \rightarrow 0+} t f(0 / t)=0$ (this
function is called weight function), we define an f-divergence Δ^{f} corresponding the function f,

$$
\Delta_{X}^{f}\left(\mu_{1} \| \mu_{2}\right) \stackrel{\text { def }}{=} \sum_{x \in X} \mu_{2}(x) f\left(\frac{\mu_{1}(x)}{\mu_{2}(x)}\right)
$$

The α-Rényi divergence D^{α} can also be characterized using f-divergence as follows:

$$
D^{\alpha}\left(\mu_{1} \| \mu_{2}\right)=\frac{1}{\alpha-1} \log \sum_{x \in X} \mu_{2}(x)\left(\frac{\mu_{1}(x)}{\mu_{2}(x)}\right)^{\alpha}=\frac{1}{\alpha-1} \log \Delta_{X}^{t \mapsto t^{\alpha}}\left(\mu_{1} \| \mu_{2}\right)
$$

Remark that every f-divergence is quasi-convex (moreover jointly convex) and continuous, and satisfies data-processing inequality (see also Liese and Vajda, 2006, Theorems 14-16]).

Since the mapping $t \mapsto \frac{1}{\alpha-1} \log t$ is monotone, every α-Rényi divergence D^{α} is also quasi-convex and satisfies data-processing inequality. Thanks to the data-processing inequality, every α-Rényi divergence D^{α} is at least ∞-generated. We need to prove that for every finite k, every α-Rényi divergence D^{α} is not k-generated. To prove this, we use that the mapping $t \mapsto t^{\alpha}$ is strictly convex.

Lemma 13. If a weight function is strictly convex, its f-divergence Δ^{f} is not k-generated for every finite k.

Proof. Without loss of generality, we may assume $k>1$.
Consider a pair $\mu_{1}, \mu_{2} \in \operatorname{Prob}(\{0,1,2, \ldots, k\})$ satisfying supp $\left(\mu_{1}\right)=\operatorname{supp}\left(\mu_{2}\right)=$ $\{0,1,2, \ldots, k\}$ and $\mu_{1}(i) / \mu_{2}(i) \neq \mu_{1}(j) / \mu_{2}(j)$ where $1 \leq i, j \leq k+1$ and $i \neq j$. We can give such distributions. Then we obtain,

$$
\begin{aligned}
& \bar{\Delta} f_{\{0,1,2, \ldots, k\}}^{k}\left(\mu_{1} \| \mu_{2}\right) \\
& =\sup _{\gamma:\{0,1,2, \ldots, k\} \rightarrow \operatorname{Prob}(\{0,1,2, \ldots, k-1\})} \Delta_{\{0,1,2, \ldots, k-1\}}^{f}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
\end{aligned}
$$

\{Weak Birkhoff-von Neumann theorem and the joint convexity of Δ^{f} \}

$$
\begin{aligned}
& =\max _{\gamma:\{0,1,2, \ldots, k\} \rightarrow\{0,1,2, \ldots, k-1\}} \Delta^{f}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \\
& =\max _{\gamma:\{0,1,2, \ldots, k\} \rightarrow\{0,1,2, \ldots, k-1\}} \sum_{j=0}^{k-1} f\left(\frac{\sum_{\gamma(i)=j} \mu_{1}(i)}{\sum_{\gamma(i)=j} \mu_{2}(i)}\right)\left(\sum_{\gamma(i)=j} \mu_{2}(i)\right)
\end{aligned}
$$

$\{$ Jensen's inequality with the strict convexity of the weight function f \}

$$
<\sum_{i=0}^{k} f\left(\frac{\mu_{1}(i)}{\mu_{2}(i)}\right) \mu_{2}(i)=\Delta^{f}\left(\mu_{1} \| \mu_{2}\right)
$$

Since $k+1>k$, by Dirichlet's pigeonhole principle, for any $\gamma:\{0,1,2, \ldots, k\} \rightarrow$ $\{0,1,2, \ldots, k-1\}$, for some $j \in\{0,1,2, \ldots, k\}$, there are at least two different $i_{1}, i_{2} \in\{0,1,2, \ldots, k-1\}$ such that $\gamma\left(i_{1}\right)=j$ and $\gamma\left(i_{2}\right)=j$. From the assumption on μ_{1} and μ_{2}, we have $\left(\mu_{1}\left(i_{1}\right) / \mu_{2}\left(i_{1}\right)\right) \neq\left(\mu_{1}\left(i_{2}\right) / \mu_{2}\left(i_{2}\right)\right)$ Since the function f is strictly convex, by the condition for equality of Jensen's inequality, we have the strict inequality
$f\left(\frac{\mu_{1}\left(i_{1}\right)+\mu_{1}\left(i_{2}\right)}{\mu_{2}\left(i_{1}\right)+\mu_{2}\left(i_{2}\right)}\right)\left(\mu_{2}\left(i_{1}\right)+\mu_{2}\left(i_{2}\right)\right)<f\left(\frac{\mu_{1}\left(i_{1}\right)}{\mu_{2}\left(i_{1}\right)}\right) \mu_{2}\left(i_{1}\right)+f\left(\frac{\mu_{1}\left(i_{2}\right)}{\mu_{2}\left(i_{2}\right)}\right) \mu_{2}\left(i_{2}\right)$.

Therefore, for any $\gamma:\{0,1,2, \ldots, k\} \rightarrow\{0,1,2, \ldots, k-1\}$, we have

$$
\sum_{j=1}^{k}\left(\frac{\sum_{\gamma(i)=j} \mu_{1}(i)}{\sum_{\gamma(i)=j} \mu_{2}(i)}\right)^{\alpha}\left(\sum_{\gamma(i)=j} \mu_{2}(i)\right)<\sum_{i=1}^{k+1}\left(\frac{\mu_{1}(i)}{\mu_{2}(i)}\right)^{\alpha} \mu_{2}(i) .
$$

Since there only finite case of $\gamma:\{0,1,2, \ldots, k\} \rightarrow\{0,1,2, \ldots, k-1\}$, we conclude $\overline{\Delta f}_{\{0,1,2, \ldots, k\}}^{k}\left(\mu_{1} \| \mu_{2}\right)<\Delta_{\{0,1,2, \ldots, k\}}^{f}\left(\mu_{1} \| \mu_{2}\right)$. Since every f-divergence satisfies data-processing inequality, this discussion does not depend on the choice of set Y with $|Y|=k$ in the construction of the k-cut $\overline{\Delta f}^{k}$. Thus, Δ^{f} is not k-generated for any finite k.

Since the mapping $t \mapsto \frac{1}{\alpha-1} \log t$ is strict, we conclude,
Corollary 14. For any alpha >1, the α-Rényi divergence D^{α} is not k-generated for every finite k.

B. 10 Proof of Theorem 18

Theorem 15 (Theorem 18). Let $\mu_{1}, \mu_{2} \in \operatorname{Prob}(X) . \bar{\Delta}_{X}^{2}\left(\mu_{1} \| \mu_{2}\right) \leq \rho$ holds if and only if for any $\gamma: X \rightarrow \operatorname{Prob}(\{\operatorname{Acc}, \operatorname{Rej}\})$,

$$
\left(\operatorname{Pr}\left[\gamma\left(\mu_{1}\right)=\operatorname{Rej}\right], \operatorname{Pr}\left[\gamma\left(\mu_{2}\right)=\operatorname{Acc}\right]\right) \in R^{\Delta}(\rho)
$$

Proof. We fix a 2-cut $\bar{\Delta}^{2}$ of a divergence Δ. Suppose that it is defined with a set W satisfying $|W|=2$.

$$
\bar{\Delta}_{X}^{2}\left(\mu_{1} \| \mu_{2}\right)=\sup _{\gamma: X \rightarrow \operatorname{Prob}(W)} \Delta_{W}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right)
$$

We recall the definition of privacy region

$$
R^{\Delta}(\rho)=\left\{(x, y) \mid \bar{\Delta}_{\{\mathrm{Acc}, \mathrm{Re} j\}}^{2}\left((1-x) \mathbf{d}_{\mathrm{Acc}}+x \mathbf{d}_{\mathrm{Rej}}| | y \mathbf{d}_{\mathrm{Acc}}+(1-y) \mathbf{d}_{\mathrm{Rej}}\right) \leq \rho\right\}
$$

Since every probability distribution $\nu \in \operatorname{Prob}(\{\operatorname{Acc}, \operatorname{Rej}\})$ can be rewritten as $\nu=\operatorname{Pr}[\nu=\mathrm{Acc}] \mathbf{d}_{\mathrm{Acc}}+\operatorname{Pr}[\nu=\operatorname{Rej}] \mathbf{d}_{\mathrm{Rej}}$, we obtain

$$
\begin{aligned}
\bar{\Delta}_{\{\text {Acc }, \operatorname{Rej}\}}^{2} & \left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \leq \rho \\
& \Longleftrightarrow\left(\operatorname{Pr}\left[\gamma\left(\mu_{1}\right)=\operatorname{Rej}\right], \operatorname{Pr}\left[\gamma\left(\mu_{2}\right)=\operatorname{Acc}\right]\right) \in R^{\Delta}(\rho)
\end{aligned}
$$

Hence, it suffices to show

$$
\begin{aligned}
& \left(\bar{\Delta}_{X}^{2}\left(\mu_{1} \| \mu_{2}\right) \leq \rho\right) \\
& \quad \Longleftrightarrow \forall \gamma: X \rightarrow \operatorname{Prob}(\{\operatorname{Acc}, \operatorname{Rej}\}) \cdot\left(\bar{\Delta}_{\{\text {Acc }, \operatorname{Rej}\}}^{2}\left(\gamma\left(\mu_{1}\right) \| \gamma\left(\mu_{2}\right)\right) \leq \rho\right)
\end{aligned}
$$

(\Longrightarrow) Obvious by the data-processing inequality of the 2-cut $\bar{\Delta}^{2}$.
($\Longleftarrow)$ The assumption is equivalent to

$$
\begin{aligned}
\forall \gamma: X \rightarrow & \operatorname{Prob}(\{\operatorname{Acc}, \operatorname{Rej}\}) . \forall \gamma^{\prime}:\{\operatorname{Acc}, \operatorname{Rej}\} \rightarrow \operatorname{Prob}(W) . \\
& \left(\Delta_{W}\left(\gamma^{\prime}\left(\gamma\left(\mu_{1}\right)\right) \| \gamma^{\prime}\left(\gamma\left(\mu_{2}\right)\right)\right) \leq \rho\right)
\end{aligned}
$$

Since $|W|=|\{\operatorname{Acc}, \operatorname{Rej}\}|=2$, this is equivalent to

$$
\gamma^{\prime \prime}: X \rightarrow \operatorname{Prob}(W) \cdot \Delta_{W}\left(\gamma^{\prime \prime}\left(\mu_{1}\right) \| \gamma^{\prime \prime}\left(\mu_{2}\right)\right) \leq \rho
$$

For any $\gamma: X \rightarrow \operatorname{Prob}(\{\operatorname{Acc}, \operatorname{Rej}\})$. and $\gamma^{\prime}:\{\operatorname{Acc}, \operatorname{Rej}\} \rightarrow \operatorname{Prob}(W)$. we take $\gamma^{\prime \prime}=\gamma^{\prime} \bullet \gamma$. Conversely for any $\gamma^{\prime \prime}: X \rightarrow \operatorname{Prob}(W)$ we take $\gamma=f \bullet \gamma^{\prime \prime}$ and $\gamma^{\prime}=f^{-1}$ where $f:\{\operatorname{Acc}, \operatorname{Rej}\} \rightarrow W$ is a bijection.

B. 11 Detailed Proof of Theorem 20

Theorem 16 (Theorem 20). If a mechanism M is $(\alpha, \rho)-R D P$ then it is $(\rho+$ $\log ((\alpha-1) / \alpha)-(\log \delta+\log \alpha) /(\alpha-1), \delta)-D P$ for any $0<\delta<1$.

Proof. The privacy region of Rényi divergence is given by

$$
R^{D^{\alpha}}(\rho)=\left\{(x, y) \mid x^{\alpha}(1-y)^{1-\alpha}+(1-x)^{\alpha} y^{1-\alpha} \leq e^{\rho(\alpha-1)}\right\}
$$

Here we assume $0^{1-\alpha}=0$.
By Lemma 10 (an extension of Lemma 15 in the paper), to find ε satisfying

$$
\forall X . \forall \mu_{1}, \mu_{2} \in \operatorname{Prob}(X) . D_{X}^{\alpha}\left(\mu_{1} \| \mu_{2}\right) \leq \rho \Longrightarrow \Delta_{X}^{\varepsilon}\left(\mu_{1} \| \mu_{2}\right) \leq \delta
$$

it is necessary and sufficient to find ε satisfying

$$
\forall X . \forall \mu_{1}, \mu_{2} \in \operatorname{Prob}(X) \cdot{\overline{D^{\alpha}}}_{X}^{2}\left(\mu_{1} \| \mu_{2}\right) \leq \rho \Longrightarrow \Delta_{X}^{\varepsilon}\left(\mu_{1} \| \mu_{2}\right) \leq \delta
$$

By Thorem 14 (Theorem 18 in the paper), this is equivalent to find ε satisfying $R^{D^{\alpha}}(\rho) \subseteq R^{\Delta^{\varepsilon}}(\delta)$. Inspired from Mironov's proof of conversion law from RDP to DP Mironov, 2017, Propisition 3]: we obtain,

$$
\begin{align*}
& x^{\alpha}(1-y)^{1-\alpha}+(1-x)^{\alpha} y^{1-\alpha} \leq e^{\rho(\alpha-1)} \\
& \Longrightarrow(1-x)^{\alpha} y^{1-\alpha} \leq e^{\rho(\alpha-1)} \\
& \Longrightarrow(1-x) \leq\left(e^{\rho} y\right)^{\frac{\alpha-1}{\alpha}} \\
& \Longrightarrow\left(e^{\rho} y>\delta^{\frac{\alpha}{\alpha-1}} \Longrightarrow(1-x) \leq e^{\rho-\log d /(\alpha-1)} y\right) \\
& \wedge\left(e^{\rho} y \leq \delta^{\frac{\alpha}{\alpha-1}} \Longrightarrow(1-x) \leq \delta\right) \\
& \Longrightarrow(1-x) \leq e^{\rho-\log d /(\alpha-1)} y+\delta .
\end{align*}
$$

The last part of $(1-x) \leq e^{\rho-\log d /(\alpha-1)} y+\delta$ derives Mironov's result Mironov, 2017, Propisition 3]. Now, starting from (\dagger), we have a better bound for DP as follows: consider a curve C given by the equation

$$
1-x=\left(e^{\rho} y\right)^{\frac{\alpha-1}{\alpha}} \Longleftrightarrow x=1-\left(e^{\rho} y\right)^{\frac{\alpha-1}{\alpha}}
$$

. We have the derivative of x as follows:

$$
\frac{d x}{d y}=-\frac{\alpha-1}{\alpha} e^{\frac{\alpha-1}{\alpha} \rho} y^{-\frac{1}{\alpha}}
$$

We can take the tangent of the curve C by

$$
x=\frac{d x}{d y}(t)(y-t)+\left(e^{\rho}(1-t)\right)^{\frac{\alpha-1}{\alpha}}
$$

We will find parameters that a tangent of C meets $(1-x)=e^{\varepsilon} y+\delta . x=$ $-e^{\varepsilon} y-\delta+1$ We first solve

$$
-e^{\varepsilon}=\frac{d x}{d y}(t)=-\frac{\alpha-1}{\alpha} e^{\frac{\alpha-1}{\alpha} \rho} t^{-\frac{1}{\alpha}} \Longleftrightarrow \varepsilon=\log \left(\frac{\alpha-1}{\alpha}\right)+\frac{\alpha-1}{\alpha} \rho-\frac{1}{\alpha} \log t .
$$

Next we solve

$$
1-\delta=-t \frac{d x}{d y}(t)+1-\left(e^{\rho} t\right)^{\frac{\alpha-1}{\alpha}} \Longleftrightarrow 1-\delta=\frac{\alpha-1}{\alpha} e^{\frac{\alpha-1}{\alpha} \rho} t^{-\frac{1}{\alpha}} t+1-\left(e^{\rho} t\right)^{\frac{\alpha-1}{\alpha}}
$$

We then have

$$
\delta=\left(e^{\rho} t\right)^{\frac{\alpha-1}{\alpha}}-\frac{\alpha-1}{\alpha} e^{\frac{\alpha-1}{\alpha} \rho} t^{-\frac{1}{\alpha}} t=\frac{1}{\alpha}\left(e^{\rho} t\right)^{\frac{\alpha-1}{\alpha}} \Longleftrightarrow t=\left(\delta \alpha e^{-\frac{\alpha-1}{\alpha} \rho}\right)^{\frac{\alpha}{\alpha-1}}
$$

Simple computations give the following:

$$
\varepsilon=\log \left(\frac{\alpha-1}{\alpha}\right)+\rho-\frac{\log \delta+\log \alpha}{\alpha-1} .
$$

By the symmetry of $R^{D^{\alpha}}(\rho)$ and $R^{\Delta^{\varepsilon}}(\delta)$, we have

$$
R^{D^{\alpha}}(\rho) \subseteq R^{\Delta^{\varepsilon}}(\delta)
$$

As we mentioned, it is equivalent to

$$
\forall X . \forall \mu_{1}, \mu_{2} \in \operatorname{Prob}(X) . D_{X}^{\alpha}\left(\mu_{1} \| \mu_{2}\right) \leq \rho \Longrightarrow \Delta_{X}^{\varepsilon}\left(\mu_{1} \| \mu_{2}\right) \leq \delta
$$

This completes the proof.
As a conjecture, if we calculate tangents of the boundary of the privacy region $R^{D^{\alpha}}(\rho)$, we have optimal conversion law from (α, ρ)-RDP to DP. The boundary of $R^{D^{\alpha}}(\rho)$ is given by the equation

$$
x^{\alpha}(1-y)^{1-\alpha}+(1-x)^{\alpha} y^{1-\alpha}=e^{\rho(\alpha-1)} .
$$

B. 12 Proof of Theorem 22

Theorem 17 (Theorem 22). Let $F:[0,1]^{2 k} \rightarrow[0, \infty]$ be a quasi-convex function. Then the divergence Δ^{F} defined below is k-generated and quasi-convex.

$$
\Delta_{X}^{F}\left(\mu_{1} \| \mu_{2}\right) \stackrel{\text { def }}{=} \sup _{\substack{\left\{A_{i}\right\}_{i=1}^{k} \\ \text { partition of } X}} F\left(\mu_{1}\left(A_{1}\right), \cdots, \mu_{1}\left(A_{k}\right), \mu_{2}\left(A_{1}\right), \cdots, \mu_{2}\left(A_{k}\right)\right) .
$$

Proof. The quasi-convexity is obvious from the quasi-convexity of $F:[0,1]^{2 k} \rightarrow$ $[0, \infty]$. We show the k-generatedness. We take the k-cut with respect to the k-element set $\{1,2, \ldots, k\}$. We may assume X is countable. For any

$$
\begin{aligned}
& \mu_{1}, \mu_{2} \in \operatorname{Prob}(X), \\
& \overline{\Delta^{F}}{ }_{X}^{k}\left(\mu_{1} \| \mu_{2}\right) \\
& =\sup _{\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\})} \Delta_{\{1,2, \ldots, k\}}^{F}\left(\gamma\left(\mu_{1}\right)| | \gamma\left(\mu_{2}\right)\right) \\
& =\sup _{\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\})} \sup _{\substack{\left\{A_{i}\right\}_{i=1}^{k}=1 \\
\text { partition of } \\
\{1,2, \ldots, \ldots\}}} F\binom{\left(\gamma\left(\mu_{1}\right)\right)\left(A_{1}\right), \cdots,\left(\gamma\left(\mu_{1}\right)\right)\left(A_{k}\right),}{\left(\gamma\left(\mu_{2}\right)\right)\left(A_{1}\right), \cdots,\left(\gamma\left(\mu_{2}\right)\right)\left(A_{k}\right)} \\
& =\sup _{\substack{\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\}) \\
p:\{1,2, \ldots, k\} \rightarrow\{1,2, \ldots, k\}}} F\binom{\left(\gamma\left(\mu_{1}\right)\right)\left(p^{-1}(1)\right), \cdots,\left(\gamma\left(\mu_{1}\right)\right)\left(p^{-1}(k)\right),}{\left(\gamma\left(\mu_{2}\right)\right)\left(p^{-1}(1)\right), \cdots,\left(\gamma\left(\mu_{2}\right)\right)\left(p^{-1}(k)\right)} \\
& =\sup _{\substack{\gamma: X \rightarrow \operatorname{Prob}(1,2,2, \ldots, k\}) \\
p:\{1,2, \ldots, k\} \rightarrow\{1,2, \ldots, k\}}} F\binom{\left(\left((p \bullet \gamma)\left(\mu_{1}\right)\right)(1), \cdots,\left((p \bullet \gamma)\left(\mu_{1}\right)\right)(k),\right.}{\left((p \bullet \gamma)\left(\mu_{2}\right)\right)(1), \cdots,\left((p \bullet \gamma)\left(\mu_{2}\right)\right)(k)} \\
& =\sup _{\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\})} F\binom{\left(\left(\gamma\left(\mu_{1}\right)\right)(1), \cdots,\left(\gamma\left(\mu_{1}\right)\right)(k),\right.}{\left(\gamma\left(\mu_{2}\right)\right)(1), \cdots,\left(\gamma\left(\mu_{2}\right)\right)(k)} .
\end{aligned}
$$

Here by weak Birkhoff-von Neumann thorem (countable version), every function $\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\})$ is decomposed into a (countable) convex combination $\sum_{i \in I} a_{i}\left(\eta_{\{1,2, \ldots, k\}} \circ \gamma_{i}\right)$ of $\gamma_{i}: X \rightarrow\{1,2, \ldots, k\}$. Hence,

$$
\begin{aligned}
& \overline{\Delta F}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right) \\
& =\sup _{\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\})} F\binom{\left(\left(\gamma\left(\mu_{1}\right)\right)(1), \cdots,\left(\gamma\left(\mu_{1}\right)\right)(k),\right.}{\left(\gamma\left(\mu_{2}\right)\right)(1), \cdots,\left(\gamma\left(\mu_{2}\right)\right)(k)} \\
& =\sup _{\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\})} F\left(\begin{array}{c}
\left(\left(\sum_{i \in I} a_{i}\left(\eta_{\{1,2, \ldots, k\}} \circ \gamma_{i}\right)\left(\mu_{1}\right)\right)(1),\right. \\
\left.\cdots,\left(\sum_{i \in I} a_{i}\left(\eta_{\{1,2,2}, k, k\right\} \gamma_{i}\right)\left(\mu_{1}\right)\right)(k), \\
\left(\sum_{i \in I} a_{i}\left(\eta_{\{1,2, \ldots, \ldots k\}} \circ \gamma_{i}\right)\left(\mu_{2}\right)\right)(1), \\
\cdots,\left(\sum_{i \in I} a_{i}\left(\eta_{\{1,2, \ldots, \ldots\}} \circ \gamma_{i}\right)\left(\mu_{2}\right)\right)(k)
\end{array}\right) \\
& \sup _{\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\})} F\binom{\left(\sum_{i \in I} a_{i}\left(\gamma_{i}\left(\mu_{1}\right)\right)(1), \cdots, \sum_{i \in I} a_{i}\left(\gamma_{i}\left(\mu_{1}\right)\right)(k),\right.}{\sum_{i \in I} a_{i}\left(\gamma_{i}\left(\mu_{2}\right)\right)(1), \cdots, \sum_{i \in I} a_{i}\left(\gamma_{i}\left(\mu_{2}\right)\right)(k)} \\
& \leq \sup _{\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\})} \sup _{i \in I} F\binom{\left(\left(\gamma_{i}\left(\mu_{1}\right)\right)(1), \cdots,\left(\gamma_{i}\left(\mu_{1}\right)\right)(k),\right.}{\left(\gamma_{i}\left(\mu_{2}\right)\right)(1), \cdots,\left(\gamma_{i}\left(\mu_{2}\right)\right)(k)} \\
& \leq \sup _{\gamma: X \rightarrow\{1,2, \ldots, k\}} F\binom{\left(\left(\gamma\left(\mu_{1}\right)\right)(1), \cdots,\left(\gamma\left(\mu_{1}\right)\right)(k),\right.}{\left(\gamma\left(\mu_{2}\right)\right)(1), \cdots,\left(\gamma\left(\mu_{2}\right)\right)(k)} \\
& =\sup _{\gamma: X \rightarrow\{1,2, \ldots, k\}} F\binom{\left(\mu_{1}\left(\gamma^{-1}(1)\right), \cdots, \mu_{1}\left(\gamma^{-1}(k)\right),\right.}{\mu_{2}\left(\gamma^{-1}(1)\right), \cdots, \mu_{2}\left(\gamma^{-1}(k)\right)} \\
& \leq \sup _{\substack{\left\{A_{i}, k=1 \\
\text { partition of } \\
\{1,2, \ldots, k\}\right.}} F\binom{\left(\gamma\left(\mu_{1}\right)\right)\left(A_{1}\right), \cdots,\left(\gamma\left(\mu_{1}\right)\right)\left(A_{k}\right),}{\left(\gamma\left(\mu_{2}\right)\right)\left(A_{1}\right), \cdots,\left(\gamma\left(\mu_{2}\right)\right)\left(A_{k}\right)} \\
& =\Delta_{X}^{F}\left(\mu_{1} \| \mu_{2}\right) \text {. }
\end{aligned}
$$

We have $\overline{\Delta F}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right) \leq \Delta_{X}^{F}\left(\mu_{1} \| \mu_{2}\right)$. Conversely, by equality (\dagger), we also have $\overline{\Delta F}_{X}^{k}\left(\mu_{1} \| \mu_{2}\right) \geq \Delta_{X}^{F}\left(\mu_{1} \| \mu_{2}\right)$. This completes the proof.

General version If the quasi-convex function $F:[0,1]^{2 k} \rightarrow[0, \infty]$ is also continuous, we can extend Theorem 22 to general measurable setting.

Theorem 18 (k-generatedness in general setting). Assume that $F:[0,1]^{2 k} \rightarrow$ $[0, \infty]$ is quasi-convex and continuous. For any measurable space X, we have

$$
\Delta_{X}\left(\mu_{1}, \mu_{2}\right)=\sup _{\substack{\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots k\}) \\ \text { measurable function }}} \Delta_{X}\left(\gamma\left(\mu_{1}\right), \gamma\left(\mu_{2}\right)\right) .
$$

Proof. We easily calculate as follows (functions are assumed to be measurable):

$$
\begin{aligned}
& \Delta_{X}\left(\mu_{1}, \mu_{2}\right) \\
& =\sup \left\{F\left(\mu_{1}\left(A_{1}\right), \cdots, \mu_{1}\left(A_{k}\right), \mu_{2}\left(A_{1}\right), \cdots, \mu_{2}\left(A_{k}\right)\right) \mid\left\{A_{i}\right\}_{i=1}^{k}: \text { m'ble partition of } X\right\} \\
& =\sup \left\{F\left(\mu_{1}\left(f^{-1}(1)\right), \cdots, \mu_{1}\left(f^{-1}(k)\right), \mu_{2}\left(f^{-1}(1)\right), \cdots, \mu_{1}\left(f^{-1}(k)\right)\right) \mid f: X \rightarrow\{1,2, \ldots, k\}\right\} \\
& =\sup \left\{F\left(\left(f\left(\mu_{1}\right)\right)(1), \cdots,\left(f\left(\mu_{1}\right)\right)(k),\left(f\left(\mu_{2}\right)\right)(1), \cdots,\left(f\left(\mu_{2}\right)\right)(k)\right) \mid f: X \rightarrow\{1,2, \ldots, k\}\right\} \\
& \leq \sup \left\{F\left(\left(\gamma\left(\mu_{1}\right)\right)(1), \cdots,\left(\gamma\left(\mu_{1}\right)\right)(k),\left(\gamma\left(\mu_{2}\right)\right)(1), \cdots,\left(\gamma\left(\mu_{2}\right)\right)(k)\right) \mid \gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\})\right\} \\
& \leq \sup \left\{\left.F\binom{\left(\gamma\left(\mu_{1}\right)\right)\left(A_{1}\right), \cdots,\left(\gamma\left(\mu_{1}\right)\right)\left(A_{k}\right),}{\left(\gamma\left(\mu_{2}\right)\right)\left(A_{1}\right), \cdots,\left(\gamma\left(\mu_{2}\right)\right)\left(A_{k}\right)} \right\rvert\, \begin{array}{l}
\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\}), \\
\left\{A_{i}\right\}_{i=1}^{k}: \text { m'ble partition of } X
\end{array}\right\} \\
& =\sup _{\gamma: X \rightarrow \operatorname{Prob}(\{1,2, \ldots, k\})} \Delta_{\{1,2, \ldots, k\}\left(\gamma\left(\mu_{1}\right), \gamma\left(\mu_{2}\right)\right)}
\end{aligned}
$$

Note that we treat $\{1,2, \ldots, k\}$ as a finite discrete space. Consider the family $\left\{J_{n}\right\}_{n=1}^{\infty}$ of finite sets (discrete spaces) defined as follows:

$$
J_{n}=\left\{\left(j_{1}, \ldots, j_{k}\right) \mid j_{1}, \ldots, j_{k} \in\left\{0,1, \ldots, 2^{n}-1\right\}, C_{j_{1} \ldots j_{k}}^{n} \neq \emptyset\right\}
$$

We fix a measurable function $\gamma: X \rightarrow \operatorname{Prob}(k)$ and treat $\operatorname{Prob}(k)$ as a subset of $[0,1]^{k}$. For each $n \in \mathbb{N}$, we define a measurable partition $\left\{C_{j_{1} \ldots j_{k}}^{n}\right\}_{j_{1}, \ldots, j_{k} \in\left\{0,1, \ldots, 2^{n}-1\right\}}$ of X by

$$
\begin{aligned}
& C_{j_{1} \ldots j_{k}}^{n}=\gamma^{-1}\left(B_{j_{1} \ldots j_{k}}^{n}\right) \\
& \text { where } B_{j_{1} \ldots j_{N}}^{n}=D_{j_{1}} \times \cdots \times D_{j_{k}} \quad\left(\left(j_{1} \ldots j_{k}\right) \in J_{n}\right), \\
& D_{0}^{n}=\{0\} \text { and } D_{l+1}^{n}=\left(l / 2^{n},(l+1) / 2^{n}\right] \quad\left(l=0,1,2, \ldots, 2^{n}-1\right) .
\end{aligned}
$$

We next define $m_{n}^{*}: X \rightarrow J_{n}$ and $m_{n}: J_{n} \rightarrow X$ as follows: $m_{n}^{*}(x)$ is the unique element $\left(j_{1}, \ldots, j_{k}\right) \in J_{n}$ satisfying $x \in C_{j_{1}, \ldots, j_{k}}^{n}$, and we choose $m_{n}\left(j_{1}, \ldots, j_{k}\right)$ is an element of $C_{j_{1}, \ldots, j_{k}}^{n}$. Thanks to the measurability of each $C_{j_{1} \ldots j_{k}}^{n}$, the function m_{n}^{*} is measurable, and the measurability of m_{n} follows from the discreteness of J_{n}. From the construction of $\left\{C_{j_{1} \ldots j_{k}}^{n}\right\}_{j_{1}, \ldots, j_{k} \in\left\{0,1, \ldots, 2^{n}-1\right\}}$, for any $n \in \mathbb{N}$, $x \in X$, and $i \in I$, we have,

$$
\left|\gamma(x)(i)-\left(\gamma \circ m_{n} \circ m_{n}^{*}\right)(x)(i)\right| \leq 1 / 2^{n}
$$

This implies that the sequence $\left\{\gamma \circ m_{n} \circ m_{n}^{*}\right\}_{n=1}^{\infty}$ of measurable function converges uniformly to γ. Hence, for any $n \in \mathbb{N}$ and $D \subseteq k$, we have

$$
\left|\int \gamma(x)(D) d \mu_{1}(x)-\int\left(\gamma \circ m_{n} \circ m_{n}^{*}\right)(x)(D) d \mu_{1}(x)\right| \leq 1 / 2^{n}
$$

Hence the sequence of probability measures $\left\{\left(\gamma \circ m_{n} \circ m_{n}^{*}\right)\left(\mu_{1}\right)\right\}_{n=1}^{\infty}$ converges to the probability measure $\gamma\left(\mu_{1}\right)$. Similarly, $\left\{\left(\gamma \circ m_{n} \circ m_{n}^{*}\right)\left(\mu_{2}\right)\right\}_{n=1}^{\infty}$ converges to $\gamma\left(\mu_{2}\right)$.

By the continuity of F, we obtain

$$
\begin{aligned}
& F\left(\left(\gamma\left(\mu_{1}\right)\right)\left(A_{1}\right), \cdots,\left(\gamma\left(\mu_{1}\right)\right)\left(A_{k}\right),\left(\gamma\left(\mu_{2}\right)\right)\left(A_{1}\right), \cdots,\left(\gamma\left(\mu_{2}\right)\right)\left(A_{k}\right)\right) \\
& =\lim _{n \rightarrow \infty} F\binom{\left(\left(\gamma \circ m_{n} \circ m_{n}^{*}\right)\left(\mu_{1}\right)\right)\left(A_{1}\right), \cdots,\left(\left(\gamma \circ m_{n} \circ m_{n}^{*}\right)\left(\mu_{1}\right)\right)\left(A_{k}\right),}{\left(\left(\gamma \circ m_{n} \circ m_{n}^{*}\right)\left(\mu_{2}\right)\right)\left(A_{1}\right), \cdots,\left(\left(\gamma \circ m_{n} \circ m_{n}^{*}\right)\left(\mu_{2}\right)\right)\left(A_{k}\right)} \\
& =\lim _{n \rightarrow \infty} F\binom{\left(\left(\gamma \circ m_{n}\right)\left(m_{n}^{*}\left(\mu_{1}\right)\right)\right)\left(A_{1}\right), \cdots,\left(\left(\gamma \circ m_{n}\right)\left(m_{n}^{*}\left(\mu_{1}\right)\right)\right)\left(A_{k}\right),}{\left(\left(\gamma \circ m_{n}\right)\left(m_{n}^{*}\left(\mu_{2}\right)\right)\right)\left(A_{1}\right), \cdots,\left(\left(\gamma \circ m_{n}\right)\left(m_{n}^{*}\left(\mu_{2}\right)\right)\right)\left(A_{k}\right)} \\
& \leq \sup _{n \in \mathbb{N}} \Delta_{\{1,2, \ldots, k\}}\left(\left(\left(\gamma \circ m_{n}\right)\left(m_{n}^{*}\left(\mu_{1}\right)\right)\right),\left(\left(\gamma \circ m_{n}\right)\left(m_{n}^{*}\left(\mu_{2}\right)\right)\right)\right)
\end{aligned}
$$

\{Since J_{n} is finite (countable and discrete), we can apply Theorem 22.\}

$$
\leq \sup _{n \in \mathbb{N}} \Delta_{J_{n}}\left(m_{n}^{*}\left(\mu_{1}\right), m_{n}^{*}\left(\mu_{2}\right)\right)
$$

$$
=\sup _{n \in \mathbb{N}} \sup \left\{F\left(\left.\binom{\left.f\left(m_{n}^{*}\left(\mu_{1}\right)\right)\right)(1), \cdots,\left(f\left(m_{n}^{*}\left(\mu_{1}\right)\right)\right)(k),}{\left(f\left(m_{n}^{*}\left(\mu_{2}\right)\right)\right)(1), \cdots,\left(\left(f\left(m_{n}^{*}\left(\mu_{1}\right)\right)\right)(k)\right.} \right\rvert\, f: J_{n} \rightarrow\{1,2, \ldots, k\}\right\}\right.
$$

$$
\leq \sup \left\{F\left(\left(g\left(\mu_{1}\right)\right)(1), \cdots,\left(g\left(\mu_{1}\right)\right)(k),\left(g\left(\mu_{2}\right)\right)(1), \cdots,\left(g\left(\mu_{2}\right)\right)(k)\right) \mid g: X \rightarrow\{1,2, \ldots, k\}\right\}
$$

$$
=\Delta_{X}\left(\mu_{1}, \mu_{2}\right)
$$

This implies $\sup _{\gamma: X \rightarrow \operatorname{Prob}(k)} \Delta_{k}\left(\gamma\left(\mu_{1}\right), \gamma\left(\mu_{2}\right)\right) \leq \Delta_{X}\left(\mu_{1}, \mu_{2}\right)$.

C Additional Results

C. 1 Total variation distance is 2-generated

We recall the definition of the total variation distance

$$
\operatorname{TV}_{X}\left(\mu_{1}| | \mu_{2}\right)=\sup _{S \subseteq X}\left|\operatorname{Pr}\left[\mu_{1} \in S\right]-\operatorname{Pr}\left[\mu_{2} \in S\right]\right|
$$

In a similar way as ε-divergence Δ^{ε}, we can prove 2 -generatedness of the total variation distance TV, but we can prove it easily by applying Theorems 16-17 (Theorems 20 and 22 in the paper).

Define $F:[0,1]^{4} \rightarrow[0, \infty]$ by $F\left(x, x^{\prime}, y, y^{\prime}\right)=|x-y|$. It is easy to check that the function is obviously quasi-convex, and that we have $\mathrm{TV}=\Delta^{F}$.

C. 2 An optimal conversion law from Hellinger to DP

We recall the definition of the Hellinger distance

$$
\operatorname{HD}_{X}\left(\mu_{1} \| \mu_{2}\right)=1-\sum_{x \in X} \sqrt{\mu_{1}(x) \mu_{2}(x)}
$$

Since it is the f-divergence of weight function $w(t)=\sqrt{t}-1$ (strict convex), the Hellinger distance is exactly ∞-generated, quasi-convex and continuous.

Here is the essense of an optimal conversion law from the Hellinger distance to DP.

Lemma 19. We have $R^{\mathrm{HD}}(\rho) \subseteq R^{\Delta^{\varepsilon}}(\delta(\varepsilon, \rho))$ where

$$
\begin{align*}
\delta(\varepsilon, \rho) & =1-t-\frac{f(t)}{g(t)} \tag{1}\\
t & =\frac{z^{2}+4-z \sqrt{z^{2}+4}}{2\left(z^{2}+4\right)} \tag{2}\\
z & =\frac{1 / e^{\varepsilon}-2(1-\rho)+1}{(1-\rho) \sqrt{\rho(2-\rho)}} \\
f(x) & =(1-\rho)^{2}(1-2 x)+x-2(1-\rho) \sqrt{d(2-d) x(1-x)} \\
g(x) & =\frac{d f}{d x}(x)=(1-\rho)^{2}(1-2 x)+x f-2(1-\rho) \sqrt{d(2-d) x(1-x)}
\end{align*}
$$

Proof. We may regard

$$
\begin{aligned}
R^{\mathrm{HD}}(\rho) & =\left\{(x, y) \in[0,1]^{2} \mid 1-\sqrt{x(1-y)}-\sqrt{(1-x) y} \leq \rho\right\} \\
R^{\Delta^{\varepsilon}}(\delta) & =\left\{(x, y) \in[0,1]^{2} \mid \max \left((1-x)-e^{\varepsilon} y, x-e^{\varepsilon}(1-y)\right) \leq \delta\right\}
\end{aligned}
$$

We first calculate the boundary of $R^{\mathrm{HD}}(\rho)$. Thus, we solve the following equation for y :

$$
1-\sqrt{x(1-y)}-\sqrt{(1-x) y}=\rho
$$

We first have

$$
\begin{aligned}
& 1-\sqrt{x(1-y)}-\sqrt{(1-x) y}=\rho \\
& \Longleftrightarrow(1-\rho)^{2}-x(1-y)-y(1-x)=2 \sqrt{x(1-x) y(1-y)} \\
& \quad \Longleftrightarrow(1-\rho)^{4}+x^{2}(1-y)^{2}+y^{2}(1-x)^{2}-2 x(1-y)(1-\rho)^{2}-2 y(1-x)(1-\rho)^{2}
\end{aligned}
$$

The degree of this equation is 2 , so we can solve it. For given $x \in[0,1]$, we have

$$
y=(1-\rho)^{2}(1-2 x)+x \pm 2(1-\rho) \sqrt{x(1-x) \rho(2-\rho)}
$$

Thanks to the Symmetry of $R^{\mathrm{HD}}(\rho)$ and $R^{\Delta^{\varepsilon}}(\delta)$, we may consider the curve:

$$
y=(1-\rho)^{2}(1-2 x)+x-2(1-\rho) \sqrt{x(1-x) \rho(2-\rho)}=f(x)
$$

The tangent of the curve $y=f(x)$ that passes the point $(t, f(t))$ is given by the equation $x-\frac{y}{g(t)}=t-\frac{f(t)}{g(t)}$ where $g(x)=\frac{d f}{d x}(x)$. We next find t and δ that the lower boundary

$$
(1-x)-e^{\varepsilon} y=\delta \Longleftrightarrow x+e^{\varepsilon} y=1-\delta
$$

of $R^{\Delta^{\varepsilon}}(\delta(\varepsilon, \rho))$ is the same as the line $x-\frac{y}{g(t)}=t-\frac{f(t)}{g(t)}$. We solve the equation $e^{\varepsilon}=\frac{1}{g(t)}$ on t about the slope as 22. Finally, we obtain δ as 11 .

We conclude an optimal conversion law from the Hellinger distance to DP.
Theorem 20. We always have $\operatorname{HD}_{X}\left(d_{1}, d_{2}\right) \leq \rho \Longrightarrow \Delta_{X}^{\varepsilon}\left(d_{1}, d_{2}\right) \leq \delta(\varepsilon, \rho)$ where $\delta(\varepsilon, \rho)$ is given by (1).

Figure 1: Comparison of the privacy region for DP and the one for 2-cut of Hellinger distance.

References

[Barthe and Olmedo, 2013] Barthe, G. and Olmedo, F. (2013). Beyond differential privacy: Composition theorems and relational logic for f-divergences between probabilistic programs. In International Colloquium on Automata, Languages and Programming (ICALP), Riga, Latvia, volume 7966 of Lecture Notes in Computer Science, pages 49-60. Springer-Verlag.
[Giry, 1982] Giry, M. (1982). A categorical approach to probability theory. In Banaschewski, B., editor, Categorical Aspects of Topology and Analysis, volume 915 of Lecture Notes in Mathematics, pages 68-85. Springer-Verlag.
[Liese and Vajda, 2006] Liese, F. and Vajda, I. (2006). On divergences and informations in statistics and information theory. IEEE Transactions on Information Theory, 52(10):4394-4412.
[Mironov, 2017] Mironov, I. (2017). Rényi differential privacy. In IEEE Computer Security Foundations Symposium (CSF), Santa Barbara, California, pages 263-275.

