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A Weak version of Birkhoff-von Neumann Theo-
rem (Theorem 11)

Theorem 1 (Weak Birkhoff-von Neumann theorem). Let k, l ∈ N and k > l. For
any γ : k → Prob(l), there are γ1, γ2, . . . , γN : k → l and 0 ≤ a1, a2, . . . , aN ≤ 1

such that
∑N
m=1 am = 1 and γ(i) =

∑N
m=1 amdγm(i) for any 1 ≤ i ≤ k.

The cardinal k can be relaxed to countable infinite cardinal ω, and then the
families {γj}j and {aj}j may be countable infinite.

Proof. Consider the following matrix representation f of γ:

f =

 f1,1 · · · fl,1
...

...
f1,k · · · fl,k

 .

where fi,j = γ(i)(j) and
∑N
j=1 fi,j = 1 for any 1 ≤ i ≤ l.

For any h : k → l, the matrix representation g of ({x 7→ dx} ◦ h) is

g =

 g1,1 · · · gl,1
...

...
g1,k · · · gl,k


satisfying that for any 1 ≤ i ≤ l, there is exactly 1 ≤ j ≤ k such that gi,j = 1 and
gi,s = 0 for s 6= j. Conversely, any matrix g satisfying this condition corresponds
to some function h : k → l. Consider the family G of matrix representations of
maps of the form ({x 7→ dx} ◦ h). We give an algorithm decomposing f to a
convex sum of g:

1. Let r0 = 1 and f̃0 = f . We have
∑
j(f̃0)i,j = r0 for all 1 ≤ i ≤ l.

2. For given 0 ≤ rm ≤ 1 and f̃m satisfying
∑
j(f̃m)i,j = rm for all 1 ≤ i ≤ l,
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we define gm+1 ∈ G, αm+1 ∈ [0, 1], f̃m+1 and rm+1 ∈ [0, 1] as follows:

αm+1 = min
s

max
t

(f̃m)s,t, rm+1 = rm − αm+1,

(gm+1)i,j =

1 j = argmax
s

(f̃m)i,s

0 (otherwise)
, f̃m+1 = f̃m − αm+1 · gm+1.

3. If rs+1 = 0 then we terminate. Otherwise, we repeat the previous step.

In each step, we obtain the following conditions:

• We have gm+1 ∈ G because gm+1 can be written as gm+1 = {x 7→ dx} ◦
(λi. argmax

s
(f̃m)i,s).

• We have 0 < αm+1 whenever 0 < rm because

αm+1 = 0 ⇐⇒ ∃i. max
j

(f̃m)i,j = 0 =⇒ ∃i. rm =
∑
j

(f̃m)i,j = 0.

• We have 0 ≤ (f̃m+1)i,j ≤ 1 for any (i, j) from the following equation:

(f̃m+1)i,j =

(f̃m)i,j −mint maxs(f̃m)t,s if j = argmax
s

(f̃m)i,s

(f̃m)i,j otherwise .

When i = argmin
s

maxt(f̃m)s,t and j = argmax
s

(f̃m)i,s, we obtain (f̃m+1)i,j =

0 while 0 < (f̃m+1)i,j . This implies that the number of 0 in f̃m increases
in this operation.

• We also have
∑
j(f̃m+1)i,j = rm+1 for all 1 ≤ i ≤ k because∑

j

(f̃m+1)i,j =
∑
j

(f̃m)i,j − αm+1 ·
∑
j

(g̃m+1)i,j = rm − αm+1 · 1 = rm+1.

Therefore the construction of gl ∈ G, αl ∈ [0, 1], f̃l and rl ∈ [0, 1] terminates
within k · l steps. When the construction terminates at the step N (rN = 0

also holds), we have a convex decomposition of f by f =
∑N
m=1 αm · gm where∑N

m=1 αm = 1. This implies By taking γ1, γ2, . . . , γN : k → l such that gm is a
matrix representation of ({x 7→ dx} ◦ γm), we obtain γ(i) =

∑N
m=1 amdγm(i) for

any 1 ≤ i ≤ k with 0 ≤ a1, a2, . . . , aN ≤ 1 and
∑N
m=1 am = 1.

B Omitted Proofs

B.1 Compositions of probabilistic processes
For simplicity, we introduce the composition operator of probabilistic processes
(inspired from [Giry, 1982]). For any γ1 : X → Prob(Z) and γ : Z → Prob(Y ),
we define their composition (γ • γ1) : X → Prob(Z) by (γ • γ1)(x)

def
= γ(γ1(x)).

It is easy to check that the composition (γ • γ1) satisfies (γ • γ1)(µ) = γ(γ1(µ))
for every µ ∈ Prob(X).
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• The composititon operator • is associative: γ • (γ1 • γ2) = (γ • γ1) • γ2

holds for all γ2 : W → Prob(X), γ1 : X → Prob(Z), and γ : Z → Prob(Y ).

• The function ηX : X → Prob(X) defined by ηX = {x 7→ dX} is the unit of
operator •: we have γ • ηX = γ and ηY • γ = γ for all γ : X → Prob(Y )

Thanks to the unit law and associativity of • as an abuse of notations, we define

• (γ•γ1) : X → Prob(Z) for γ1 : X → Z and γ : Z → Prob(Y ) by γ•(ηZ ◦γ1).

• (γ•γ1) : X → Prob(Z) for γ1 : X → Prob(Z) and γ : Z → Y by (ηY ◦γ)•γ1.

• (γ•γ1) : X → Prob(Z) for γ1 : X → Z and γ : Z → Y by (ηY ◦γ)•(ηZ ◦γ1),
which is equal to ηY ◦ (γ ◦ γ1).

Notice that, γ(µ) ∈ Prob(Y ) defined under γ : X → Y and µ ∈ Prob(X) is
exactly (ηY ◦ γ)(µ).

B.2 Proof of the data-processing inequality of k-cuts

Lemma 2. For any divergence ∆, every k-cut ∆
k
satisfies data-processing

inequality.

Proof. We consider the k-cut of ∆ with respect to a set Y satisfying |Y | = k

∆
k

X(µ1||µ2)
def
= sup

γ : X→Prob(Y )

∆Y (γ(µ1)||γ(µ2)).

For every pair µ1, µ2 ∈ Prob(X), and any function γ1 : X → Prob(Z), we obtain
the data-processing inequality

∆
k

Z(γ1(µ1)||γ1(µ2)) = sup
γ : Z→Prob(Y )

∆Y (γ(γ1(µ1))||γ(γ1(µ2)))

= sup
γ : Z→Prob(Y )

∆Y ((γ • γ1)(µ1)||(γ • γ1)(µ2))

≤ sup
γ′ : X→Prob(Y )

∆Y (γ′(µ1)||γ′(µ2)) = ∆
k

X(µ1||µ2).

The inequality is obtained by the inclusion

{ (γ • γ1) : X → ProbY | γ : Z → Prob(Y ) } ⊆ { γ′ : X → Prob(Y ) } .

B.3 Proof of Lemma 10
Lemma 3 (Lemma 10). If a divergence ∆ has the data-processing inequality,
we have the inequality ∆

k ≤ ∆ and the equality ∆
k

Y = ∆Y for any set Y with
|Y | = k.

Proof. We consider the k-cut of ∆ with respect to a set W satisfying |W | = k

∆
k

X(µ1||µ2)
def
= sup

γ : X→Prob(W )

∆W (γ(µ1)||γ(µ2)).
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Thanks to the data-processing inequality of ∆, we have ∆
k ≤ ∆: for every pair

µ1, µ2 ∈ Prob(X), we obtain

∆
k

X(µ1||µ2) = sup
γ : X→Prob(W )

∆W (γ(µ1)||γ(µ2)) ≤ ∆X(µ1, µ2).

Now, we consider a set Y with |Y | = k. We already have ∆
k

Y ≤ ∆Y . We
want to prove ∆Y ≤ ∆

k

Y Since |Y | = |W | = k, there is a bijection f : Y → W .
We then obtain for every pair ν1, ν2 ∈ Prob(Y ),

∆Y (ν1||ν2) = ∆Y (f−1(f(ν1))||f−1(f(ν2))) ≤ ∆W (f(ν1)||f(ν2)) ≤ ∆
k

Y (ν1||ν2)

The first and second inequalities are obtained by the dataprocessing inequality
and the definition of k-cut respectively.

B.4 Proof of Lemma 13
Lemma 4 (Lemma 13). If ∆ = {∆X}X : set is k-generated, for any set |Y | with
|Y | = k, we have

∆X(µ1||µ2) = sup
γ : X→Prob(Y )

∆Y (γ(µ1)||γ(µ2)).

Proof. Suppose that ∆ is equal to the k-cut of ∆ with respect to a set W
satisfying |W | = k.

∆X(µ1||µ2) = ∆
k

X(µ1||µ2) = sup
γ : X→Prob(W )

∆W (γ(µ1)||γ(µ2)).

Since ∆
k
always satisfies data-processing inequality, the divergence ∆ itself do

so. We fix an arbitrary set |Y | with |Y | = k. Since |Y | = |W | = k, there is a
bijection f : Y →W . For every pair µ1, µ2 ∈ Prob(X), we obtain

∆X(µ1||µ2) = sup
γ : X→Prob(W )

∆W (γ(µ1)||γ(µ2))

= sup
γ : X→Prob(W )

∆W (f(f−1(γ(µ1)))||f(f−1(γ(µ1))))

≤ sup
γ : X→Prob(W )

∆Y (f−1(γ(µ1))||f−1(γ(µ1)))

= sup
γ : X→Prob(W )

∆Y ((f−1 • γ)(µ1)||(f−1 • γ)(µ1))

≤ sup
γ : X→Prob(Y )

∆Y (γ(µ1)||γ(µ2)) ≤ ∆X(µ1||µ2).

Here, the first and last inequalities are obtained from the data-processing in-
equality of ∆. The second inequality is proved from the inclusion{

(f−1 • γ) : X → Prob(Y )
∣∣ γ : X → Prob(W )

}
⊆ { γ : X → Prob(Y ) } .
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B.5 Proof of Basic Properties of k-generatedness (Lemma
14)

Lemma 5 (Lemma 14 (1)). If ∆ is 1-generated, then ∆ is constant, i.e. there
exists c ∈ [0,∞] such that for every X and every µ1, µ2 ∈ Prob(X), we have
∆X(µ1||µ2) = c.

Proof. When ∆ is 1-generated, there is a singleton set {a} such that, for every
pair µ1, µ2 ∈ Prob(X),

∆X(µ1||µ2) = sup
γ : X→Prob({a})

∆{a}(γ(µ1)||γ(µ2)).

Now, the set Prob({a}) is a singleton set {da}, and therefore both γ(µ1) and γ(µ1)
are equal to da for every γ : X → Prob({a}) and every pair µ1, µ2 ∈ Prob(X).
Hence, ∆X(µ1||µ2) = c where c = ∆{a}(da||da).

Lemma 6 (Lemma 14 (2)). If ∆ is k-generated, then it is also k + 1-generated.

Proof. Suppose that ∆ is equal to the k-cut of ∆ with respect to a set W
satisfying |W | = k.

∆X(µ1||µ2) = ∆
k

X(µ1||µ2) = sup
γ : X→Prob(W )

∆W (γ(µ1)||γ(µ2)).

Let V be an arbitrary set with |V | = k + 1. We define the k + 1-cut of ∆
k
with

respect to the set V .

∆
k
k+1

X (µ1||µ2)
def
= sup

γ : X→Prob(V )

∆
k

V (γ(µ1)||γ(µ2)).

We then have

∆
k
k+1

X (µ1||µ2) = sup
γ : X→Prob(V )

∆
k

V (γ(µ1)||γ(µ2))

= sup
γ : X→Prob(V )

sup
γ1 : V→Prob(W )

∆W (γ1(γ(µ1))||γ1(γ(µ2)))

= sup
γ : X→Prob(V )

sup
γ1 : V→Prob(W )

∆W ((γ1 • γ)(µ1)||(γ1 • γ)(µ2))

(∗)
= sup

γ′ : X→Prob(W )

∆W (γ′(µ1)||γ′(µ2)) = ∆
k

X(µ1||µ2)

The equality is obtained by the equality{
(γ1 • γ) : X → Prob(W )

∣∣∣∣ γ : X → Prob(V ),
γ1 : V → Prob(W )

}
= { γ′ : X → Prob(W ) }

The inclusion ⊆ is obvious. We show the reverse inclusion ⊇. Since |V | ≥ |W |,
there is a pair of function f : W → V and g : V → W such that g ◦ f = idW .
Then, every γ′ : X → Prob(W ) can be decomposed into γ′ = γ1 • γ where
γ = (f • γ) and γ1 = g (strictly, γ = ((ηV ◦ f) • γ) and γ1 = ηW ◦ g ).
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Lemma 7 (Lemma 14 (3)). If ∆ has the data-processing inequality, then it is
at least ∞-generated.

Proof. We fix a pair µ1, µ2 ∈ Prob(X). The set Y = supp(µ1) ∪ supp(µ1) is
at most countable. Hence there are two functions f : X → N and g : N → X
such that (g ◦ f)(x) = x for every x ∈ Y . We then have µ1 = (g ◦ f)(µ1) and
µ2 = (g ◦ f)(µ2). Thus,

∆X(µ1||µ2) = ∆X((g ◦ f)(µ1)||(g ◦ f)(µ2))

≤ ∆N(f(µ1)||f(µ2))

≤ sup
γ : X→Prob(N)

∆N(γ(µ1)||γ(µ2))

≤ ∆X(µ1||µ2).

The last part is an ∞-cut. The first and last inequality is obtained by the
data-processing inequality. The second one is obvious (f : X → N is regarded as
{x 7→ df(x)} : X → Prob(N)).

Lemma 8 (Lemma 14 (4)). Every k-cut of a divergence ∆ is always k-generated.

Proof. We can prove ∆
k
k

= ∆
k
in a almost the same way as Lemma 14 (2).

Continuity of divergence (Lemma 14(3) in general setting) We can
extend the results on divergences in the discrete setting to general measurable
setting using the continuity of divergences. We say that a divergence ∆ is
continuous if for any pair µ1, µ2 ∈ Prob(X),

∆X(µ1||µ2) = sup
n∈N

sup
γ : X→{0,1,2,...,n}

∆{0,1,2,...,n}(γ(µ1)||γ(µ2)).

If ∆ is continuous and satisfies data-processing inequality we have∞-generatedness
(moreover we show the “countable”-generatedness) as follows:

∆X(µ1||µ2)

= sup
n∈N

sup
γ : X→{0,1,2,...,n−1}

∆{0,1,2,...,n−1}(γ(µ1)||γ(µ2))

= sup
n∈N

sup
γ : X→{0,1,2,...,n−1}

∆{0,1,2,...,n−1}((gn ◦ fn)(γ(µ1))||(gn ◦ fn)(γ(µ2)))

= sup
n∈N

sup
γ : X→{0,1,2,...,n}

∆{0,1,2,...,n−1}(gn((fn • γ)(µ1))||gn((fn • γ)(µ1)))

≤ sup
n∈N

sup
γ : X→{0,1,2,...,n−1}

∆N((fn • γ)(µ1)||(fn • γ)(µ1))

≤ sup
γ : X→N

∆N(γ(µ1)||γ(µ2)) ≤ ∆
∞
X (µ1, µ2)

≤ ∆X(µ1, µ2).

Here fn : {0, 1, 2, . . . , n − 1} → N is the inclusion mapping, and gn : N →
{0, 1, 2, . . . , n − 1} is defined by gn(k) = k if (k < n) and gn(k) = n − 1
otherwise. We have (gn ◦ fn) = id{0,1,2,...,n−1}.

The first and last inequalities are obtained from data-processing inequality.
The second inequality is obvious.
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B.6 Proof of Lemma 15
Lemma 9 (Lemma 15). Consider a divergence ∆ and a k-generated divergence
∆′. For any k-cut ∆

k
of ∆,

∆′ ≤ ∆ =⇒ ∆′ ≤ ∆
k
.

Also, if ∆ has the data-processing inequality, the k-cut is the greatest k-generated
divergence below ∆:

∆′ ≤ ∆ ⇐⇒ ∆′ ≤ ∆
k ≤ ∆.

Proof. Since ∆′ is k-generated, for any choice of Y with |Y | = k, we have

∆′ ≤ ∆ =⇒ ∆′Y ≤ ∆Y =⇒ ∆′
k ≤ ∆

k ⇐⇒ ∆′ ≤ ∆
k
.

The second statement is proved as follows: From the first statement of this
lemma and Lemma 3 (Lemma 10 in the paper), We have

∆′ ≤ ∆ =⇒ ∆′ ≤ ∆
k ≤ ∆

The converse direction is obvious.

An extended version. We can extend this theorem to more suitable for
conversion laws of differential privacy.

Lemma 10 (Lemma 15, extended). Consider a divergence ∆ satisfying data-
processing inequality and a k-generated divergence ∆′.

∀X.∀µ1, µ2 ∈ Prob(X).(∆X(µ1||µ2) ≤ δ =⇒ ∆′X(µ1||µ2) ≤ ρ)

⇐⇒ ∀X.∀µ1, µ2 ∈ Prob(X).(∆
k

X(µ1||µ2) ≤ δ =⇒ ∆′X(µ1||µ2) ≤ ρ)

Proof. (⇐= ) Obvious from Lemma 3 (Lemma 10 in the paper). ( =⇒ ) From
the assumption, we obtain

∀X.∀µ1, µ2 ∈ Prob(X).∀γ : X → Prob(Y ).

∆Y (γ(µ1)||γ(µ2)) ≤ δ =⇒ ∆′Y (γ(µ1)||γ(µ2)) ≤ ρ.

This implies

∀X.∀µ1, µ2 ∈ Prob(X).(∆
k

X(µ1||µ2 ≤ δ =⇒ ∆′
k

X(µ1||µ2) ≤ ρ)

Thanks to the k-generatedness of ∆′, we conclude the statement of this lemma.

B.7 Proof of 2-generatedness of ε-divergence
Theorem 11. The ε-divergence ∆ε is 2-generated for all ε.

Proof. We recall that the ε-divergence ∆ε is quasi-convex (moreover, jointly
convex) and satisfies data-processing inequality. We choose a set Y = {Acc, Rej},
and take the 2-cut of ∆ε by

∆ε2

X(µ1||µ2) = sup
γ : X→Prob({Acc,Rej})

∆ε
Y (γ(µ1)||γ(µ2))
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We show this is equal to the original ∆ε
X(µ1||µ2). Without loss of generality we

may assume X is at most countable. If X is an arbitrary set, we can restrict it
to countable set in a similar way as the proof of Lemma 7 (Lemma 14(3) in the
paper).

By the weak Birkhoff-von Neumann Theorem (Theorem 1 in the appendix),
each γ : X → Prob({Acc, Rej}) can be decomposed into a convex combination
γ(x) =

∑
i∈I αidγi(x) of functions γi : X → {Acc, Rej} (i ∈ I) where I is a

countable set and
∑
i∈I αi = 1. By combining this and quasi-convexity and

data-processing inequality of ∆ε, we obtain

∆ε(γ(µ1)||γ(µ2)) = ∆ε(
∑
i∈I αiγi(µ1)||

∑
i∈I αiγi(µ1))

= sup
i∈I

∆ε(γi(µ1)||γi(µ1))

≤ sup
γ : X→{Acc,Rej}

∆ε
X(γ(µ1)||γ(µ2)).

This implies

∆ε2

X(µ1||µ2) = sup
γ : X→Prob({Acc,Rej})

∆ε(γ(µ1)||γ(µ2))

= sup
γ : X→{Acc,Rej}

∆ε
{Acc, Rej}(γ(µ1)||γ(µ2))

= sup
γ : X→{Acc,Rej}

sup
A⊆{Acc,Rej}

(Pr[γ(µ1) ∈ A]− eεPr[γ(µ2) ∈ A])

= sup
γ : X→{Acc,Rej}

sup
A⊆{Acc,Rej}

(Pr[µ1 ∈ γ−1(A)]− eεPr[µ2 ∈ γ−1(A)])

(∗)
= sup

S⊆X
(Pr[µ1 ∈ S]− eεPr[µ2 ∈ S])

= ∆ε
X(µ1||µ2)

We have the 2-generatedness: ∆ε2
= ∆ε. The equality (∗) is proved as follows: for

given γ and A, we take S = γ−1. Conversely, for any S ⊆ X we take A = {Acc}
and γ = χS , which is the indicator function of S defined by χS(x) = 1 if x ∈ S
and χS(x) = 0 otherwise.

General version We can extend this result to general measurable setting by
using the continuity of ∆ε (see also [Liese and Vajda, 2006]), which is obtained
by f -divergence characterization of ∆ε [Barthe and Olmedo, 2013]. For general
measurable sapce X and every pair µ1, µ2 ∈ Prob(X) we have

∆ε
X(µ1||µ2) = sup

γ : X→N
∆ε

N(γ(µ1)||γ(µ2))

= sup
γ : X→N

sup
γ′ : N→Prob({Acc,Rej})

∆ε
{Acc,Rej}((γ

′ • γ)(µ1)||(γ′ • γ)(µ2))

= sup
γ : X→{Acc,Rej}

∆ε
{Acc,Rej}(γ(µ1)||γ(µ2))

Functions are assumed to be measurable.
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B.8 Counterexample: Rényi-divergence is not 2-generated
Theorem 12. There are µ1, µ2 ∈ Prob({a, b, c}) such that

Dα2

{a,b,c}(µ1||µ2) < Dα
{a,b,c}(µ1||µ2)

Proof. Let p = (1/2)β/(α−1) and α+ 1 < β and define

µ1 =
1

3
da +

1

3
db +

1

3
dc,

µ2 =
p2

p2 + p+ 1
da +

p

p2 + p+ 1
db +

1

p2 + p+ 1
dc

Since Rényi divergence is quasi-convex and satisfies data-processing inequality, it
suffices to show the proper inequality Dα

{Acc,Rej}(γ(µ1)||γ(µ2)) < Dα
{a,b,c}(µ1||µ2)

holds for any deterministic decision rule γ : {a, b, c} → {Acc, Rej}. There
are 8 cases of γ : {a, b, c} → {Acc, Rej}, but thanks to the data-processing
inequality and reflexivity of Rényi divergence, it suffices to consider 3 cases:
(γ(a), γ(b), γ(c)) = (Acc, Acc, Rej), (Acc, Rej, Acc), (Rej, Acc, Acc). Hence,

exp((α− 1)Dα
{a,b,c}(µ1||µ2))

exp((α− 1)Dα
{Acc,Rej}(γ(µ1)||γ(µ2))

≥ min

(
p2(1−α) + p1−α + 1

2α(p2 + p)1−α + 1
,
p2(1−α) + p1−α + 1

2α(p2 + 1)1−α + p1−α ,
p2(1−α) + p1−α + 1

2α(p+ 1)1−α + p2(1−α)

)
≥ min

(
2β + 2−β + 1

2α(p+ 1)1−α + 2−β
,

2β + 2−β + 1

2α−β(p2 + 1)1−α + 1
,

2β + 2−β + 1

2β + 2α−β(p+ 1)1−α

)
≥ min

(
2β + 2−β + 1

2α+1
,

2β + 2−β + 1

2β + 1

)
> 1.

Hence,

Dα
{Acc,Rej}(γ(µ1)||γ(µ2)) +

1

α− 1
log min(

2β + 2−β + 1

2α+1
,

2β + 2−β + 1

2β + 1
)

≤ Dα
{a,b,c}(µ1||µ2).

holds for any γ : {a, b, c} → {Acc, Rej}. By the data-processing inequality of
Rényi divergence, this discussion does not depend on the choice of {Acc, Rej}. By
weak Birkhoff-von Neumann theorem, and the quasi-convexity Rényi divergence,
we conclude

Dα2

X(µ1||µ2) +
1

α− 1
log min(

2β + 2−β + 1

2α+1
,

2β + 2−β + 1

2β + 1
) ≤ Dα

X(µ1||µ2).

B.9 Proof of ∞-generatedness of Rényi-divergence
f -divergences is a class of divergences that are characterized by convex functions.
For a given convex function f : [0,∞)→ R satisfying limt→0+ tf(0/t) = 0 (this
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function is called weight function), we define an f -divergence ∆f corresponding
the function f ,

∆f
X(µ1||µ2)

def
=
∑
x∈X

µ2(x)f

(
µ1(x)

µ2(x)

)
.

The α-Rényi divergence Dα can also be characterized using f -divergence as
follows:

Dα(µ1||µ2) =
1

α− 1
log

∑
x∈X

µ2(x)

(
µ1(x)

µ2(x)

)α
=

1

α− 1
log ∆t 7→tα

X (µ1||µ2).

Remark that every f -divergence is quasi-convex (moreover jointly convex) and
continuous, and satisfies data-processing inequality (see also [Liese and Vajda, 2006,
Theorems 14–16]).

Since the mapping t 7→ 1
α−1 log t is monotone, every α-Rényi divergence

Dα is also quasi-convex and satisfies data-processing inequality. Thanks to the
data-processing inequality, every α-Rényi divergence Dα is at least ∞-generated.
We need to prove that for every finite k, every α-Rényi divergence Dα is not
k-generated. To prove this, we use that the mapping t 7→ tα is strictly convex.

Lemma 13. If a weight function is strictly convex, its f-divergence ∆f is not
k-generated for every finite k.

Proof. Without loss of generality, we may assume k > 1.
Consider a pair µ1, µ2 ∈ Prob({0, 1, 2, . . . , k}) satisfying supp(µ1) = supp(µ2) =

{0, 1, 2, . . . , k} and µ1(i)/µ2(i) 6= µ1(j)/µ2(j) where 1 ≤ i, j ≤ k + 1 and i 6= j.
We can give such distributions. Then we obtain,

∆f
k

{0,1,2,...,k}(µ1||µ2)

= sup
γ : {0,1,2,...,k}→Prob({0,1,2,...,k−1})

∆f
{0,1,2,...,k−1}(γ(µ1)||γ(µ2))

{Weak Birkhoff-von Neumann theorem and the joint convexity of ∆f}
= max
γ : {0,1,2,...,k}→{0,1,2,...,k−1}

∆f (γ(µ1)||γ(µ2))

= max
γ : {0,1,2,...,k}→{0,1,2,...,k−1}

k−1∑
j=0

f

(∑
γ(i)=j µ1(i)∑
γ(i)=j µ2(i)

)
(
∑
γ(i)=j µ2(i))

{Jensen’s inequality with the strict convexity of the weight function f}

<

k∑
i=0

f

(
µ1(i)

µ2(i)

)
µ2(i) = ∆f (µ1||µ2).

Since k + 1 > k, by Dirichlet’s pigeonhole principle, for any γ : {0, 1, 2, . . . , k} →
{0, 1, 2, . . . , k − 1}, for some j ∈ {0, 1, 2, . . . , k}, there are at least two different
i1, i2 ∈ {0, 1, 2, . . . , k−1} such that γ(i1) = j and γ(i2) = j. From the assumption
on µ1 and µ2, we have (µ1(i1)/µ2(i1)) 6= (µ1(i2)/µ2(i2)) Since the function f is
strictly convex, by the condition for equality of Jensen’s inequality, we have the
strict inequality

f

(
µ1(i1) + µ1(i2)

µ2(i1) + µ2(i2)

)
(µ2(i1)+µ2(i2)) < f

(
µ1(i1)

µ2(i1)

)
µ2(i1)+f

(
µ1(i2)

µ2(i2)

)
µ2(i2).
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Therefore, for any γ : {0, 1, 2, . . . , k} → {0, 1, 2, . . . , k − 1}, we have

k∑
j=1

(∑
γ(i)=j µ1(i)∑
γ(i)=j µ2(i)

)α
(
∑
γ(i)=jµ2(i)) <

k+1∑
i=1

(
µ1(i)

µ2(i)

)α
µ2(i).

Since there only finite case of γ : {0, 1, 2, . . . , k} → {0, 1, 2, . . . , k−1}, we conclude
∆f

k

{0,1,2,...,k}(µ1||µ2) < ∆f
{0,1,2,...,k}(µ1||µ2). Since every f -divergence satisfies

data-processing inequality, this discussion does not depend on the choice of set Y
with |Y | = k in the construction of the k-cut ∆f

k
. Thus, ∆f is not k-generated

for any finite k.

Since the mapping t 7→ 1
α−1 log t is strict, we conclude,

Corollary 14. For any alpha > 1, the α-Rényi divergence Dα is not k-generated
for every finite k.

B.10 Proof of Theorem 18
Theorem 15 (Theorem 18). Let µ1, µ2 ∈ Prob(X). ∆

2

X(µ1||µ2) ≤ ρ holds if
and only if for any γ : X → Prob({Acc, Rej}),

(Pr[γ(µ1) = Rej],Pr[γ(µ2) = Acc]) ∈ R∆(ρ).

Proof. We fix a 2-cut ∆
2
of a divergence ∆. Suppose that it is defined with a

set W satisfying |W | = 2.

∆
2

X(µ1||µ2) = sup
γ : X→Prob(W )

∆W (γ(µ1)||γ(µ2)).

We recall the definition of privacy region

R∆(ρ) =
{

(x, y)
∣∣∣ ∆

2

{Acc,Rej}((1− x)dAcc + xdRej||ydAcc + (1− y)dRej) ≤ ρ
}
.

Since every probability distribution ν ∈ Prob({Acc, Rej}) can be rewritten as
ν = Pr[ν = Acc]dAcc + Pr[ν = Rej]dRej, we obtain

∆
2

{Acc,Rej}(γ(µ1)||γ(µ2)) ≤ ρ

⇐⇒ (Pr[γ(µ1) = Rej],Pr[γ(µ2) = Acc]) ∈ R∆(ρ).

Hence, it suffices to show

(∆
2

X(µ1||µ2) ≤ ρ)

⇐⇒ ∀γ : X → Prob({Acc, Rej}).(∆2

{Acc,Rej}(γ(µ1)||γ(µ2)) ≤ ρ)

( =⇒ ) Obvious by the data-processing inequality of the 2-cut ∆
2
.

(⇐= ) The assumption is equivalent to

∀γ : X → Prob({Acc, Rej}).∀γ′ : {Acc, Rej} → Prob(W ).

(∆W (γ′(γ(µ1))||γ′(γ(µ2))) ≤ ρ)

11



Since |W | = |{Acc, Rej}| = 2, this is equivalent to

γ′′ : X → Prob(W ).∆W (γ′′(µ1)||γ′′(µ2)) ≤ ρ.

For any γ : X → Prob({Acc, Rej}). and γ′ : {Acc, Rej} → Prob(W ). we take
γ′′ = γ′ • γ. Conversely for any γ′′ : X → Prob(W ) we take γ = f • γ′′ and
γ′ = f−1 where f : {Acc, Rej} →W is a bijection.

B.11 Detailed Proof of Theorem 20
Theorem 16 (Theorem 20). If a mechanism M is (α, ρ)-RDP then it is (ρ+
log((α− 1)/α)− (log δ + logα)/(α− 1), δ)-DP for any 0 < δ < 1.

Proof. The privacy region of Rényi divergence is given by

RD
α

(ρ) =
{

(x, y)
∣∣∣ xα(1− y)1−α + (1− x)αy1−α ≤ eρ(α−1)

}
.

Here we assume 01−α = 0.
By Lemma 10 (an extension of Lemma 15 in the paper), to find ε satisfying

∀X.∀µ1, µ2 ∈ Prob(X). Dα
X(µ1||µ2) ≤ ρ =⇒ ∆ε

X(µ1||µ2) ≤ δ,

it is necessary and sufficient to find ε satisfying

∀X.∀µ1, µ2 ∈ Prob(X). Dα2

X(µ1||µ2) ≤ ρ =⇒ ∆ε
X(µ1||µ2) ≤ δ.

By Thorem 14 (Theorem 18 in the paper), this is equivalent to find ε satisfying
RD

α

(ρ) ⊆ R∆ε

(δ). Inspired from Mironov’s proof of conversion law from RDP
to DP [Mironov, 2017, Propisition 3]: we obtain,

xα(1− y)1−α + (1− x)αy1−α ≤ eρ(α−1)

=⇒ (1− x)αy1−α ≤ eρ(α−1)

=⇒ (1− x) ≤ (eρy)
α−1
α (†)

=⇒ (eρy > δ
α
α−1 =⇒ (1− x) ≤ eρ−log d/(α−1)y)

∧ (eρy ≤ δ
α
α−1 =⇒ (1− x) ≤ δ)

=⇒ (1− x) ≤ eρ−log d/(α−1)y + δ.

The last part of (1−x) ≤ eρ−log d/(α−1)y+δ derives Mironov’s result [Mironov, 2017,
Propisition 3]. Now, starting from (†), we have a better bound for DP as follows:
consider a curve C given by the equation

1− x = (eρy)
α−1
α ⇐⇒ x = 1− (eρy)

α−1
α

. We have the derivative of x as follows:

dx

dy
= −α− 1

α
e
α−1
α ρy−

1
α

We can take the tangent of the curve C by

x =
dx

dy
(t)(y − t) + (eρ(1− t))

α−1
α

12



We will find parameters that a tangent of C meets (1 − x) = eεy + δ. x =
−eεy − δ + 1 We first solve

−eε =
dx

dy
(t) = −α− 1

α
e
α−1
α ρt−

1
α ⇐⇒ ε = log(

α− 1

α
) +

α− 1

α
ρ− 1

α
log t.

Next we solve

1− δ = −tdx
dy

(t) + 1− (eρt)
α−1
α ⇐⇒ 1− δ =

α− 1

α
e
α−1
α ρt−

1
α t+ 1− (eρt)

α−1
α

We then have

δ = (eρt)
α−1
α − α− 1

α
e
α−1
α ρt−

1
α t =

1

α
(eρt)

α−1
α ⇐⇒ t = (δαe−

α−1
α ρ)

α
α−1

Simple computations give the following:

ε = log(
α− 1

α
) + ρ− log δ + logα

α− 1
.

By the symmetry of RD
α

(ρ) and R∆ε

(δ), we have

RD
α

(ρ) ⊆ R∆ε

(δ).

As we mentioned, it is equivalent to

∀X.∀µ1, µ2 ∈ Prob(X). Dα
X(µ1||µ2) ≤ ρ =⇒ ∆ε

X(µ1||µ2) ≤ δ.

This completes the proof.

As a conjecture, if we calculate tangents of the boundary of the privacy region
RD

α

(ρ), we have optimal conversion law from (α, ρ)-RDP to DP. The boundary
of RD

α

(ρ) is given by the equation

xα(1− y)1−α + (1− x)αy1−α = eρ(α−1).

B.12 Proof of Theorem 22
Theorem 17 (Theorem 22). Let F : [0, 1]2k → [0,∞] be a quasi-convex function.
Then the divergence ∆F defined below is k-generated and quasi-convex.

∆F
X(µ1||µ2)

def
= sup
{Ai}ki=1

partition of X

F (µ1(A1), · · · , µ1(Ak), µ2(A1), · · · , µ2(Ak)) .

Proof. The quasi-convexity is obvious from the quasi-convexity of F : [0, 1]2k →
[0,∞]. We show the k-generatedness. We take the k-cut with respect to
the k-element set {1, 2, . . . , k}. We may assume X is countable. For any

13



µ1, µ2 ∈ Prob(X),

∆F
k

X(µ1||µ2)

= sup
γ : X→Prob({1,2,...,k})

∆F
{1,2,...,k}(γ(µ1)||γ(µ2))

= sup
γ : X→Prob({1,2,...,k})

sup
{Ai}ki=1

partition of
{1,2,...,k}

F

(
(γ(µ1))(A1), · · · , (γ(µ1))(Ak),
(γ(µ2))(A1), · · · , (γ(µ2))(Ak)

)

= sup
γ : X→Prob({1,2,...,k})
p : {1,2,...,k}→{1,2,...,k}

F

(
(γ(µ1))(p−1(1)), · · · , (γ(µ1))(p−1(k)),
(γ(µ2))(p−1(1)), · · · , (γ(µ2))(p−1(k))

)

= sup
γ : X→Prob({1,2,...,k})
p : {1,2,...,k}→{1,2,...,k}

F

(
(((p • γ)(µ1))(1), · · · , ((p • γ)(µ1))(k),
((p • γ)(µ2))(1), · · · , ((p • γ)(µ2))(k)

)

= sup
γ : X→Prob({1,2,...,k})

F

(
((γ(µ1))(1), · · · , (γ(µ1))(k),
(γ(µ2))(1), · · · , (γ(µ2))(k)

)
.

Here by weak Birkhoff-von Neumann thorem (countable version), every function
γ : X → Prob({1, 2, . . . , k}) is decomposed into a (countable) convex combination∑
i∈I ai(η{1,2,...,k} ◦ γi) of γi : X → {1, 2, . . . , k}. Hence,

∆F
k

X(µ1||µ2)

= sup
γ : X→Prob({1,2,...,k})

F

(
((γ(µ1))(1), · · · , (γ(µ1))(k),
(γ(µ2))(1), · · · , (γ(µ2))(k)

)
(†)

= sup
γ : X→Prob({1,2,...,k})

F


((
∑
i∈I ai(η{1,2,...,k} ◦ γi)(µ1))(1),
· · · , (

∑
i∈I ai(η{1,2,...,k} ◦ γi)(µ1))(k),

(
∑
i∈I ai(η{1,2,...,k} ◦ γi)(µ2))(1),
· · · , (

∑
i∈I ai(η{1,2,...,k} ◦ γi)(µ2))(k)


= sup
γ : X→Prob({1,2,...,k})

F

(
(
∑
i∈I ai(γi(µ1))(1), · · · ,

∑
i∈I ai(γi(µ1))(k),∑

i∈I ai(γi(µ2))(1), · · · ,
∑
i∈I ai(γi(µ2))(k)

)
≤ sup
γ : X→Prob({1,2,...,k})

sup
i∈I

F

(
((γi(µ1))(1), · · · , (γi(µ1))(k),
(γi(µ2))(1), · · · , (γi(µ2))(k)

)
≤ sup
γ : X→{1,2,...,k}

F

(
((γ(µ1))(1), · · · , (γ(µ1))(k),
(γ(µ2))(1), · · · , (γ(µ2))(k)

)
= sup
γ : X→{1,2,...,k}

F

(
(µ1(γ−1(1)), · · · , µ1(γ−1(k)),
µ2(γ−1(1)), · · · , µ2(γ−1(k))

)
≤ sup

{Ai}ki=1
partition of
{1,2,...,k}

F

(
(γ(µ1))(A1), · · · , (γ(µ1))(Ak),
(γ(µ2))(A1), · · · , (γ(µ2))(Ak)

)

= ∆F
X(µ1||µ2).

We have ∆F
k

X(µ1||µ2) ≤ ∆F
X(µ1||µ2). Conversely, by equality (†), we also have

∆F
k

X(µ1||µ2) ≥ ∆F
X(µ1||µ2). This completes the proof.
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General version If the quasi-convex function F : [0, 1]2k → [0,∞] is also
continuous, we can extend Theorem 22 to general measurable setting.

Theorem 18 (k-generatedness in general setting). Assume that F : [0, 1]2k →
[0,∞] is quasi-convex and continuous. For any measurable space X, we have

∆X(µ1, µ2) = sup
γ : X→Prob({1,2,...k})
measurable function

∆X(γ(µ1), γ(µ2)).

Proof. We easily calculate as follows (functions are assumed to be measurable):

∆X(µ1, µ2)

= sup
{
F (µ1(A1), · · · , µ1(Ak), µ2(A1), · · · , µ2(Ak))

∣∣ {Ai}ki=1 : m’ble partition of X
}

= sup
{
F (µ1(f−1(1)), · · · , µ1(f−1(k)), µ2(f−1(1)), · · · , µ1(f−1(k)))

∣∣ f : X → {1, 2, . . . , k}
}

= sup { F ((f(µ1))(1), · · · , (f(µ1))(k), (f(µ2))(1), · · · , (f(µ2))(k)) | f : X → {1, 2, . . . , k} }
≤ sup { F ((γ(µ1))(1), · · · , (γ(µ1))(k), (γ(µ2))(1), · · · , (γ(µ2))(k)) | γ : X → Prob({1, 2, . . . , k}) }

≤ sup

{
F

(
(γ(µ1))(A1), · · · , (γ(µ1))(Ak),

(γ(µ2))(A1), · · · , (γ(µ2))(Ak)

) ∣∣∣∣∣ γ : X → Prob({1, 2, . . . , k}),
{Ai}ki=1 : m’ble partition of X

}
= sup
γ : X→Prob({1,2,...,k})

∆{1, 2, . . . , k}(γ(µ1), γ(µ2))

Note that we treat {1, 2, . . . , k} as a finite discrete space. Consider the family
{Jn}∞n=1 of finite sets (discrete spaces) defined as follows:

Jn =
{

(j1, . . . , jk)
∣∣ j1, . . . , jk ∈ {0, 1, . . . , 2n − 1}, Cnj1...jk 6= ∅

}
.

We fix a measurable function γ : X → Prob(k) and treat Prob(k) as a subset
of [0, 1]k. For each n ∈ N, we define a measurable partition {Cnj1...jk}j1,...,jk∈{0,1,...,2n−1}
of X by

Cnj1...jk = γ−1(Bnj1...jk)

where Bnj1...jN = Dj1 × · · · ×Djk ((j1 . . . jk) ∈ Jn),

Dn
0 = {0} and Dn

l+1 = (l/2n, (l + 1)/2n] (l = 0, 1, 2, . . . , 2n − 1).

We next define m∗n : X → Jn and mn : Jn → X as follows: m∗n(x) is the unique
element (j1, . . . , jk) ∈ Jn satisfying x ∈ Cnj1,...,jk , and we choose mn(j1, . . . , jk) is
an element of Cnj1,...,jk . Thanks to the measurability of each Cnj1...jk , the function
m∗n is measurable, and the measurability of mn follows from the discreteness
of Jn. From the construction of {Cnj1...jk}j1,...,jk∈{0,1,...,2n−1}, for any n ∈ N,
x ∈ X, and i ∈ I, we have,

|γ(x)(i)− (γ ◦mn ◦m∗n)(x)(i)| ≤ 1/2n

This implies that the sequence {γ◦mn◦m∗n}∞n=1 of measurable function converges
uniformly to γ. Hence, for any n ∈ N and D ⊆ k, we have∣∣∣∣∫ γ(x)(D) dµ1(x)−

∫
(γ ◦mn ◦m∗n)(x)(D) dµ1(x)

∣∣∣∣ ≤ 1/2n

Hence the sequence of probability measures {(γ ◦mn ◦m∗n)(µ1)}∞n=1 converges
to the probability measure γ(µ1). Similarly, {(γ ◦mn ◦m∗n)(µ2)}∞n=1 converges
to γ(µ2).
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By the continuity of F , we obtain

F ((γ(µ1))(A1), · · · , (γ(µ1))(Ak), (γ(µ2))(A1), · · · , (γ(µ2))(Ak))

= lim
n→∞

F

(
((γ ◦mn ◦m∗n)(µ1))(A1), · · · , ((γ ◦mn ◦m∗n)(µ1))(Ak),

((γ ◦mn ◦m∗n)(µ2))(A1), · · · , ((γ ◦mn ◦m∗n)(µ2))(Ak)

)

= lim
n→∞

F

(
((γ ◦mn)(m∗n(µ1)))(A1), · · · , ((γ ◦mn)(m∗n(µ1)))(Ak),

((γ ◦mn)(m∗n(µ2)))(A1), · · · , ((γ ◦mn)(m∗n(µ2)))(Ak)

)
≤ sup
n∈N

∆{1,2,...,k}(((γ ◦mn)(m∗n(µ1))), ((γ ◦mn)(m∗n(µ2))))

{Since Jn is finite (countable and discrete), we can apply Theorem 22.}
≤ sup
n∈N

∆Jn(m∗n(µ1),m∗n(µ2))

= sup
n∈N

sup

{
F (

(
f(m∗n(µ1)))(1), · · · , (f(m∗n(µ1)))(k),

(f(m∗n(µ2)))(1), · · · , ((f(m∗n(µ1)))(k)

) ∣∣∣∣ f : Jn → {1, 2, . . . , k}
}

≤ sup{F ((g(µ1))(1), · · · , (g(µ1))(k), (g(µ2))(1), · · · , (g(µ2))(k)) | g : X → {1, 2, . . . , k}}
= ∆X(µ1, µ2).

This implies supγ : X→Prob(k) ∆k(γ(µ1), γ(µ2)) ≤ ∆X(µ1, µ2).

C Additional Results

C.1 Total variation distance is 2-generated
We recall the definition of the total variation distance

TVX(µ1||µ2) = sup
S⊆X

|Pr[µ1 ∈ S]− Pr[µ2 ∈ S]|.

In a similar way as ε-divergence ∆ε, we can prove 2-generatedness of the total
variation distance TV, but we can prove it easily by applying Theorems 16–17
(Theorems 20 and 22 in the paper).

Define F : [0, 1]4 → [0,∞] by F (x, x′, y, y′) = |x− y|. It is easy to check that
the function is obviously quasi-convex, and that we have TV = ∆F .

C.2 An optimal conversion law from Hellinger to DP
We recall the definition of the Hellinger distance

HDX(µ1||µ2) = 1−
∑
x∈X

√
µ1(x)µ2(x).

Since it is the f -divergence of weight function w(t) =
√
t− 1 (strict convex), the

Hellinger distance is exactly ∞-generated, quasi-convex and continuous.
Here is the essense of an optimal conversion law from the Hellinger distance

to DP.
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Lemma 19. We have RHD(ρ) ⊆ R∆ε

(δ(ε, ρ)) where

δ(ε, ρ) = 1− t− f(t)

g(t)
(1)

t =
z2 + 4− z

√
z2 + 4

2(z2 + 4)
(2)

z =
1/eε − 2(1− ρ) + 1

(1− ρ)
√
ρ(2− ρ)

f(x) = (1− ρ)2(1− 2x) + x− 2(1− ρ)
√
d(2− d)x(1− x)

g(x) =
df

dx
(x) = (1− ρ)2(1− 2x) + xf − 2(1− ρ)

√
d(2− d)x(1− x)

Proof. We may regard

RHD(ρ) =
{

(x, y) ∈ [0, 1]2
∣∣∣ 1−

√
x(1− y)−

√
(1− x)y ≤ ρ

}
,

R∆ε

(δ) =
{

(x, y) ∈ [0, 1]2
∣∣ max((1− x)− eεy, x− eε(1− y)) ≤ δ

}
.

We first calculate the boundary of RHD(ρ). Thus, we solve the following equation
for y:

1−
√
x(1− y)−

√
(1− x)y = ρ.

We first have

1−
√
x(1− y)−

√
(1− x)y = ρ

⇐⇒ (1− ρ)2 − x(1− y)− y(1− x) = 2
√
x(1− x)y(1− y)

⇐⇒ (1− ρ)4 + x2(1− y)2 + y2(1− x)2 − 2x(1− y)(1− ρ)2 − 2y(1− x)(1− ρ)2

The degree of this equation is 2, so we can solve it. For given x ∈ [0, 1], we have

y = (1− ρ)2(1− 2x) + x± 2(1− ρ)
√
x(1− x)ρ(2− ρ).

Thanks to the Symmetry of RHD(ρ) and R∆ε

(δ), we may consider the curve:

y = (1− ρ)2(1− 2x) + x− 2(1− ρ)
√
x(1− x)ρ(2− ρ) = f(x).

The tangent of the curve y = f(x) that passes the point (t, f(t)) is given by the
equation x− y

g(t) = t− f(t)
g(t) where g(x) = df

dx (x). We next find t and δ that the
lower boundary

(1− x)− eεy = δ ⇐⇒ x+ eεy = 1− δ

of R∆ε

(δ(ε, ρ)) is the same as the line x− y
g(t) = t− f(t)

g(t) . We solve the equation
eε = 1

g(t) on t about the slope as (2). Finally, we obtain δ as (1).

We conclude an optimal conversion law from the Hellinger distance to DP.

Theorem 20. We always have HDX(d1, d2) ≤ ρ =⇒ ∆ε
X(d1, d2) ≤ δ(ε, ρ)

where δ(ε, ρ) is given by (1).
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Figure 1: Comparison of the privacy region for DP and the one for 2-cut of
Hellinger distance.
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