
Sample Complexity of Estimating the Policy Gradient

A Proof of Theorem 4.6
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Similarly, given a sample ~⇣ ⇠ p(~⇣), the stochastic approximation of the expected cumulative reward is
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The claim follows.

Bounding the deviation of r✓Ĵ from r✓J . We claim that
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Upper bound on sample complexity of r✓Ĵ � r✓J . Note that E  k~⇣k1, where we think of ~⇣ as the
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The claim follows.
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Note that the numerator is positive as long as �  1/2. The claim follows, as does the theorem statement.

B Proof of Theorem 4.7
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Note that for p⇠(⇠) satisfying our conditions (di↵erentiable on R and satisfying lim⇠!±1 ⇠ · p⇠(⇠) = 0), we have

Ep⇠(⇠)[⇠ ·r⇠ log p⇠(⇠)] =

Z 1

�1
⇠ ·r⇠p⇠(⇠)d⇠ = �

Z 1

�1
p⇠(⇠)d⇠ = �1, (2)

where the second-to-last step follows from integration by parts. Thus, by the definition of the sample complexity,

Pr

"�����
1

n

nX

i=1

⇠
(i) ·r⇠ log p⇠(⇠

(i)) + 1

����� � ✏

#
> �

for any n < n⇠(✏, �), so we have

Pr
h
|D̂PG(0)�r✓J(0)| � ✏

i
= Pr

"
�
T�2

�����
1

n

nX

i=1

⇠
(i) ·r⇠ log p⇠(⇠

(i)) + 1

����� � �
T�2

✏

#
> �.

for any n < n⇠(✏/�T�2
, �). Thus, we have

nPG(✏, �) � n⇠(✏/�
T�2

, �).

Next, consider the case where p⇠(⇠) = N (⇠ | 0,�2), for any � 2 R+. Then, we have

r⇠ log p⇠(⇠) = r⇠

✓
� log

p
2⇡ � k⇠k2

2�2

◆
= � ⇠

�2
,

so

D̂PG(0)�r✓J(0) = �
T�2

"
�1 +

1

n�2

nX

i=1

(⇠(i))2
#
= �

T�2

"
�1 +

1

n

nX

i=1

(x(i))2
#
,
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where x
(i) ⇠ N (0, 1) are i.i.d. standard Gaussian random variables for i 2 [n]. By Lemma H.8, letting x =

n
�1
Pn

i=1(x
(i))2 (so µx = Ep(x) = 1), for

n  min

(
2�T�2

�
1
2 log(1/�) + log(1/e2

p
2)
�

✏
,
1

�

)
,

we have

Pr
h
D̂PG(0)�r✓J(0) � ✏

i
= Prp(x)


x � µx +

✏

�T�2

�
� 1p

n
· 1

e2
p
2
e
� n✏

2�T�2 �
p
� ·

p
� = �.

Thus, the sample complexity of D̂PG �r✓J(✓) satisfies

nPG(✏, �) � min

(
2�T�2

�
1
2 log(1/�) + log(1/e2

p
2)
�

✏
,
1

�

)
.

Note that the numerator is positive as long as �  1/12. The claim follows, as does the theorem statement.

C Proof of Theorem 4.11

Preliminaries. Note that the expected cumulative reward is equivalent to

J(✓) = V
(0)
✓ (s0)

V
(t)
✓ (s) = R✓(s) + Ep(⇣)

h
V

(t+1)
✓ (f✓(s) + ⇣)

i
(8t 2 {0, 1, ..., T � 1})

V
(T )
✓ (s) = 0.

Similarly, given a sample ~⇣ ⇠ p(~⇣), the stochastic approximation of the expected cumulative reward is

Ĵ(✓; ~⇣) = V̂
(0)
✓ (s0; ~⇣)

V̂
(t)
✓ (s; ~⇣) = R✓(s) + V̂

(t+1)
✓ (f✓(s) + ⇣t; ~⇣) (8t 2 {0, 1, ..., T � 1})

V̂
(T )
✓ (s; ~⇣) = 0.

The finite di↵erence approximation of r✓J(✓) is

DFD(✓) =
d⇥X

k=1

J(✓ + �⌫
(k))� J(✓ � �⌫

(k))

2�
· ⌫(k),

where ⌫
(k) is a basis vector for k 2 [d] and d⇥ is the dimension of the parameter space ⇥ = Rd. Finally, an

estimate of the finite di↵erence approximation for two samples ⇣, ⌘ ⇠ p̃(⇣) is

D̂FD(✓; ~⇣, ~⌘) =
d⇥X

k=1

Ĵ(✓ + �⌫
(k); ~⇣)� Ĵ(✓ � �⌫

(k); ~⌘)

2�
· ⌫(k),

where Ĵ(✓; ~⇣) is as defined in the proof of Theorem 4.6.

Bounding the deviation of V̂ (t)
✓ from V

(t)
✓ . We claim that for t 2 {0, 1, ..., T}, we have

kV̂ (t)
✓ (s; ~⇣)� V

(t)
✓ (s)k  B

(t)(~⇣)

for all ✓ 2 ⇥ and s 2 S, where

B
(t)(~⇣) =

T�1X

i=t

L
(i+1)
V (k⇣ik+ �⇣

p
dA),
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where L
(t)
V is a Lipschitz constant for V

(t)
✓ . The base case t = T follows trivially. Note that �⇣

p
dA �p

Ep(⇣)[k⇣k2] � Ep(⇣)[k⇣k]. Then, for t 2 {0, 1, ..., T � 1}, we have

kV̂ (t)
✓ (s; ~⇣)� V

(t)
✓ (s)k =

���V̂ (t+1)
✓ (f✓(s) + ⇣t; ~⇣)� Ep(⇣)

h
V

(t+1)
✓ (f✓(s) + ⇣)

i���

kV̂ (t+1)
✓ (f✓(s) + ⇣t; ~⇣)� V

(t+1)
✓ (f✓(s) + ⇣t)k

+ Ep(⇣)

h
kV (t+1)

✓ (f✓(s) + ⇣t)� V
(t+1)
✓ (f✓(s) + ⇣)k

i

B
(t+1)(~⇣) + L

(t+1)
V (k⇣tk+ �⇣

p
dA)

=B
(t)(~⇣).

The claim follows.

Bounding the deviation of D̂FD from DFD. Let

DFD(✓)Ep(~⇣),p(~⌘)[D̂FD(✓)].

Then, letting LrV = argmaxt2{0,1,...,T} L
(t)
rV , note that

kĴ(✓; ~⇣)� J(✓)k  B
(0)(~⇣) =

T�1X

i=0

L
(i+1)
V (k⇣ik+ �⇣

p
dA)  3T 3

LR✓ L̄
T
f✓ (E + �⇣

p
dA),

where E = T
�1
PT�1

t=0 k⇣tk. Thus, we have

kD̂FD(✓; ⇣, ⌘)k �DFD(✓)kk =

�����
Ĵ(✓ + �⌫

(k); ~⇣)� Ĵ(✓ � �⌫
(k); ~⌘)

2�
· ⌫(k) � J(✓ + �⌫

(k))� J(✓ � �⌫
(k))

2�
· ⌫(k)

�����

 kĴ(✓ + �⌫
(k); ~⇣)� J(✓ + �⌫

(k))k+ kĴ(✓ � �⌫
(k); ~⌘)� J(✓ � �⌫

(k))k
2�


3T 3

LR✓ L̄
T
f✓
(E + Ẽ + 2�⇣

p
dA)

2�

for k 2 [d⇥], where Ẽ = T
�1
PT�1

t=0 k⌘tk.

Upper bound on the sample complexity of D̂FD �DFD. Note that E + Ẽ  kE0k1, where E
0 = ~⇣ � ~⌘ is

the length 2TdS concatenation of the vectors ⇣0, ⇣1, ..., ⇣T�1, ⌘0, ⌘1, ..., ⌘T�1, so E
0 is �⇣-sub-Gaussian. We apply

Lemma G.7 with

Y = D̂FD(✓; ~⇣, ~⌘)k �DFD(✓)k

X = E
0

A =
3T 3

LR✓ L̄
T
f✓

�

B = A�⇣

p
dA.

Thus, Y is �FD-sub-Gaussian, where

�FD = max{10A�(2TdA) log(2TdA), 5A�⇣

p
dA)}

= 20A�⇣TdA log(TdA)


60T 4

LR✓ L̄
T
f✓
�⇣dA log(TdA)

�
.

Thus, by Lemma G.6, for k 2 [d⇥], the sample complexity of D̂FD(✓)k �DFD(✓)k is

q
ñFD(✏̃, �̃) =

�FD

q
2 log(2dA/�̃)

✏̃

= O

 
T

4
LR✓ L̄

T
f✓
�⇣dA log(T ) log(dA)3/2 log(1/�̃)1/2

�✏̃

!
.
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Upper bound on the sample complexity of D̂FD �r✓J(✓). By Theorem 3.3, we have

r✓J(✓) = DFD(✓) +�,

where

k�k  LrJdA�  44T 5
L̄R✓ L̄

4T
f✓ dA�,

where the second inequality follows from the fact that LrJ = L
(0)
rV and the bound on L

(0)
rV in Lemma D.2. Now,

taking

� =
✏

88T 5L̄R✓ L̄
4T
f✓

dA

✏̃ =
✏

2
p
d⇥

�̃ =
�

d⇥
,

then with probability 1� �, we have

kD̂FD(✓)�r✓J(✓)k  kD̂FD(✓)�DFD(✓)k+ k�k  ✏,

so the sample complexity of D̂FD(✓)�r✓J(✓) is

p
nFD(✏, �) = = O

 
T

9
L̄
2
R✓

L̄
5T
f✓

�⇣d
2
A

p
d⇥ log(T ) log(dA)3/2 log(d⇥)1/2 log(1/�̃)1/2

✏2

!
.

The claim follows.

Lower bound on the sample complexity of D̂FD � r✓J(✓). Consider a linear dynamical system with
S = R2, A = R, time-varying deterministic transitions

ft((s, s
0), a) =

(
�(s, s0 + a) if s = 0

�(s, s0) otherwise,

time-varying noise

pt((⇣, 0)) =

(
N (⇣ | 0,�2

⇣ ) if t = 0

�(0) otherwise,

where �⇣ 2 R, initial state s0 = (0, 0), time-varying rewards

Rt((s, s
0), a) =

(
s+ �(s0) if t = T � 1

0 otherwise,

where � : R ! R is defined by

�(x) =

8
><

>:

2x� 1 if x � 1

x
2 if � 1  x < 1

2x+ 1 if x < �1,

control policy class ⇡✓((s, s0)) = ✓, and current parameters ✓ = 0. Note that technically, R is not twice continu-
ously di↵erentiable, so it does not satisfy Assumption 4.2. However, the only place in the proof of Theorem 4.11
where we need this assumption is to apply Lemma F.2 in Lemma D.2. By the discussion in the proof of
Lemma F.2, the lemma still applies, so our theorems still apply to this dynamical system. Now, we have

st =

(
0 if t = 0

�
t�1(⇣, ✓) otherwise,
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where ⇣ = ⇣0 is the noise on the first step. Thus, we have

Ĵ(✓; ⇣) = sT�1 + s
0
T�1 = �

T�2
⇣ + �(�T�2

✓).

Also, note that

r✓J(✓) = Ep(⇣)[r✓Ĵ(0; ⇣)] = �
0(�T�2

✓) · �T�2
,

so r✓J(0) = 0, since �
0(0) = 0.

Next, note that for 2n i.i.d. samples ⇣(1), ..., ⇣(n), ⌘(1), ..., ⌘(n) ⇠ N (0,�2
⇣ ), we have

D̂FD(0)�r✓J(0) =
1

2�

"
1

n

nX

i=1

Ĵ(�; ⇣(i))� 1

n

nX

i=1

Ĵ(��; ⌘(i))

#

=
1

2�
· 1
n

nX

i=1

h
�
T�2

⇣
(i) � �

T�2
⌘
(i)
i
+

1

2�

⇥
�(�T�2

�)� �(��
T�2

�)
⇤
.

Letting ⇣
(n+i) = �⌘

(i) for i 2 [n], and using the fact that �(�x) = ��(x), we have

D̂FD(0)�r✓J(0) =
1

2�n

2nX

i=1

�
T�2

⇣
(i) +

1

�
· �(�T�2

�) ⇠ N
⇣
µFD,

�FD

n

⌘
.

where

µFD = �(�T�2
�)

�FD =
�
T�2

�⇣

�
.

Thus, by Lemma G.8, for

n 
�
2
FD

⇣
log
�p

e
2⇡

�
+ log(1/�̃)

⌘

✏2
,

and recalling that DFD(✓) = Ep✓(↵)[D̂FD(✓;↵)] = µFD, we have

Pr
h
D̂FD(0)�DFD(0) � ✏̃

i
= Prx⇠N (0,�2

FD/n)[|x| � ✏̃] �
r

e

2⇡
· e�n✏2/�2

FD � �̃.

Thus, the sample complexity of D̂FD(0)�DFD(0) satisfies

ñFD(✏̃, �̃) �
�
2
FD

⇣
log
�p

e
2⇡

�
+ log(1/�̃)

⌘

✏̃2
.

Now, recall that r✓J(0) = 0, so

Pr
h
D̂FD(0)�r✓J(0) � ✏

i
= Pr

h
D̂FD(0) � ✏

i
= Pr

h
D̂FD(0)�DFD(0) � ✏� µFD

i
.

Thus, using our assumption �  1/2, then we need to have µFD  ✏ for Pr
h
D̂FD(0)�r✓J(0) � ✏

i
 � to hold.

As a consequence, using our assumption ✏  1, we must have

✏ � µFD = �(�T�2
�) = �

2(T�2)
�
2
,

where the last step follows since 0  �(�T�2
�)  1 implies �(x) = x

2. Thus, we have � 
q

✏
�2(T�2) , so we have

�FD � �
4(T�2)

�
2
⇣/✏. Finally, we have

Pr
h
D̂FD(0)�r✓J(0)) � ✏

i
� Pr

h
D̂FD(0)�DFD(0) � ✏

i
,
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so the sample complexity of D̂FD(0)�r✓J(✓) satisfies

nFD(✏, �) � ñFD(✏, �) �
�
2
FD(T � 2)2�2(T�3) ·

�
log
�p

e
2⇡

�
+ log(1/�)

�

✏2

�
(T � 2)2�6(T�3)

�
2
⇣ ·
�
log
�
log(1/�) +

p
e
2⇡

��

✏4
.

Finally, for any d⇥ 2 N, we can consider d⇥ independent copies of this dynamical system. Then, estimating the
gradient r✓J(✓) is equivalent to estimating dJ

d✓i
(✓) for each i 2 [d⇥]. Thus, we have

nFD(✏, �) � ñFD(✏, �) �
(T � 2)2�6(T�3)

�
2
⇣d⇥ ·

�
log
�
log(1/�) +

p
e
2⇡

��

✏4
.

The claim follows, as does the theorem statement.

D Bounds on Lipschitz Constants

We prove bounds on the Lipschitz constants L(t)
V for V (t)

✓ , L(t)
rV for rV

(t)
✓ , and L

(t)

Ṽ
for Ṽ (t)

✓ . We use implicitly
use the commonly known results in Appendix F throughout these proofs.

Lemma D.1. We claim that for t 2 {0, 1, ..., T}, V (t)
✓ is L

(t)
V -Lipschitz, where

L
(t)
V  3T 2

LR✓ L̄
T�t�1
f✓

.

Proof. First, we show that V (t)
✓ is L(t)

V,✓-Lipschitz in ✓ and L
(t)
V,s-Lipschitz in s, where

L
(t)
V,✓ =

T�1X

i=t

(LR✓ + Lf✓L
(i+1)
V,s )

L
(t)
V,s =

T�1X

i=t

L
i�t
f✓

LR✓ ,

We prove by induction. The base case t = T is trivial. Then, for t 2 {0, 1, ..., T � 1}, note that V
(t)
✓ is

(L(t)
V,✓)

0-Lipschitz in ✓, where

(L(t)
V,✓)

0 = LR✓ + L
(t+1)
V,✓ + Lf✓L

(t+1)
V,s = L

(t)
V,✓.

Similarly, note that V (t)
✓ is (L(t)

V,s)
0-Lipschitz in s, where

(L(t)
V,s)

0 = LR✓ + Lf✓L
(t+1)
V,s = L

(t)
V,s,

as was to be shown. Finally, note that

L
(t)
V,s  TLR✓ L̄

T�t�1
f✓

,

so

L
(t)
V,✓  T (LR✓ + Lf✓ · TLR✓ L̄

T�t�2
f✓

)  2T 2
LR✓ L̄

T�t�1
f✓

.

Thus, V (T )
✓ is (L(t)

V )0-Lipschitz, where

(L(t)
V )  L

(t)
V,✓ + L

(t)
V,s  3T 2

LR✓ L̄
T�t�1
f✓

= L
(t)
V .

The claim follows.
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Lemma D.2. We claim that for t 2 {0, 1, ..., T}, rV
(t)
✓ is L

(t)
rV -Lipschitz, where

L
(t)
rV = 44T 5

L̄R✓ L̄
4(T�t�1)
f✓

.

Proof. First, we show that r✓V
(t)
✓ is L

(t)
rV,✓,✓-Lipschitz in ✓ and L

(t)
rV,✓,s-Lipschitz in s, and that rsV

(t)
✓ is

L
(t)
rV,✓,s-Lipschitz in ✓ and L

(t)
rV,s,s-Lipschitz in s, where

L
(t)
rV,✓,✓ =

T�1X

i=t

(LrR✓ + 2Lf✓L
(i+1)
rV,✓,s + L

2
f✓L

(i+1)
rV,s,s + Lrf✓L

(i+1)
V )

L
(t)
rV,✓,s =

T�1X

i=t

L
i�t
f✓

(LrR✓ + L
2
f✓L

(i+1)
rV,s,s + Lrf✓L

(i+1)
V )

L
(t)
rV,s,s =

T�1X

i=t

L
2(i�t)
f✓

(LrR✓ + Lrf✓L
(i+1)
V )

L
(T )
rV,✓,✓ = L

(T )
rV,✓,s = L

(T )
rV,s,s = 0.

We prove by induction. The base case t = T is trivial. First, for t 2 {0, 1, ..., T � 1}, note that r✓V
(t)
✓ is

(L(t)
rV,✓,✓)

0-Lipschitz in ✓, where

(L(t)
rV,✓,✓)

0 = LrR✓ + L
(t+1)
rV,✓,✓ + Lf✓L

(t+1)
rV,✓,s + Lf✓ (L

(t+1)
rV,✓,s + Lf✓L

(t+1)
rV,s,s) + Lrf✓L

(t+1)
V = L

(t)
rV,✓,✓.

Second, note that r✓V
(t)
✓ is (L(t)

rV,✓,s)
0-Lipschitz in s, where

(L(t)
rV,✓,s)

0 = LrR✓ + Lf✓L
(t+1)
rV,✓,s + L

2
f✓L

(t+1)
rV,s,s + Lrf✓L

(t+1)
V = L

(t)
rV,✓,s.

Third, note that rsV
(t)
✓ is (L(t)

rV,s,✓)
0-Lipschitz in ✓, where

(L(t)
rV,s,✓)

0 = LrR✓ + Lf✓ (L
(t+1)
rV,✓,s + Lf✓L

(t+1)
rV,s,s) + Lrf✓L

(t+1)
V = L

(t)
rV,✓,s.

Fourth, note that rsV
(t)
✓ is (L(t)

rV,s,s)
0-Lipschitz in s, where

(L(t)
rV,s,s)

0 = LrR✓ + L
2
f✓L

(t+1)
rV,s,s + Lrf✓L

(t+1)
V = L

(t)
rV,s,s,

as was to be shown. Finally, note that

L
(t)
rV,s,s  T L̄

2(T�t�1)
f✓

(LrR✓ + Lrf✓ · 3T 2
LR✓ L̄

T�t�2
f✓

)  4T 3
L̄R✓ L̄

3(T�t�1)
f✓

,

so

L
(t)
rV,✓,s  T L̄

T�t�1
f✓

(LrR✓ + L
2
f✓ · 4T

3
L̄R✓ L̄

3(T�t�2)
f✓

+ Lrf✓ · 3T 2
LR✓ L̄

T�t�2
f✓

)  8T 4
L̄R✓ L̄

4(T�t�1)
f✓

so

L
(t)
rV,✓,✓  T (LrR✓ + 2Lf✓ · 8T 4

L̄R✓ L̄
4(T�t�2)
f✓

+ L
2
f✓ · 4T

3
L̄R✓ L̄

3(T�t�2)
f✓

+ Lrf✓ · 3T 2
LR✓ L̄

T�t�2
f✓

)

 24T 5
L̄R✓ L̄

4(T�t�1)
f✓

.

Thus, rV
(t)
✓ is (L(t)

rV )
0-Lipschitz, where

(L(t)
rV )

0 = LrV,✓,✓ + 2LrV,✓,s + LrV,s,s  44T 5
L̄R✓ L̄

4(T�t�1)
f✓

= L
(t)
rV .

The claim follows.

Lemma D.3. We claim that for t 2 {0, 1, ..., T}, Ṽ (t)
✓ is L

(t)

Ṽ
-Lipschitz, where

L
(t)

Ṽ
= 3T 2

LR̃✓
L̄
T�t�1
f̃✓

.

Proof. Note that Ṽ
(t)
✓ is exactly equal to V

(t)
✓ with R✓ replaced with R̃✓ and f✓ replaced with f̃✓. Thus, the

claim follows by the same argument as for Lemma D.1.
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E Proof of Theorem 3.3

Theorem E.1. (Taylor’s theorem) Let f : R ! R be an everywhere di↵erentiable function with Lf 0-Lipschitz
derivative. Then, for any x, ✏ 2 R, we have

f(x+ ✏) = f(x) + f
0(x) · ✏+�,

where

|�|  Lf 0✏
2

2
.

Proof. The claim follows from Theorem 5.15 in Rudin et al. (1976), together with Lemma F.2, which implies
that |f 00(x)|  Lf 0 for all x 2 R.

Now, we prove Theorem 3.3. By Taylor’s theorem, we have

f(x+ µ) = f(x) + hrf(x), µi+�(µ),

where

k�(µ)k  1

2
Lrfkµk2.

Thus, we have

dX

k=1

f(x+ �⌫
(k))� f(x� �⌫

(k))

2�
· ⌫(k)

=
dX

k=1

(f(x) + hrf(x),�⌫(k)i+�(�⌫(k)))� (f(x)� hrf(x),�⌫(k)i+�(��⌫
(k)))

2�
· ⌫(k)

=
dX

k=1

hrf(x), ⌫(k)i · ⌫(k) + �(�⌫(k))��(��⌫
(k))

2�
· ⌫(k)

=
dX

k=1

⌫
(k)((⌫(k))>rf(x)) +

dX

k=1

�(�⌫(k))��(��⌫
(k))

2�
· ⌫(k)

= rf(x) +
dX

k=1

�(�⌫(k))��(��⌫
(k))

2
· ⌫(k)

Therefore, we have

� =
dX

k=1

�(�⌫(k))��(��⌫
(k))

2�
· ⌫(k),

so

k�k 
dX

k=1

����
�(�⌫(k))��(��⌫

(k))

2�
· ⌫(k)

����  1

2
Lrf� · k⌫(k)k3  Lrfd�,

as claimed.

F Technical Lemmas (Lipschitz Constants)

We define Lipschitz continuity (for the L2 norm), and prove a number of standard results.
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Definition F.1. A function f : X ! Y (where X ✓ Rd and Y ✓ Rd0
) is Lf -Lipschitz continuous if for all

x, x
0 2 X ,

kf(x)� f(x0)k  Lfkx� x
0k. (3)

If X is a space of matrices or tensors, we assume x and x
0 are unrolled into vectors. in (3).

Lemma F.2. If f : X ! Y is Lf -Lipschitz and continuously di↵erentiable, then for all x 2 X ,

krf(x)k  Lf .

Proof. Note that

rf(x) = lim
k✏k!0

f(x+ ✏)� f(x)

k✏k ,

so

krf(x)k = lim
k✏k!0

kf(x+ ✏)� f(x)k
k✏k  lim

k✏k!0

Lfk✏k
k✏k = Lf ,

as claimed. Note that the result holds even if each component fi is continuously di↵erentiable except on a finite set
X. In particular, for each point x 2 X, we can use the standard definition (rf(x))i = (f 0

i,+(x)+f
0
i,�(x))/2, where

f
0
i,+(x) is the right derivative and f

0
i,�(x) is the left deriviative. Letting (r+f(x))i = f

0
i,+(x) and (r�f(x))i =

f
0
i,�(x), then rf(x) = (r+f(x) +r�f(x))/2. Then, we have

krf(x)k  kr+f(x)k+ kr�f(x)k
2

 Lf ,

as claimed.

Lemma F.3. If f, g : X ! Y are Lf - and Lg-Lipschitz, respectively, then h(x) = f(x) + g(x) is Lh-Lipschitz,
where Lh = Lf + Lg.

Proof. Note that

kh(x)� h(x0)k  kf(x)� f(x0)k+ kg(x)� g(x0)k  (Lf + Lg)kx� x
0k = Lhkx� x

0k,

as claimed.

Lemma F.4. If f, g : X ! Y where f is Lf -Lipschitz and bounded by Mf (i.e., |f(x)|  Mf for all x 2 X ),
and g is Lg-Lipschitz and bounded by Mg. Then h(x) = f(x) · g(x) is Lh-Lipschitz, where Lh = MgLf +MfLg.

Proof. Note that

kh(x)� h(x0)k  k(f(x)� f(x0))g(x)k+ k(g(x)� g(x0))f(x0)k
 MgLfkx� x

0k+MfLgkx� x
0k

= Lhkx� x
0k,

as claimed.

Lemma F.5. If f : X ! Y is Lf -Lipschitz and g : Y ! Z is Lg-Lipschitz, then h(x) = g(f(x)) is Lh-Lipschitz,
where Lh = LgLf .

Proof. Note that

kg(f(x))� g(f(x0))k  Lgkf(x)� f(x0)k  LgLfkx� x
0k  Lhkx� x

0k,

as claimed.
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Lemma F.6. Let f : X ⇥Y ! Z be Lf,x-Lipschitz in X (for all y 2 Y) and Lf,y-Lipschitz in Y (for all x 2 X ).
Then, f is Lf -Lipschitz in X ⇥ Y, where Lf = Lf,x + Lf,y.

Proof. Note that

kf(x, y)� f(x0
, y

0)k  kf(x, y)� f(x0
, y)k+ kf(x0

, y)� f(x0
, y

0)k
 Lf,xkx� x

0k+ Lf,yky � y
0k

 Lf,xk(x, y)� (x0
, y

0)k+ Lf,yk(x, y)� (x0
, y

0)k
 (Lf,x + Lf,y)k(x, y)� (x0

, y
0)k

= Lfk(x, y)� (x0
, y

0)k,

as claimed.

Lemma F.7. Let f : X ! Y be Lf -Lipschitz, and g : X ! Z be Lg-Lipchitz. Then, h(x) = (f(x), g(x)) is
Lh-Lipschitz, where Lh = Lf + Lg.

Proof. Note that

kh(x)� h(x0)k  k(f(x)� f(x0), g(x)� g(x0))k

=

vuut
dYX

i=1

(fi(x)� fi(x0))2 +
dZX

j=1

(gi(x)� gi(x0))2



vuut
dYX

i=1

(fi(x)� fi(x0))2 +

vuut
dZX

j=1

(gi(x)� gi(x0))2

= kf(x)� f(x0)k+ kg(x)� g(x0)k
 Lfkx� x

0k+ Lgkx� x
0k

 (Lf + Lg)kx� x
0k

= Lhkx� x
0k,

as claimed.

Lemma F.8. Let f : X ⇥Z ! Y be Lf -Lipschitz. Then, g(x) = Ep(z)[f(x, z)] (where p(z) is a distribution over
Z) is Lg-Lipschitz, where Lg = Lf .

Proof. Note that

kg(x)� g(x0)k  Ep(z) [kf(x, z)� f(x0
, z)k]  Lfkx� x

0k = Lgkx� x
0k,

as claimed.

G Technical Lemmas (Sub-Gaussian Random Variables)

We define sub-Gaussian random variables, and prove a number of standard results. We also prove Lemma G.7,
a key lemma that enables us to infer a sub-Gaussian constant for a random variable bounded Y in norm by a
sub-Gaussian random variable X, i.e., kY k  AkXk1 +B (where k · k is the L2 norm). This lemma is a key step
in the proofs of our upper bounds for the model-based and finite-di↵erence policy gradient estimators. Finally,
we also prove Lemma G.8, which is a key step in the proof of our lower bounds.

Definition G.1. A random variable X over R is �X-sub-Gaussian if E[X] = 0, and for all t 2 R, we have

E[etX ]  e
�2
Xt2/2.

Lemma G.2. If a random variable X over R is �X-sub-Gaussian, then E[|X|2]  �
2
X .

Proof. See Stromberg (1994).
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Lemma G.3. (Hoe↵ding’s inequality) Let x1, ..., xn ⇠ pX(x) be i.i.d. �X-sub-Gaussian random variables over
R. Then,

Pr

"�����
1

n

nX

i=1

xn

����� � ✏

#
 2e

� n✏2

2�2
X .

Proof. See Proposition 2.1 of Wainwright (2019).

Definition G.4. A random vector X over Rd is �X -sub-Gaussian if each Xi is �X -sub-Gaussian.

Lemma G.5. If a random vector X over Rd is �X-sub-Gaussian, then E[kXk]  �X

p
d.

Proof. Note that

E[kXk] = E

2

4

vuut
dX

i=1

kXik2

3

5 

vuut
dX

i=1

E[kXik2]  �X

p
d,

where the first inequality follows from Jensen’s inequality.

Lemma G.6. Let X be random vector over Rd with mean µX = E[X], such that X � µX is �X-sub-Gaussian.
Then, given ✏, � 2 R+, the sample complexity of X satisfies

nX(✏, �)  2�2
X log(2d/�)

✏2
,

i.e., given x1, ..., xn ⇠ pX(x) i.i.d. samples of X with empirical mean x = n
�1
Pn

i=1 xn, then Pr[kx � µXk �
✏]  �.

Proof. Note that

Pr[kx� µXk � ✏]  Pr[kx� µXk1 � ✏] 
dX

i=1

Pr
h
|xi � µX,i| �

✏

d

i
 2de

� nt2

2�2
X  �,

as claimed.

Lemma G.7. Let X be a �X-sub-Gaussian random vector over Rd, and let Y be a random vector over Rd0

satisfying

kY k  AkXk1 +B,

where A,B 2 R+. Then Y is �Y -sub-Gaussian, where

�Y = max{10A�Xd log d, 5B}.

Proof. We first prove that |Yi| is bounded for each i 2 [d], and then use this fact to prove that Yi is sub-Gaussian.
In particular, we claim that for any i 2 [d] and any t 2 R+, we have

Pr[|Yi| � t]  2e
� t2

2�̃2
Y ,

where

�̃Y = max
n
4A�Xd

p
log d, 2B

o
.

To this end, note that by Theorem 5.1 in Lattimore and Szepesvári (2018), for any i 2 [d] and any t 2 R+, we
have

Pr[|Xi| � t]  2e
� t2

2�2
X .
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Now, note that

Pr[|Yi| � t]  Pr[kY k � t]  Pr


kXk1 � t�B

A

�


dX

i=1

Pr


|Xi| �

t�B

Ad

�
 2de

� (t�B)2

(Ad�X
p

2)2 .

We consider three cases. First, suppose that t � max{4A�Xd
p
log d, 2B}. Then, (t�B)2 � (t/2)2, so

Pr[|Yi| � t]  2de
� t2

(Ad�X
p

8)2 = 2e
� t2�(Ad�X

p
8)2 log d

(Ad�X
p

8)2 .

Furthermore, t2 � (Ad�X

p
8)2 log d � (t2/2), so

Pr[|Yi| � t]  2e
� t2�(Ad�X

p
8)2 log d

(Ad�X
p

8)2  2e
� t2

2(Ad�X
p

8)2  2e
� t2

2�̃2
Y .

Second, if t  2B, then

2e
� t2

2�̃2
Y � 2e

� (2B)2

2�̃2
Y = 2e�1/2

> 1,

so

Pr[|Yi| � t]  1  2e
� t2

2�̃2
Y .

Third, if t  4A�Xd
p
log d, then

2e
� t2

2�̃2
Y � 2e

� (4A�Xd
p

log d)2

2�̃2
Y � 2e�1/2

> 1,

so

Pr[|Yi| � t]  1  2e
� t2

2�̃2
Y .

As a consequence, by Note 5.4.2 in Lattimore and Szepesvári (2018), Yi is �̃Y

p
5-sub-Gaussian. Note that

�Y � �̃Y

p
5, so the theorem follows.

Lemma G.8. Given � 2 R+,

Prx⇠N (0,�2)[|x| � t] �
r

e

2⇡
· e�t2/�2

.

Proof. By Theorem 2 in Chang et al. (2011), we have

1� �(t) � 1

2

r
e

2⇡
· e�t2

,

where �(t) is the cumulative distribution function of N (0, 1). Thus, for ✏ 2 R+, we have

Prx⇠N (0,�2)[|x| � t] = Prz⇠N (0,1)


|z| � t

�

�
= 2

✓
1� �

✓
t

�

◆◆
�
r

e

2⇡
· e�t2/�2

� �.

The claim follows.

H Technical Lemmas (Sub-Exponential Random Variables)

We define sub-exponential random variables, and prove a number of standard results. Additionally, we prove
Lemma H.7 (an analog of Lemma G.7), a key lemma that enables us to infer a sub-exponential constant for a
random variable bounded Y in norm by a sub-exponential random variable X, i.e., kY k  AkXk1 + B (where
k · k is the L2 norm). This lemma is a key step in the proof of our upper bound in Theorem 4.7. Finally, we also
prove Lemma H.8, which is a key step in the proof of our lower bound in Theorem 4.7.



Sample Complexity of Estimating the Policy Gradient

Definition H.1. A random variable X over R is (⌧X , bX)-sub-exponential if E[X] = 0, and for all t 2 R satisfying

|t|  b
�1
X , we have E[etX ]  e

⌧2
Xt2/2.

Lemma H.2. Let x1, ..., xn ⇠ pX(x) be i.i.d. (⌧X , bX)-sub-exponential random variables over R. Then, we have

Pr

"�����
1

n

nX

i=1

xn

����� � ✏

#


8
<

:
2e

� n✏2

2⌧2
X if |✏|  ⌧

2
X/bX

2e�
n✏

2bX otherwise.

Proof. See (2.20) in Wainwright (2019).

Definition H.3. A random vector X over Rd is (⌧X , bX)-sub-exponential if each Xi is (⌧X , bX)-sub-exponential.

Lemma H.4. Let X be a random vector over Rd with mean µX = E[X], such that X � µX is (⌧X , bX)-sub-
exponential. Then, given ✏, � 2 R+ such that ✏  d⌧

2
X/bX , the sample complexity of X satisfies

nX(✏, �) =
2⌧2X log(2d/�)

✏2
,

i.e., given x1, ..., xn ⇠ pX(x) i.i.d. samples of X with empirical mean x = n
�1
Pn

i=1 xn, then Pr[kx � µXk �
✏]  �.

Proof. Note that

Pr[kx� µXk � ✏]  Pr[kx� µXk1 � ✏] 
dX

i=1

Pr
h
|xi � µX,i| �

✏

d

i
 2de

� nt2

2⌧2
X  �,

as claimed.

Lemma H.5. Let X be �X-sub-Gaussian. Then, X2 is (⌧X , bX)-sub-exponential, where ⌧X , bX = O(�2
X).

Proof. The result follows from Lemma 5.5, Lemma 5.14, and the discussion preceding Definition 5.13 in Vershynin
(2010). In particular, using the notation in Vershynin (2010), by Lemma 5.5, we have that X satisfies kXk 2 =
O(�X). Then, by Lemma 5.14, we have that kX2k 1 = 2kXk2 2

= O(�2
X). Finally, by the discussion preceding

Definition 5.13, we have that X
2 is (⌧X , bX)-sub-exponential with parameters ⌧X , bX = O(kX2k 1) = O(�2

X).
The claim follows.

Lemma H.6. Let X and Y be �X-sub-Gaussian, respectively. Then, Z = XY is (⌧Z , bZ)-sub-exponential, where
⌧Z , bZ = O(�2

X).

Proof. Note that

Z = XY =
(X + Y )2 � (X � Y )2

4
.

By Lemma H.5, we have X + Y and X � Y are (⌧, b)-sub-exponential for ⌧, b = O(�2
X), so Z is ⌧Z , bZ-sub-

exponential, for ⌧Z , bZ = O(⌧ + b) = O(�2
X), as claimed.

Lemma H.7. Let X be a (⌧X , bX)-sub-exponential random vector over Rd, and let Y be a random vector over
Rd0

satisfying

kY k  AkXk1 +B,

where A,B 2 R+. Then Y is (⌧Y , bY )-sub-exponential, where ⌧Y , bY = O(A(⌧X + bX)d log d+B).

Proof. We use Lemma 5.14 and the discussion preceding Definition 5.13 in Vershynin (2010). In particular, let
⌧̃X = max{⌧X , bX}; then, from the definition of sub-exponential random variables with t = ⌧̃

�1
X , we have

E
h
e

Xi
⌧̃

i
 E


e

t2

2⌧̃2
X

�
 e
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for each i 2 [d]. Thus, using the notation in Vershynin (2010), so by the discussion preceding the Definition 5.13
in Vershynin (2010), we have Xi satisfies kXik 1 = O(⌧̃X), and furthermore satisfies

Pr[|Xi| � t]  3e�t/K

for all t 2 R+, where K = O(kXik 1) = O(⌧̃X). Thus, for each i 2 [d], we have

Pr[|Yi| � t]  Pr


kXk1 � t�B

A

�


dX

i=1

Pr


|Xi| �

t�B

Ad

�
 de

1� t�B
AKd .

Now, let

⌧̃Y = max{4AKd log d, 2B}.

We consider three cases. First, suppose that t � max{4AKd log d, 2B}. Then, t�B � t/2, so

Pr[|Yi| � t]  de
1� t

2AKd = e
1� t�2AKd log d

2AKd .

Furthermore, t� 2AKd log d � t/2, so

Pr[|Yi| � t]  e
1� t�2AKd log d

2AKd  e
1� t

4AKd  e
1� t

⌧̃Y .

Second, if t  2B, then

e
1� t

⌧̃Y � e
1� 2B

⌧̃Y � 1,

so

Pr[|Yi| � t]  1  e
1� t

⌧̃Y .

Third, if t  4AKd log d, then

e
1� t

⌧̃Y � e
1� 4AKd log d

⌧̃Y � 1,

so

Pr[|Yi| � t]  1  e
1� t

⌧̃Y .

As a consequence, by the discussion preceding Definition 5.13 in Vershynin (2010), we have Yi satisfies kYik 1 =
O(⌧̃Y ). Thus, by Lemma 5.15 in Vershynin (2010), we have that Yi is (⌧Y , bY )-sub-exponential, where

⌧Y , bY = O(kYik 1) = O(⌧̃Y ) = O(AKd log d+B) = O(A⌧̃Xd log d+B) = O(A(⌧X + bX)d log d+B).

The claim follows.

Lemma H.8. Given � 2 R+, let

x =
(x(1))2 + ...+ (x(n))2

n
,

where x
(1)

, ..., x
(n) ⇠ N (0,�2) i.i.d., and let µx = Ep(x)[x] = �

2. Then, we have

Prp(x)[x � µx + ✏] � 1

e2
p
2n

e
� n✏

2�2 .

Proof. Let z = (z(1))2 + ... + (z(n))2 be the sum of the squares of n i.i.d. standard Gaussian random variables
z
(1)

, ..., z
(n) ⇠ N (0, 1). We assume that n = 2k is even. Then, z is distributed according to the �

2
2k distribution,

which has density function

p2k(z) =
1

2k(k � 1)!
z
k�1

e
�z

,
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and mean µ2k = 2k. For z � µ2k = 2k, we have

p2k(z) �
1

2k(k � 1)!
(2k)k�1

e
�z/2 =

1

2
· k

k�1

(k � 1)!
e
�z/2 � 1

2
· k

k�1

(k � 1)k�1/2e�k+2
e
�z/2 � 1

2e2
p
k
e
k�z/2

,

where the second inequality follows from a result

n!  n
n+1/2

e
1�n

based on Stirling’s approximation Robbins (1955). Thus, for any ✏ 2 R+, we have

Prz⇠�2
2k
[z � µ2k + ✏] �

Z 1

µ2k+✏

1

2e2
p
k
e
k�z/2 =

1

2e2
p
k
e
k�(µ2k+✏)/2 =

1

2e2
p
k
e
�✏/2

.

Finally, for x = ((x(1))2 + ...+ (x(n))2)/n, where x
(1)

, ..., x
(n) ⇠ N (0,�2) i.i.d., note that x = �2z

n and

µx = Ep(x)[x] =
�
2
µn

n
= �

2
,

so we have

Prp(x)[x � µx + ✏] = Prz⇠�2
n

h
z � µn +

n✏

�2

i
� 1

e2
p
2n

e
� n✏

2�2 .

The claim follows.

I Experimental Results

We show enlarged versions of the plots from Figure 1:
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