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Abstract

We provide a new analysis of local SGD, re-
moving unnecessary assumptions and elab-
orating on the difference between two data
regimes: identical and heterogeneous. In
both cases, we improve the existing theory
and provide values of the optimal stepsize
and optimal number of local iterations. Our
bounds are based on a new notion of variance
that is specific to local SGD methods with
different data. The tightness of our results is
guaranteed by recovering known statements
when we plug H “ 1, where H is the number
of local steps. The empirical evidence further
validates the severe impact of data hetero-
geneity on the performance of local SGD.

1 Introduction

Modern hardware increasingly relies on the power of
uniting many parallel units into one system. This ap-
proach requires optimization methods that target spe-
cific issues arising in distributed environments such as
decentralized data storage. Not having data in one
place implies that computing nodes have to commu-
nicate back and forth to keep moving toward the so-
lution of the overall problem. A number of efficient
first-, second-order and dual methods that are capable
of reducing the communication overhead existed in the
literature for a long time, some of which are in certain
sense optimal.
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Yet, when Federated Learning (FL) showed up, it
turned out that the problem of balancing the com-
munication and computation had not been solved. On
the one hand, Minibatch Stochastic Gradient Descent
(SGD), which averages the result of stochastic gradient
steps computed in parallel on several machines, again
demonstrated its computation efficiency. Seeking com-
munication efficiency, Konečný et al. (2016); McMa-
han et al. (2017) proposed to use a natural variant
of Minibatch SGD—Local SGD (Algorithm 1), which
does a few SGD iterations locally on each involved
node and only then computes the average. This ap-
proach saves a lot of time on communication, but, un-
fortunately, in terms of theory things were not as great
as in terms of practice and there are still gaps in our
understanding of Local SGD.

The idea of local SGD in fact is not recent, it traces
back to the work of Mangasarian (1995) and has
since been popular among practitioners from different
communities. An asymptotic analysis can be found
in Mangasarian (1995) and quite a few recent papers
proved new convergence results, making the bounds
tighter with every work. The theory has been devel-
oping in two important regimes: identical and hetero-
geneous data.

The identical data regime is more of interest if the
data are actually stored in one place. In that case,
we can access it on each computing device at no ex-
tra cost and get a fast, scalable method. Although
not very general, this framework is already of inter-
est to a wide audience due to its efficiency in training
large-scale machine learning models (Lin et al., 2020).
The first contribution of our work is to provide the
fastest known rate of convergence for this regime un-
der weaker assumptions than in prior work.

Federated learning, however, is done on a very large
number of mobile devices, and is operating in a highly
non-i.i.d. regime. To address this, we present the first
analysis of Local SGD that applies to arbitrarily het-
erogeneous data, while all previous works assumed a
certain type of similarity between the data or local
gradients.
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Algorithm 1 Local SGD

Input: Stepsize γ ą 0, initial vector x0 “ xm0 for all m P rM s, synchronization timesteps t1, t2, . . ..
1: for t “ 0, 1, . . . do
2: for m “ 1, . . . ,M in parallel do

3: Sample zm
i.i.d.
„ Dm.

4: if data is identical then
5: Compute gmt “ gpf, xmt , zmq such that E rgmt | xmt s “ ∇fpxmt q.
6: else
7: Compute gmt “ gpfm, x

m
t , zmq such that E rgmt | xmt s “ ∇fmpxmt q.

8: end if

9: xmt`1 “

#

1
m

řM
j“1px

j
t ´ γg

j
t q, if t “ tp for some p P N

xmt ´ γg
m
t , otherwise.

10: end for
11: end for

To explain the challenge of heterogeneity better, let us
introduce the problem we are trying to solve. Given
that there areM devices and corresponding local losses
fm : Rd Ñ R, we want to find

min
xPRd

#

fpxq “
1

M

M
ÿ

m“1

fmpxq

+

. (1)

In the case of identical data, we are able to obtain on
each node an unbiased estimate of the gradient ∇f . In
the case of heterogeneous data, m-th node can only ob-
tain an unbiased estimate of the gradient ∇fm. Data
similarity can then be formulated in terms of the differ-
ences between functions f1, . . . , fM . If the underlying
data giving rise to the loss functions are i.i.d., the func-
tion share optima and one could even minimize them
separately, averaging the results at the end. We will
demonstrate this rigorously later in the paper.

If the data are dissimilar, however, we need to be much
more careful since running SGD locally will yield so-
lutions of local problems. Clearly, their average might
not minimize the true objective (1), and this poses
significant issues for the convergence of Local SGD.

To properly discuss the efficiency of local SGD, we
also need a practical way of quantifying it. Normally,
a method’s efficiency is measured by the total number
of times each function fm is touched and the cost of
the touches. On the other hand, in distributed learn-
ing we also care about how much information each
computing node needs to communicate. In fact, when
communication is as expensive as is the case in FL, we
predominantly care about communication. The ques-
tion we address in this paper, thus, can be posed as
follows: how many times does each node need to com-
municate if we want to solve (1) up to accuracy ε?
Equivalently, we can ask for the optimal synchroniza-
tion interval length between communications, H, i.e.
how many computation steps per one communication

we can allow for. We next review related work and
then present our contributions.

2 Related Work

While local SGD has been used among practitioners
for a long time, see e.g. (Coppola, 2015; McDonald
et al., 2010), its theoretical analysis has been lim-
ited until recently. Early theoretical work on the con-
vergence of local methods exists as in (Mangasarian,
1995), but no convergence rate was given there. The
previous work can mainly be divided into two groups:
those assuming identical data (that all nodes have ac-
cess to the same dataset) and those that allow each
node to hold its own dataset. As might be expected,
the analysis in the latter case is more challenging,
more limited, and usually shows worse rates. We note
that in recent work more sophisticated local stochastic
gradient methods have been considered, for example
with momentum (Yu et al., 2019a; Wang et al., 2019),
with quantization (Reisizadeh et al., 2019; Basu et al.,
2019), with adaptive stepsizes (Xie et al., 2019) and
with various variance-reduction methods (Liang et al.,
2019; Sharma et al., 2019; Karimireddy et al., 2019).
Our work is complimentary to these approaches, and
provides improved rates and analysis for the vanilla
method.

2.1 Local SGD with Identical Data

The analysis of local SGD in this setting shows that a
reduction in communication is possible without affect-
ing the asymptotic convergence rate of Minibatch SGD
with M nodes (albeit with usually worse dependence
on constants). An overview of related work on local
SGD for convex objectives is given in Table 1. We note
that analysis for nonconvex objectives has been carried
out in a few recent works (Zhou and Cong, 2018; Wang
and Joshi, 2018; Jiang and Agrawal, 2018), but our fo-
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Table 1: Existing theoretical bounds for local SGD for identical data with convex objectives.

Unbounded

gradient

H “ T

convergent

CpT qa

f strongly convex

CpT q

f convex
Reference

7 7 Ωp
?
MT q 7 Stich, 5/2018

7 7 Ω
`
?
MT

˘

7 Basu et al., 6/2018

3 7 Ω̃ pMq ΩpM3{2T 1{2q Stich and Karimireddy, 9/2019

3 7 Ω̃
`

M1{3T 1{3
˘

b - Haddadpour et al., 10/2019

3 3 Ω̃pMq ΩpM3{2T 1{2q THIS WORK, 9/2019-1/2020

a CpT q denotes the minimum number of communication steps required at each of T iterations to achieve a
linear speedup in the number of nodes M .

b The PL inequality, a generalization of strong convexity, is assumed in (Haddadpour et al., 2019), but for
comparison we specialize to strong convexity.

cus in this work is on convex objectives and hence they
were not included in Table 1. The comparison shows
that we attain superior rates in the strongly convex
setting to previous work with the exception of the con-
current1 work of Stich and Karimireddy (2019) and we
attain these rates under less restrictive assumptions on
the optimization process compared to them. We fur-
ther provide a novel analysis in the convex case, which
has not been previously explored in the literature, with
the exception of (Stich and Karimireddy, 2019). Their
analysis attains the same communication complexity
but is much more pessimistic about possible values of
H. In particular, it does not recover the convergence
of one-shot averaging, i.e. substituting H “ T or even
H “ T {M gives noninformative bounds, unlike our
Theorem 1.

In addition to the works listed in the table, Dieuleveut
and Patel (2019) also analyze local SGD for identical
data under a Hessian smoothness assumption in ad-
dition to gradient smoothness, strong convexity, and
uniformly bounded variance. However, we believe that
there are issues in their proof that we explain in Sec-
tion 11 in the supplementary material. As a result,
the work is excluded from the table.

2.2 Local SGD with Heterogeneous Data

An overview of related work on local SGD in this set-
ting is given in Table 2. In addition to the works in
Table 2, Wang et al. (2018) analyze a local gradient
descent method under convexity, bounded dissimilar-
ity, and bounded gradients, but do not show conver-
gence to arbitrary precisions. Li et al. (2020) analyze
federated averaging (discussed below) in the strongly
convex and nonconvex cases under bounded gradient

1Made available online one day after the first version of
our work was.

norms. However, their result is not included in Ta-
ble 2 because in the more general setting of federated
averaging, their analysis and experiments suggest that
retaining a linear speedup is not possible.

Local SGD is at the core of the Federated Averaging
algorithm which is popular in federated learning ap-
plications (Konečný et al., 2016). Essentially, Feder-
ated Averaging is a variant of Local SGD with par-
ticipating devices sampled randomly. This algorithm
has been used in several machine learning applications
such as mobile keyboard prediction (Hard et al., 2018),
and strategies for improving its communication effi-
ciency were explored in (Konečný et al., 2016). De-
spite its empirical success, little is known about con-
vergence properties of this method and it has been
observed to diverge when too many local steps are
performed (McMahan et al., 2017). This is not so sur-
prising as the majority of common assumptions are
not satisfied; in particular, the data are typically very
non-i.i.d. (McMahan et al., 2017), so the local gradi-
ents can point in different directions. This property of
the data can be written for any vector x and indices
i, j as

‖∇fipxq ´∇fjpxq‖ " 1.

Unfortunately, it is very hard to analyze local meth-
ods without assuming a bound on the dissimilarity of
∇fipxq and ∇fjpxq. For this reason, almost all prior
work assumed some regularity notion over the func-
tions such as bounded dissimilarity (Yu et al., 2019a;
Li et al., 2020; Yu et al., 2019b; Wang et al., 2018)
or bounded gradient diversity (Haddadpour and Mah-
davi, 2019) and addressed other less challenging as-
pects of federated learning such as decentralized com-
munication, nonconvexity of the objective or unbal-
anced data partitioning. In fact, a common way to
make the analysis simple is to assume Lipschitzness of
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Table 2: Existing theoretical bounds for local SGD with heterogeneous data.

Unbounded

gradient

Unbounded

dissimilarity/diversity

CpT q

f strongly convex

CpT q

f convex

CpT q

f nonconvex
Reference

7 7 - - Ω
`

M3{4T 3{4
˘

Yu et al., 7/2018

3 7 - - ΩpT q Jiang and Agrawal, 12/2018

7 7 Ω
`
?
MT

˘

- Ω
`

M3{4T 3{4
˘

Basu et al., 6/2019

3 7 Ω
`

M1{3T 1{3
˘

- Ω
`

M3{2T 1{2
˘

Haddadpour and Mahdavi, 10/2019

3 3 - Ω
`

M3{4T 3{4
˘

- THIS WORK, 1/2020

local functions, ‖∇fipxq‖ ď G for any x and i. We ar-
gue that this assumption is pathological and should
be avoided when seeking a meaningful convergence
bound. First of all, in unconstrained strongly con-
vex minimization this assumption can not be satisfied,
making the analysis in works like (Stich, 2019) ques-
tionable. Second, there exists at least one method,
whose convergence is guaranteed under bounded vari-
ance (Juditsky et al., 2011), but in practice the method
diverges (Chavdarova et al., 2019; Mishchenko et al.,
2019). Finally, under the bounded gradients assump-
tion we have

‖∇fipxq ´∇fjpxq‖ ď ‖∇fipxq‖` ‖∇fjpxq‖ ď 2G.

In other words, we lose control over the difference be-
tween the functions. Since G bounds not just dis-
similarity, but also the gradients themselves, it makes
the statements less insightful or even vacuous. For
instance, it is not going to be tight if the data are
actually i.i.d. since G in that case will remain a posi-
tive constant. In contrast, we will show that the rate
should depend on a much more meaningful quantity,

σ2
dif

def
“

1

M

M
ÿ

m“1

Ezm„Dm

”

‖∇fmpx˚, zmq‖2
ı

,

where x˚ is a fixed minimizer of f and fmp¨, zmq for
zm „ D are stochastic realizations of fm (see the
next section for the setting). Obviously, for all nonde-
generate sampling distributions Dm the quantity σdif
is finite and serves as a natural measure of variance
in local methods. We note that an attempt to get
more general convergence statement has been made
by (Li et al., 2018), but unfortunately their guarantee
is strictly worse than that of minibatch Stochastic Gra-
dient Descent (SGD). In the overparameterized regime
where σdif “ 0, Zhang and Li (2019) prove the conver-
gence of Local SGD with arbitrary H.

Our earlier workshop paper (Khaled et al., 2019a) ex-
plicitly analyzed Local Gradient Descent (Local GD)
as opposed to Local SGD, where there is no stochastic-
ity in the gradients. An analysis of Local GD for non-
convex objectives with the PL inequality and under

bounded gradient diversity was subsequently carried
out by Haddadpour and Mahdavi (2019).

3 Settings and Contributions

Assumption 1. Assume that the set of minimizers
of (1) is nonempty. Each fm is µ-strongly convex for
µ ě 0 and L-smooth. That is, for all x, y P Rd

µ

2
‖x´ y‖2 ď fmpxq ´ fmpyq ´ x∇fmpyq, x´ yy

ď
L

2
‖x´ y‖2.

When µ “ 0, we say that each fm is just convex. When

µ ‰ 0, we define κ
def
“ L

µ , the condition number.

Assumption 1 formulates our requirements on the over-
all objective. Next, we have two different sets of as-
sumptions on the stochastic gradients that model dif-
ferent scenarios, which also lead to different conver-
gence rates.

Assumption 2. Given a function h, a point
x P Rd, and a sample z „ D drawn i.i.d. ac-
cording to a distribution D, the stochastic gra-
dients g “ gph, x, zq satisfy Ez„D rgph, x, zqs “

∇hpxq,Ez„D

”

‖gph, x, zq ´∇hpxq‖2
ı

ď σ2.

Assumption 2 holds for example when gpx, zq “

∇hpxq ` ξz for a random variable ξz of expected

bounded squared norm: Ez„D

”

‖ξz‖2
ı

ď σ2. Assump-

tion 2, however, typically does not hold for finite-sum
problems where gpx, zq is a gradient of the one func-
tions in the finite-sum. To capture this setting, we
consider the following assumption:

Assumption 3. Given an L-smooth and µ-strongly
convex (possibly with µ “ 0) function h : Rd Ñ R
written as an expectation h “ Ez„D rhpx, zqs, we
assume that a stochastic gradient g “ gph, x, zq is
computed by gph, x, zq “ ∇hpx, zq. We assume that
hp¨, zq : Rd Ñ R is almost-surely L-smooth and µ-
strongly convex (with the same L and µ as h).

When Assumption 3 is assumed in the identical
data setting, we assume it is satisfied on each node
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m P rM s with h “ f and distribution Dm, and we
define as a measure of variance at the optimum

σ2
opt

def
“

1

M

M
ÿ

m“1

Ezm„Dm

”

‖∇fpx˚, zmq‖2
ı

.

Whereas in the heterogeneous data setting we as-
sume that it is satisfied on each node m P rM s with
h “ fm and distribution Dm, and we analogously de-
fine

σ2
dif

def
“

1

M

M
ÿ

m“1

Ezm„Dm

”

‖∇fmpx˚, zmq‖2
ı

.

Assumption 3 holds, for example, for finite-sum opti-
mization problems with uniform sampling and permits
direct extensions to more general settings such as ex-
pected smoothness Gower et al. (2019).

Our contributions are as follows:

1. In the identical data setting under Assumptions 1
and 2 with µ ą 0, we prove that the iteration
complexity of Local SGD to achieve ε-accuracy is

Õ
ˆ

σ2

µ2Mε

˙

in squared distance from the optimum provided
that T “ Ω pκ pH ´ 1qq. This improves the com-
munication complexity in prior work (see Ta-
ble 1) with a tighter results compared to concur-
rent work (recovering convergence for H “ 1 and
H “ T ). When µ “ 0 we have that the itera-
tion complexity of Minibatch SGD to attain an
ε-accurate solution in functional suboptimality is

O

˜

L2 ‖x0 ´ x˚‖4

Mε2
`

σ4

L2Mε2

¸

,

provided that T “ Ω
`

M3H2
˘

. We further show
that the same ε-dependence holds in both the µ ą
0 and µ “ 0 cases under Assumption 3. This has
not been explored in the literature on Local SGD
before, and hence we obtain the first results that
apply to arbitrary convex and smooth finite-sum
problems.

2. When the data on each node is different and As-
sumptions 1 and 3 hold with µ “ 0, the iteration
complexity needed by Local SGD to achieve an
ε-accurate solution in functional suboptimality is

O

˜

L2 ‖x0 ´ x˚‖4

Mε2
`

σ4
dif

L2Mε2

¸

provided that T “ ΩpM3H4q. This improves
upon previous work by not requiring any restric-
tive assumptions on the gradients and is the first
analysis to capture true data heterogeneity be-
tween different nodes.

3. We verify our results by experimenting with lo-
gistic regression on multiple datasets, and investi-
gate the effect of heterogeneity on the convergence
speed.

4 Convergence Theory

The following quantity is crucial to the analysis of both
variants of local SGD, and measures the deviation of
the iterates from their average x̂t over an epoch:

Vt
def
“

1

M

M
ÿ

m“1

‖xmt ´ x̂t‖
2

where x̂t
def
“

1

M

M
ÿ

m“1

xmt .

To prove our results, we follow the line of work started
by Stich (2019) and first show a recurrence similar to
that of SGD up to an error term proportional to Vt,
then we bound each Vt term individually or the sum
of Vt’s over an epoch. All proofs are relegated to the
supplementary material.

4.1 Identical Data

Our first lemma presents a bound on the sequence of
the Vt in terms of the synchronization interval H.

Lemma 1. Choose a stepsize γ ą 0 such that γ ď 1
2L .

Under Assumptions 1, and 2 we have that for Algo-
rithm 1 with maxp |tp ´ tp`1| ď H and with identical
data, for all t ě 1

E rVts ď pH ´ 1q γ2σ2.

Combining Lemma 1 with perturbed iterate analysis
as in (Stich, 2019) we can recover the convergence of
local SGD for strongly-convex functions:

Theorem 1. Suppose that Assumptions 1, and 2 hold
with µ ą 0. Then for Algorithm 1 run with identical
data, a constant stepsize γ ą 0 such that γ ď 1

4L , and
H ě 1 such that maxp |tp ´ tp`1| ď H,

E
”

‖x̂T ´ x˚‖2
ı

ď p1´ γµqT ‖x0 ´ x˚‖2 `
γσ2

µM

`
2Lγ2 pH ´ 1qσ2

µ
.

(2)

By (2) we see that the convergence of local SGD is the
same as Minibatch SGD plus an additive error term
which can be controlled by controlling the size of H, as
the next corollary and the successive discussion show.



Tighter Theory for Local SGD on Identical and Heterogeneous Data

Corollary 1. Choosing γ “ 1
µa , with a “ 4κ` t for

t ą 0 and we take T “ 2a log a steps. Then substitut-
ing in (2) and using that 1 ´ x ď expp´xq and some
algebraic manipulation we can conclude that,

E
”

‖rT ‖2
ı

“ Õ
´

‖r0‖2

T 2 ` σ2

µ2MT `
κσ2

pH´1q
µ2T 2

¯

.

where rt “ x̂t ´ x˚ and Õp¨q ignores polylogarithmic
and constant numerical factors.

Recovering fully synchronized Minibatch SGD.
When H “ 1 the error term vanishes and we obtain
directly the ordinary rate of Minibatch SGD.

Linear speedup in the number of nodes M . We
see that choosing H “ OpT {Mq leads to an asymp-

totic convergence rate of Õ
´

σ2κ
µ2MT

¯

which shows the

same linear speedup of Minibatch SGD but with worse
dependence on κ. The number of communications in
this case is then CpT q “ T {H “ Ω̃pMq.

Local SGD vs Minibatch SGD. We assume that
the statistical σ2{T dependence dominates the depen-

dence on the initial distance ‖x0 ´ x˚‖2{T 2. From
Corollary 1, we see that in order to achieve the same
convergence guarantees as Minibatch SGD, we must
have H “ O

`

T
κM

˘

, achieving a communication com-
plexity of O pκMq. This is only possible when T ą

κM . It follows that given a number of steps T the
optimal H is H “ 1 ` tT {pκMqu achieving a commu-
nication complexity of Ω̃ pminpT, κMqq.

One-shot averaging. Putting H “ T ` 1 yields
a convergence rate of Õpσ2κ{pµ2T qq, showing no lin-
ear speedup but showing convergence, which improves
upon all previous work. However, we admit that sim-
ply using Jensen’s inequality to bound the distance

of the average iterate E
”

‖x̂T ´ x˚‖2
ı

would yield a

better asymptotic convergence rate of Õpσ2{pµ2T qq.
Under a Lipschitz Hessian assumption, Zhang et al.
(2013) show that one-shot averaging can attain a lin-
ear speedup in the number of nodes, so one may do
analysis of local SGD under this additional assump-
tion to try to remove this gap, but this is beyond the
scope of our work.

Similar results can be obtained for weakly convex func-
tions, as the next Theorem shows.

Theorem 2. Suppose that Assumptions 1, 2 hold
with µ “ 0 and that a constant stepsize γ such
that γ ě 0 and γ ď 1

4L is chosen and that Algo-
rithm 1 is run for identical data with H ě 1 such
that supp |tp ´ tp`1| ď H, then for x̄T “

1
T

řT
t“1 x̂t,

E rfpx̄T q ´ fpx˚qs ď
2

γT
‖x0 ´ x˚‖2 `

2γσ2

M

` 4γ2Lσ2 pH ´ 1q .

(3)

Theorem 2 essentially tells the same story as Theo-
rem 1: convergence of local SGD is the same as Mini-
batch SGD up to an additive constant whose size can
be controlled by controlling H.

Corollary 2. Assume that T ě M . Choosing γ “
?
M

4L
?
T

, then substituting in (3) we have,

E rfpx̄T q ´ fpx˚qs ď
8‖x0 ´ x˚‖2
?
MT

`
σ2

2L
?
MT

`
σ2M pH ´ 1q

LT
.

Linear speedup and optimal H. From Corollary 2
we see that if we choose H “ Op

?
TM´3{2q then we

obtain a linear speedup, and the number of communi-
cation steps is then C “ T {H “ Ω

`

M3{2T 1{2
˘

, and we

get that the optimal H is then H “ 1`
X

T 1{2M´3{2
\

.

The previous results were obtained under Assump-
tion 2. Unfortunately, this assumption does not eas-
ily capture the finite-sum minimization scenario where
fpxq “ 1

n

řn
i“1 fipxq and each stochastic gradient gt is

sampled uniformly at random from the sum.

Using smaller stepsizes and more involved proof tech-
niques, we can show that our results still hold in the
finite-sum setting. For strongly-convex functions, the
next theorem shows that the same convergence guar-
antee as Theorem 1 can be attained.

Theorem 3. Suppose that Assumptions 1 and 3 hold
with µ ą 0. Suppose that Algorithm 1 is run for
identical data with maxp |tp ´ tp`1| ď H for some
H ě 1 and with a stepsize γ ą 0 chosen such

that γ ď min

"

1

4Lp1` 2
M q

, 1
µ`8LpH´1q

*

. Then for any

timestep t such that synchronization occurs,

E
”

‖x̂t ´ x˚‖2
ı

ď p1´ γµq
t E

”

‖x0 ´ x˚‖2
ı

`
2γσ2

opt

µM
`

4σ2
optγ

2 pH ´ 1qL

µ
.

(4)

As a corollary, we can obtain an asymptotic conver-
gence rate by choosing specific stepsizes γ and H.

Corollary 3. Let a “ 18κt for some t ą 0, let H ď t
and choose γ “ 1

µa ď
1

9LH . We substitute in (4) and

take T “ 18a log a steps, then for rt
def
“ x̂t ´ x˚,

E
”

‖rt‖2
ı

“ Õ

˜

‖r0‖2

T 2
`

σ2
opt

µ2MT
`
σ2
optκpH ´ 1q

µ2T 2

¸

.

Substituting H “ 1 ` tt{M u “ 1 ` tT {p18κMqu in
Corollary 3 we get an asymptotic convergence rate of

Õ
´

σ2
opt

TM

¯

. This preserves the rate of minibatch SGD
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Figure 1: The effect of the dataset and number of workers M on the variance parameters. Left: ‘a8a’, middle:
‘mushrooms’, right: ‘w8a’ dataset. We use uniform sampling of data points, so σ2

opt is the same as σ2
dif with

M “ 1, while for higher values of M the value of σ2
dif might be drastically larger than σ2

opt.

up to problem-independent constants and polyloga-
rithmic factors, but with possibly fewer communica-
tion steps.

Theorem 4. Suppose that Assumptions 1 and 3 hold
with µ “ 0, that a stepsize γ ď 1

10LH is chosen and
that Algorithm 1 is run on M ě 2 nodes with identi-
cal data and with supp |tp ´ tp`1| ď H, then for any
timestep T such that synchronization occurs we have
for x̄T “

1
T

řT
t“1 x̂t that

E rfpx̄T q ´ fpx˚qs ď
10‖x0 ´ x˚‖2

γT
`

20γσ2
opt

M

` 40γ2Lσ2
opt pH ´ 1q .

(5)

Corollary 4. Let H ď
?
T?
M

, then for γ “
?
M

10L
?
T

we

see that γ ď 1
10LH , and plugging it into (5) yields

E rfpx̄T q ´ fpx˚qs ď
100L‖x0 ´ x˚‖2

?
TM

`
2σ2

opt

L
?
TM

`
2σ2

optMpH ´ 1q

5LT
.

This is the same result as Corollary 2, and hence we see
that choosing H “ O

`

T 1{2M´3{2
˘

(when T ą M3)
yields a linear speedup in the number of nodes M .

4.2 Heterogeneous Data

We next show that for arbitrarily heterogeneous con-
vex objectives, the convergence of Local SGD is the
same as Minibatch SGD plus an error that depends
on H.

Theorem 5. Suppose that Assumptions 1 and 3 hold
with µ “ 0 and for heterogeneous data. Then for
Algorithm 1 run for different data with M ě 2,
maxp |tp ´ tp`1| ď H, and a stepsize γ ą 0 such that

γ ď min
!

1
4L

1
8LpH´1q

)

, then we have

E rfpx̄T q ´ fpx˚qs ď
4‖r0‖2

γT
`

20γσ2
dif

M

` 16γ2LpH ´ 1q2σ2
dif .

where x̄T
def
“ 1

T

řT´1
i“0 x̂i and r0 “ x0 ´ x˚.

Dependence on σdif . We see that the convergence
guarantee given by Theorem 5 shows a dependence on
σdif , which measures the heterogeneity of the data dis-
tribution. In typical (non-federated) distributed learn-
ing settings where data is distributed before starting
training, this term can very quite significantly depend-
ing on how the data is distributed.

Dependence on H. We further note that the de-
pendence on H in Theorem 5 is quadratic rather than
linear. This translates to a worse upper bound on
the synchronization interval H that still allows con-
vergence, as the next corollary shows.

Corollary 5. Choose H ď
?
T?
M

, then γ “
?
M

8L
?
T
ď

1
8HL , and hence applying the result of Theorem 5,

E rfpx̄T q ´ fpx˚qs ď
32L‖x0 ´ x˚‖2

?
MT

`
5σ2

dif

2L
?
MT

`
σ2
difMpH ´ 1q2

4LT
.

Optimal H. By Corollary 5 we see that the opti-
mal value of H is H “ 1 `

X

T 1{4M´3{4
\

, which gives

O
´

1?
MT

¯

convergence rate. Thus, the same conver-

gence rate is attained provided that communication is
more frequent compared to the identical data regime.

5 Experiments

All experiments described below were run on logis-
tic regression problem with `2 regularization of or-
der 1

n . The datasets were taken from the LIBSVM
library (Chang and Lin, 2011). The code was written
in Python using MPI (Dalcin et al., 2011) and run on
Intel(R) Xeon(R) Gold 6146 CPU @3.20GHz cores in
parallel.
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Figure 2: Results on ‘a9a’ dataset, with stepsize 1
L . For any value of local iterations H the method converged

to a neighborhood within a small number of communication rounds due to large stepsizes.

Figure 3: Convergence on heterogeneous data with different number of local steps on the ‘a5a’ dataset. 1 local
step corresponds to fully synchronized gradient descent. Left: convergence in terms of communication rounds,
which shows a clear advantage of local GD when only limited accuracy is required. Mid plot: wall-clock time
might improve only slightly if communication is cheap. Right: what changes with different communication cost.

5.1 Variance measures

We provide values of σ2
dif and σ2

opt in Figure 1 for dif-
ferent datasets, minibatch sizes and M . The datasets
were split evenly without any data reshuffling and
no overlaps. For any M ą 1, the value of σdif is
lower bounded by 1

M

řM
m“1 ‖ ∇fmpx˚q ‖2 which ex-

plains the difference between identical and heteroge-
neous data.

5.2 Identical Data

For identical data we used M “ 20 nodes and ’a9a’
dataset. We estimated L numerically and ran two ex-
periments, with stepsizes 1

L and 0.05
L and minibatch

size equal 1. In both cases we observe convergence to
a neighborhood, although of a different radius. Since
we run the experiments on a single machine, the com-
munication is very cheap and there is little gain in
time required for convergence. However, the advan-
tage in terms of required communication rounds is self-
evident and can lead to significant time improvement
under slow communication networks. The results are
provided here in Figure 2 and in the supplementary
material in Figure 5.

Figure 4: Convergence of local SGD on heterogeneous
data with different number of local steps on the ‘a5a’
dataset.

5.3 Heterogeneous Data

Since our architecture leads to a very specific trade-off
between computation and communication, we provide
plots for the case the communication time relative to
gradient computation time is higher or lower. To see
the impact of σdif , in all experiments we use full gra-
dients ∇fm and constant stepsize 1

L . The data parti-
tioning is not i.i.d. and is done based on the index in
the original dataset. The results are provided in Fig-
ure 3 and in the supplementary material in Figure 6.
In cases where communication is significantly more ex-
pensive than gradient computation, local methods are
much faster for imprecise convergence.
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6 Basic Facts and Notation

We use a notation similar to that of Stich (2019) and denote the sequence of time stamps when synchronization
happens as ptpq

8
p“1. Given stochastic gradients g1t , g

2
t , . . . , g

M
t at time t ě 0 we define

gt
def
“

1

M

M
ÿ

m“1

gmt , ḡmt
def
“ E rgmt s “

#

∇fpxmt q for identical data

∇fmpxmt q otherwise.
ḡt

def
“ E rgts .

We define an epoch to be a sequence of timesteps between two synchronizations: for p P N an epoch is the
sequence ttp , ttp`1, . . . , ttp`1´1. We summarize some of the notation used in Table 3.

Table 3: Common Notation Summary.

Symbol Description
gmt Stochastic gradient at time t on node m. See Algorithm 1.
xmt Local iterate at time t on node m. See Algorithm 1.

gt
Average of stochastic gradients across nodes

at time t. See Algorithm 1.
ḡt Expected value of gt: E rgts “ ḡt.
x̂t The average of all local iterates at time t.
rt The deviation of the average iterate from the optimum x̂t ´ x˚ at time t.

σ2 Uniform bound on the variance of the stochastic gradients
for identical data. See Assumption 2.

σ2
opt

The variance of the stochastic gradients at the optimum
for identical data. See Assumption 3.

σ2
dif

The variance of the stochastic gradients at the optimum
for heterogeneous data. See Assumption 3.

t1, t2, . . . , tp Timesteps at which synchronization happen in Algorithm 1.

H
Upper bound on the maximum number of local computations

between timesteps, i.e. maxp |tp ´ tp`1| ď H.

Throughout the proofs, we will use the variance decomposition that holds for any random vector X with finite
second moment:

E
”

‖X‖2
ı

“ E
”

‖X ´ E rXs‖2
ı

` ‖E rXs‖2. (6)

In particular, its version for vectors with finite number of values gives

1

M

M
ÿ

m“1

‖Xm‖2 “
1

M

M
ÿ

m“1

∥∥∥∥∥Xm ´
1

M

M
ÿ

i“1

Xi

∥∥∥∥∥
2

`

∥∥∥∥∥ 1

M

M
ÿ

m“1

Xm

∥∥∥∥∥
2

. (7)

As a consequence of (6) we have that,

E
”

‖X ´ E rXs‖2
ı

ď E
”

‖X‖2
ı

. (8)

Proposition 1 (Jensen’s inequality). For any convex function f and any vectors x1, . . . , xM we have

f

˜

1

M

M
ÿ

m“1

xm

¸

ď
1

M

M
ÿ

m“1

fpxmq. (9)

As a special case with fpxq “‖ x ‖2, we obtain∥∥∥∥∥ 1

M

M
ÿ

m“1

xm

∥∥∥∥∥
2

ď
1

M

M
ÿ

m“1

‖ xm ‖2 . (10)
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We denote the Bregman divergence associated with function f and arbitrary x, y as

Df px, yq
def
“ fpxq ´ fpyq ´ x∇fpyq, x´ yy .

Proposition 2. If f is L-smooth and convex, then for any x and y it holds

‖ ∇fpxq ´∇fpyq ‖2ď 2LDf px, yq. (11)

If f satisfies Assumption 1, then

fpxq ` x∇fpyq, x´ yy ` µ

2
‖y ´ x‖2 ď fpyq @x, y P Rd. (12)

We will also use the following facts from linear algebra:

‖x` y‖2 ď 2‖x‖2 ` 2‖y‖2, (13)

2 xa, by ď ζ‖a‖2 ` ζ´1‖b‖2 for all a, b P Rd and ζ ą 0. (14)

7 Proofs for Identical data under Assumption 2

7.1 Proof of Lemma 1

Proof. Let t P N be such that tp ď t ď tp`1 ´ 1. Recall that for a time t such that tp ď t ă tp`1 we have
xmt`1 “ xmt ´ γg

m
t and x̂t`1 “ x̂t ´ γgt. Hence for the expectation conditional on x1t , x

2
t , . . . , x

M
t we have:

E
”∥∥xmt`1 ´ x̂t`1

∥∥2ı “ ‖xmt ´ x̂t‖2 ` γ2E ”

‖gmt ´ gt‖
2
ı

´ 2γE rxxmt ´ x̂t, gmt ´ gtys

“ ‖xmt ´ x̂t‖
2
` γ2E

”

‖gmt ´ gt‖
2
ı

´ 2γ xxmt ´ x̂t,∇fpxmt qy

` 2γ xxmt ´ x̂t, ḡty .

Averaging both sides and letting Vt “
1
M

ř

m ‖xmt ´ x̂t‖
2
, we have

E rVt`1s “ Vt `
γ2

M

ÿ

m

E
”

‖gmt ´ gt‖
2
ı

´
2γ

M

ÿ

m

xxmt ´ x̂t,∇fpxmt qy ` 2γ xx̂t ´ x̂t, ḡty
loooooomoooooon

“0

“ Vt `
γ2

M

ÿ

m

E
”

‖gmt ´ gt‖
2
ı

´
2γ

M

ÿ

m

xxmt ´ x̂t,∇fpxmt qy . (15)

Now note that by expanding the square we have,

E
”

‖gmt ´ gt‖
2
ı

“ E
”

‖gmt ´ ḡt‖
2
ı

` E
”

‖ḡt ´ gt‖2
ı

` 2E rxgmt ´ ḡt, ḡt ´ gtys . (16)

We decompose the first term in the last equality again by expanding the square,

E
”

‖gmt ´ ḡt‖
2
ı

“ E
”

‖gmt ´ ḡmt ‖
2
ı

` ‖ḡmt ´ ḡt‖
2
` 2E rxgmt ´ ḡmt , ḡmt ´ ḡtys

“ E
”

‖gmt ´ ḡmt ‖
2
ı

` ‖ḡmt ´ ḡt‖
2
` 2 xḡmt ´ ḡ

m
t , ḡ

m
t ´ ḡty

looooooooooomooooooooooon

“0

“ E
”

‖gmt ´ ḡmt ‖
2
ı

` ‖ḡmt ´ ḡt‖
2
.

Plugging this into (16) we have,

E
”

‖gmt ´ gt‖
2
ı

“ E
”

‖gmt ´ ḡmt ‖
2
ı

` ‖ḡmt ´ ḡt‖
2
` E

”

‖ḡt ´ gt‖2
ı

` 2E rxgmt ´ ḡt, ḡt ´ gtys .
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Now average over m:

1

M

ÿ

m

E
”

‖gmt ´ gt‖
2
ı

“
1

M

ÿ

m

E
”

‖gmt ´ ḡmt ‖
2
ı

`
1

M

ÿ

m

‖ḡmt ´ ḡt‖
2
` E

”

‖ḡt ´ gt‖2
ı

´ 2E
”

‖ḡt ´ gt‖2
ı

,

where we used that by definition 1
M

řM
m“1 g

m
t “ gt. Hence,

1

M

ÿ

m

E
”

‖gmt ´ gt‖
2
ı

“
1

M

ÿ

m

E
”

‖gmt ´ ḡmt ‖
2
ı

`
1

M

ÿ

m

‖ḡmt ´ ḡt‖
2
´ E

”

‖ḡt ´ gt‖2
ı

ď
1

M

ÿ

m

E
”

‖gmt ´ ḡmt ‖
2
ı

`
1

M

ÿ

m

‖ḡmt ´ ḡt‖
2
. (17)

Now note that for the first term in (17) we have by Assumption 2,

E
”

‖gmt ´ ḡmt ‖
2
ı

“ E
”

‖gmt ´∇fpxmt q‖
2
ı

ď σ2. (18)

For the second term in (17) we have

‖ḡmt ´ ḡt‖
2
“ ‖ḡmt ´∇fpx̂tq‖

2
` ‖∇fpx̂tq ´ ḡt‖2 ` 2 xḡmt ´∇fpx̂tq,∇fpx̂tq ´ ḡty .

Averaging over m,

1

M

M
ÿ

m“1

‖ḡmt ´ ḡt‖
2
“

1

M

ÿ

m

‖ḡmt ´∇fpx̂tq‖
2
` ‖∇fpx̂tq ´ ḡt‖2 ` 2 xḡt ´∇fpx̂tq,∇fpx̂tq ´ ḡty

“
1

M

ÿ

m

‖ḡmt ´∇fpx̂tq‖
2
` ‖∇fpx̂tq ´ ḡt‖2 ´ 2‖∇fpx̂tq ´ ḡt‖2

“
1

M

ÿ

m

‖ḡmt ´∇fpx̂tq‖
2
´ ‖∇fpx̂tq ´ ḡt‖2 ď

1

M

ÿ

m

‖ḡmt ´∇fpx̂tq‖
2
,

where we used the fact that 1
M

ř

m ḡ
m
t “ ḡt, which comes from the linearity of expectation. Now we bound

‖ḡmt ´∇fpx̂tq‖
2

in the last inequality by smoothness and then use that Jensen’s inequality implies
řM
m“1pfpx̂tq´

fpxmt qq ď 0,

1

M

ÿ

m

‖ḡmt ´∇fpx̂tq‖
2
“

1

M

ÿ

m

‖∇fpxmt q ´∇fpx̂tq‖
2

(11)
ď

1

M

ÿ

m

2Lpfpx̂tq ´ fpx
m
t q ´ xx̂t ´ x

m
t ,∇fpxmt qyq

ď
2L

M

ÿ

m

xxmt ´ x̂t,∇fpxmt qy . (19)

Plugging in (19) and (18) into (17) we have,

1

M

ÿ

m

E
”

‖gmt ´ gt‖
2
ı

ď σ2 `
2L

M

ÿ

m

xxmt ´ x̂t,∇fpxmt qy . (20)

Plugging (20) into (15), we get

E rVt`1s ď Vt ` γ
2σ2 ´

2γ

M

ÿ

m

xxmt ´ x̂t,∇fpxmt qy `
2Lγ2

M

ÿ

m

xxmt ´ x̂t,∇fpxmt qy

“ Vt ` γ
2σ2 ´

2γp1´ γLq

M

ÿ

m

xxmt ´ x̂t,∇fpxmt qy (21)

(12)
ď p1´ γp1´ γLqµqVt ` γ

2σ2.
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Using that γ ď 1
2L we can conclude,

E rVt`1s ď

´

1´
γµ

2

¯

Vt ` γ
2σ2

ď Vt ` γ
2σ2.

Taking expectations and iterating the above inequality,

E rVts ď E
“

Vtp
‰

` γ2σ2 pt´ tpq

ď E
“

Vtp
‰

` γ2σ2 ptp`1 ´ tp ´ 1q

ď E
“

Vtp
‰

` γ2σ2 pH ´ 1q .

It remains to notice that by assumption we have Vtp “ 0. �

7.2 Two More Lemmas

Lemma 2. (Stich, 2019). Let pxmt qtě0 be iterates generated by Algorithm 1 run with identical data. Suppose
that f satisfies Assumption 1 and that γ ď 1

2L . Then,

E
”

‖x̂t`1 ´ x˚‖2
ı

ď p1´ γµqE
”

‖x̂t ´ x˚‖2
ı

` γ2E
”

‖gt ´ ḡt‖2
ı

´
γ

2
E rDf px̂t, x˚qs ` 2γLE rVts .

(22)

Proof. This is Lemma 3.1 in (Stich, 2019). �

Lemma 3. Suppose that Assumption 2 holds. Then,

E
”

‖gt ´ ḡt‖2
ı

ď
σ2

M
.

Proof. This is Lemma 3.2 in (Stich, 2019). Because the stochastic gradients gmt are independent we have that
the variance of their sum is the sum of their variances, hence

E
”

‖gt ´ ḡt‖2
ı

“
1

M2
E

»

–

∥∥∥∥∥ M
ÿ

m“1

gmt ´ ḡ
m
t

∥∥∥∥∥
2
fi

fl “
1

M2

M
ÿ

m“1

E
”

‖gmt ´ ḡmt ‖
2
ı

ď
σ2

M
.

�

7.3 Proof of Theorem 1

Proof. Combining Lemma 2 and Lemma 3, we have

E
”

‖x̂t`1 ´ x˚‖2
ı

ď p1´ γµqE
”

‖x̂t ´ x˚‖2
ı

`
γ2σ2

M
´
γ

2
E rDf px̂t, x˚qs ` 2γLE rVts . (23)

Using Lemma 1 we can upper bound the E rVts term in (23):

E
”

‖x̂t`1 ´ x˚‖2
ı

ď p1´ γµqE
”

‖x̂t ´ x˚‖2
ı

`
γ2σ2

M
´
γ

2
E rDf px̂t, x˚qs ` 2γ3L pH ´ 1qσ2.

Letting rt`1 “ x̂t`1 ´ x˚ and we have,

E
”

‖rt`1‖2
ı

ď p1´ γµqE
”

‖rt‖2
ı

`
γ2σ2

M
` 2γ3L pH ´ 1qσ2.

Recursing the above inequality we have,

E
”

‖rT ‖2
ı

ď p1´ γµq
T E

”

‖r0‖2
ı

`

˜

T´1
ÿ

t“0

p1´ γµq
t

¸

ˆ

γ2σ2

M
` 2γ3L pH ´ 1qσ2

˙

.
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Using that
řT´1
t“0 p1´ γµq

t
ď
ř8

t“0 p1´ γµq
t
“ 1

γµ we have,

E
”

‖rT ‖2
ı

ď p1´ γµq
T E

”

‖r0‖2
ı

`
γσ2

µM
`

2γ2L pH ´ 1qσ2

µ
,

which is the claim of this theorem. �

7.4 Proof of Theorem 2

Proof. Let rt “ x̂t ´ x˚, then putting µ “ 0 in Lemma 2 and combining it with Lemma 3, we have

E
”

‖rt`1‖2
ı

ď E
”

‖rt‖2
ı

`
γ2σ2

M
´
γ

2
E rDf px̂t, x˚qs ` 2γLE rVts .

Further using Lemma 1,

E
”

‖rt`1‖2
ı

ď E
”

‖rt‖2
ı

`
γ2σ2

M
´
γ

2
E rDf px̂t, x˚qs ` 2γ3L pH ´ 1qσ2.

Rearranging we have,

γ

2
E rDf px̂t, x˚qs ď E

”

‖rt‖2
ı

´ E
”

‖rt`1‖2
ı

`
γ2σ2

M
` 2γ3L pH ´ 1qσ2.

Averaging the above equation as t varies between 0 and T ´ 1,

γ

2T

T´1
ÿ

t“0

E rDf px̂t, x˚qs ď
1

T

T´1
ÿ

t“0

E
”

‖rt‖2
ı

´ E
”

‖rt`1‖2
ı

`
1

T

T´1
ÿ

t“0

ˆ

γ2σ2

M
` 2γ3L pH ´ 1qσ2

˙

“
‖r0‖2 ´ E

”

‖rT ‖2
ı

T
`
γ2σ2

M
` 2γ3L pH ´ 1qσ2

ď
‖r0‖2

T
`
γ2σ2

M
` 2γ3L pH ´ 1qσ2. (24)

By Jensen’s inequality we have Df px̄T , x˚q ď
1
T

řT´1
t“0 Df px̂t, x˚q. Using this in (24) we have,

γ

2
E rDf px̂t, x˚qs ď

‖r0‖2

T
`
γ2σ2

M
` 2γ3L pH ´ 1qσ2.

Dividing both sides by γ{2 yields the theorem’s claim. �

8 Proofs for identical data under Assumption 3

8.1 Preliminary Lemmas

Lemma 4. Individual gradient variance bound: assume that Assumption 3 holds with identical data, then for
all t ě 0 and m P rM s we have

E
”

‖gmt ‖
2
ı

ď 4LDf px
m
t , x˚q ` 2σ2

m, (25)

where σ2
m

def
“ Ezm„Dm

”

‖∇fpx˚, zmq‖2
ı

is the noise at the optimum on the m-th node.

Proof. Using that gmt “ ∇fpxmt , zmq for some zm „ Dm,

‖gmt ‖
2
“ ‖∇fpxmt , zmq‖

2

(13)
ď 2‖∇fpxmt , zmq ´∇fpx˚, zmq‖

2
` 2‖∇fpx˚, zmq‖2

(11)
ď 4L pfpxmt , zmq ´ fpx˚, zmq ´ x∇fpx˚, zmq, xmt ´ x˚yq ` 2‖∇fpx˚, zmq‖2.
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Taking expectations and using that E r∇fpx˚, zqs “ ∇fpx˚q “ 0 we get,

E
”

‖gmt ‖
2
ı

ď 4L pfpxmt q ´ fpx˚qq ` 2σ2
m

“ 4LDf px
m
t , x˚q ` 2σ2

m.

�

Lemma 5 (Average gradient variance reduction). Assume that Assumption 3 holds with identical data, then
for all t ě 0 and for M nodes we have,

E
”

‖gt ´ ḡt‖2
ı

ď
2σ2

opt

M
`

4L

M2

M
ÿ

m“1

Df px
m
t , x˚q. (26)

Proof. Using the definition of gt and ḡt,

E
”

‖gt ´ ḡt‖2
ı

“ E

»

–

∥∥∥∥∥ 1

M

M
ÿ

m“1

gmt ´∇fpxmt q

∥∥∥∥∥
2
fi

fl

“
1

M2
E

»

–

∥∥∥∥∥ M
ÿ

m“1

pgmt ´∇fpxmt qq

∥∥∥∥∥
2
fi

fl . (27)

The sum in (27) is the variance of a sum of independent random variables and hence can be decomposed into
the sum of their individual variances which we can use Lemma 4 to bound:

E
”

‖gt ´ ḡt‖2
ı

“
1

M2

M
ÿ

m“1

E
”

‖gmt ´∇fpxmt q‖
2
ı

(8)
ď

1

M2

M
ÿ

m“1

E
”

‖gmt ‖
2
ı

(25)
ď

1

M2

M
ÿ

m“1

`

2σ2
m ` 4LDf px

m
t , x˚q

˘

“
2σ2

opt

M
`

4L

M2

M
ÿ

m“1

Df px
m
t , x˚q,

where in the last equality we used that σ2
opt is by definition equal to

řM
m“1 σ

2
m{M . �

Lemma 6. Perturbed iterate analysis: this bounds the optimality gap across one iteration when the descent
step is x̂t`1 “ x̂t ´

γ
M

řM
m“1∇fpxmt q, i.e. when the expectation of the local SGD update is used. Suppose that

Assumptions 1, and 3 hold with identical data. Then,

‖x̂t`1 ´ γḡt ´ x˚‖2 ď ‖x̂t ´ x˚‖2 ` 2γLVt

`
2γ

M

M
ÿ

m“1

ˆˆ

γL´
1

2

˙

pfpxmt q ´ fpx˚qq ´
µ

2
‖xmt ´ x˚‖

2

˙

.
(28)
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Proof. This is the first part of Lemma 3.1 in (Stich, 2019) and we reproduce it for completeness:

‖x̂t ´ x˚ ´ γḡt‖2 “ ‖x̂t ´ x˚‖2 ` γ2‖ḡt‖2 ´ 2γ xx̂t ´ x˚, ḡty

“ ‖x̂t ´ x˚‖2 ` γ2‖ḡt‖2 ´
2γ

M

M
ÿ

m“1

xx̂t ´ x˚,∇fpxmt qy

(10)
ď ‖x̂t ´ x˚‖2 `

γ2

M

M
ÿ

m“1

‖∇fpxmt q‖
2
´

2γ

M

M
ÿ

m“1

xx̂t ´ x
m
t ` x

m
t ´ x˚,∇fpxmt qy

“ ‖x̂t ´ x˚‖2 `
γ2

M

M
ÿ

m“1

‖∇fpxmt q ´ fpx˚q‖
2
´

2γ

M

M
ÿ

m“1

xxmt ´ x˚,∇fpxmt qy

´
2γ

M

M
ÿ

m“1

xx̂t ´ x
m
t ,∇fpxmt qy

(11)
ď ‖x̂t ´ x˚‖2 `

2Lγ2

M

M
ÿ

m“1

pfpxmt q ´ fpx˚qq ´
2γ

M

M
ÿ

m“1

xxmt ´ x˚,∇fpxmt qy

´
2γ

M

M
ÿ

m“1

xx̂t ´ x
m
t ,∇fpxmt qy

(12)
ď ‖x̂t ´ x˚‖2 `

2γ

M

M
ÿ

m“1

´

pγL´ 1q pfpx̂mt q ´ fpx˚qq ´
µ

2
‖xmt ´ x˚‖

2
¯

´
2γ

M

M
ÿ

m“1

xx̂t ´ x
m
t ,∇fpxmt qy .

(29)

To bound the last term in (29) we use the generalized Young’s inequality 2 xa, by ď ζ‖a‖2`ζ´1‖b‖2 with ζ “ 2L:

´2 xx̂t ´ x
m
t ,∇fpxmt qy

(14)
ď 2L‖xmt ´ x̂t‖

2
`

1

2L
‖∇fpxmt q‖

2

“ 2L‖xmt ´ x̂t‖
2
`

1

2L
‖∇fpxmt q ´ fpx˚q‖

2

(11)
ď 2L‖xmt ´ x̂t‖

2
` pfpxmt q ´ fpx˚qq . (30)

Finally, using (30) in (29) we get,

‖x̂t ´ γḡt ´ x˚‖2
(29),(30)
ď ‖x̂t ´ x˚‖2 `

2γ

M

M
ÿ

m“1

ˆˆ

γL´
1

2

˙

pfpx̂mt q ´ fpx˚qq ´
µ

2
‖xmt ´ x˚‖

2

˙

`
2γL

M

M
ÿ

m“1

‖x̂t ´ xmt ‖
2
.

�

Lemma 7. Single-iterate optimality gap analysis: Suppose that Assumptions 1 and 3 hold with identical data.
Choose a stepsize γ ą 0 such that γ ď 1

4Lp1` 2
M q

where M is the number of nodes, then for expectation conditional

on x1t , x
2
t , . . . , x

M
t we have

E
”

‖x̂t`1 ´ x˚‖2
ı

ď p1´ γµq ‖x̂t ´ x˚‖2 ` 2γLVt `
2γ2σ2

opt

M
´
γ

2
pfpx̂tq ´ fpx˚qq , (31)

where x̂t “
1
M

řM
m“1 x

m
t and Vt

def
“ 1

M

řM
m“1 ‖xmt ´ x̂t‖

2
is the iterate variance across the different nodes from

their mean at timestep t.
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Proof. This is a modification of Lemma 3.1 in Stich (2019). For expectation conditional on pxmt q
M
m“1 and using

Lemma 6,

E
”

‖x̂t`1 ´ x˚‖2
ı

(6)
“ ‖x̂t ´ x˚ ´ γḡt‖2 ` γ2E

”

‖gt ´ ḡt‖2
ı

(28)
ď ‖x̂t ´ x˚‖2 ` 2γLVt ` γ

2E
”

‖gt ´ ḡt‖2
ı

`
2γ

M

M
ÿ

m“1

ˆˆ

γL´
1

2

˙

pfpxmt q ´ fpx˚qq ´
µ

2
‖xmt ´ x˚‖

2

˙

.

Now use Lemma 5 to bound ‖gt ´ ḡt‖2:

E
”

‖x̂t`1 ´ x˚‖2
ı (26)
ď ‖x̂t ´ x˚‖2 ` 2γLVt `

2γ2σ2
opt

M

`
2γ

M

M
ÿ

m“1

ˆˆ

γL`
2γL

M
´

1

2

˙

pfpxmt q ´ fpx˚qq ´
µ

2
‖xmt ´ x˚‖

2

˙

.

(32)

We now use that the stepsize γ ď 1

4Lp1` 2
M q

to bound the last term in (32),

E
”

‖x̂t`1 ´ x˚‖2
ı

ď ‖x̂t ´ x˚‖2 ` 2γLVt `
2γ2σ2

opt

M

`
2γ

M

M
ÿ

m“1

ˆ

´
1

4
pfpxmt q ´ fpx˚qq ´

µ

2
‖xmt ´ x˚‖

2

˙

.

(33)

Applying Jensen’s inequality from Proposition 1 to 1
4 pfpx

m
t q ´ fpx˚qq `

µ
2 ‖x

m
t ´ x˚‖

2
, we obtain

´
1

M

M
ÿ

m“1

ˆ

1

4
pfpxmt q ´ fpx˚qq `

µ

2
‖xmt ´ x˚‖

2

˙

(9)
ď ´

ˆ

1

4
pfpx̂tq ´ fpx˚qq `

µ

2
‖x̂t ´ x˚‖2

˙

. (34)

Plugging (34) in (33), we get

E
”

‖x̂t`1 ´ x˚‖2
ı (33),(34)

ď p1´ γµq ‖x̂t ´ x˚‖2 ` 2γLVt `
2γ2σ2

opt

M
´
γ

2
pfpx̂tq ´ fpx˚qq ,

which is the claim of this lemma. �

Lemma 8. Bounding the deviation of the gradients from their average: under Assumptions 1 and 3 for identical
data we have for all t ě 0,

1

M

M
ÿ

m“1

E

»

–

∥∥∥∥∥gmt ´ 1

M

M
ÿ

m“1

gmt

∥∥∥∥∥
2
fi

fl ď 2σ2
opt `

4L

M

M
ÿ

m“1

Df px
m
t , x˚q. (35)

Proof. We start by the variance bound,

1

M

M
ÿ

m“1

∥∥∥∥∥gmt ´ 1

M

M
ÿ

m“1

gmt

∥∥∥∥∥
2

(7)
“

1

M

M
ÿ

m“1

‖gmt ‖
2
´

∥∥∥∥∥ 1

M

M
ÿ

m“1

gmt

∥∥∥∥∥
2

ď
1

M

M
ÿ

m“1

‖gmt ‖
2
.
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We now take expectations and use Lemma 4:

1

M

M
ÿ

m“1

E

»

–

∥∥∥∥∥gmt ´ 1

M

M
ÿ

m“1

gmt

∥∥∥∥∥
2
fi

fl ď
1

M

M
ÿ

m“1

E
”

‖gmt ‖
2
ı

ď
1

M

M
ÿ

m“1

`

2σ2
m ` 4LDf px

m
t , x˚q

˘

“ 2σ2
opt `

4L

M

M
ÿ

m“1

Df px
m
t , x˚q.

�

Lemma 9. Suppose that Assumptions 1, and 3 hold for identical data. Choose γ ď 1
2L , then for all t ě 0:

E rVt`1s ď p1´ γµqE rVts ` 2γE rDf px̂t, x˚qs ` 2γ2σ2
opt. (36)

Proof. If t` 1 “ tp for some p P N then the left hand side is zero and the above inequality is trivially satisfied.

If not, then recall that xmt`1 “ xmt ´ γgmt and x̂t`1 “ x̂t ´ γgt where E rgmt s “ ∇fpxmt q and gt “
1
M

řM
m“1 g

m
t .

Hence, for the expectation conditional on pxmt q
M
m“1 we have

E
”∥∥xmt`1 ´ x̂t`1

∥∥2ı “ E
”

‖xmt ´ x̂t ´ γ pgmt ´ gtq‖
2
ı

“ E
”

‖xmt ´ x̂mt ‖
2
ı

` γ2E
”

‖gmt ´ gt‖
2
ı

´ 2γE rxxmt ´ x̂t, gmt ´ gtys

“ E
”

‖xmt ´ x̂mt ‖
2
ı

` γ2E
”

‖gmt ´ gt‖
2
ı

´ 2γ xxmt ´ x̂t,∇fpxmt q ´ ḡty ,

where ḡt “ E
”

1
M

řM
m“1 g

m
t

ı

“ 1
M

řM
m“1∇fpxmt q. Averaging over m in the last equality,

E rVt`1s “ Vt `
γ2

M

M
ÿ

m“1

E
”

‖gmt ´ gt‖
2
ı

´
2γ

M

M
ÿ

m“1

xxmt ´ x̂t,∇fpxmt qy `
2γ

M

M
ÿ

m“1

xxmt ´ x̂t, ḡty

“ Vt `
γ2

M

M
ÿ

m“1

E
”

‖gmt ´ gt‖
2
ı

´
2γ

M

M
ÿ

m“1

xxmt ´ x̂t,∇fpxmt qy ` 2γ xx̂t ´ x̂t, ḡty
loooooomoooooon

“0

“ Vt `
γ2

M

M
ÿ

m“1

E
”

‖gmt ´ gt‖
2
ı

´
2γ

M

M
ÿ

m“1

xxmt ´ x̂t,∇fpxmt qy . (37)

We now use Lemma 8 to bound the second term in (37),

E rVt`1s
(35)
ď Vt `

4Lγ2

M

M
ÿ

m“1

Df px
m
t , x˚q ` 2γ2σ2

opt ´
2γ

M

M
ÿ

m“1

xxmt ´ x̂t,∇fpxmt qy . (38)

We now use Assumption 1 to bound the last term in (38):

xx̂t ´ x
m
t ,∇fpxmt qy

(12)
ď fpx̂tq ´ fpx

m
t q ´

µ

2
‖xmt ´ x̂t‖

2
. (39)

Plugging (39) into (38),

E rVt`1s ď p1´ γµqVt ` 2γ2σ2
opt `

4Lγ2

M

M
ÿ

m“1

pfpxmt q ´ fpx˚qq `
2γ

M

M
ÿ

m“1

pfpx̂tq ´ fpx
m
t qq . (40)

Using that γ ď 1
2L in (40),

E rVt`1s ď p1´ γµqVt ` 2γ2σ2
opt `

2γ

M

M
ÿ

m“1

pfpxmt q ´ fpx˚q ` fpx̂tq ´ fpx
m
t qq

“ p1´ γµqVt ` 2γ2σ2
opt ` 2γ pfpx̂tq ´ fpx˚qq .

Taking unconditional expectations and using the tower property yields the lemma’s statement. �
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Lemma 10. Epoch Iterate Deviation Bound Suppose that Assumptions 1, and 3 hold with identical data.
Assume that Algorithm 1 is run with stepsize γ ą 0, let p P N be such that tp is a synchronization point then

for v “ tp`1 ´ 1 we have for α
def
“ 1´ γµ,

v
ÿ

t“tp

αv´t ¨ E rVts ď
2γ pH ´ 1q

α

v
ÿ

t“tp

αv´t ¨ E rDf px̂t, x˚qs ` 2γ2σ2
opt pH ´ 1q

v
ÿ

t“tp

αv´t.

Proof. We start with Lemma 9,

E rVts ď p1´ γµqE rVt´1s ` 2γE rDf px̂t´1, x˚qs ` 2γ2σ2
opt

“ α ¨ E rVt´1s ` 2γE rDf px̂t´1, x˚qs ` 2γ2σ2
opt.

By assumption there is some synchronization point p P N such that tp ď t ď tp`1´1 and tp`1´tp ď H, recursing
the above inequality until tp and using that Vtp “ 0,

E rVts ď αt´tpE
“

Vtp
‰

` 2γ
t´1
ÿ

j“tp

αt´j´1E rDf px̂j , x˚qs

` 2σ2
opt

t´1
ÿ

j“tp

γ2αt´1´j

“
2γ

α

t´1
ÿ

j“tp

αt´jE rDf px̂j , x˚qs ` 2γ2σ2
opt

t´1
ÿ

j“tp

αt´1´j . (41)

The second term in (41) can be bounded as follows: because α ď 1 then αt´1´j ď 1 for j ď t ´ 1, hence for
t ď tp`1 ´ 1

2γ2σ2
opt

t´1
ÿ

j“tp

αt´1´j ď 2γ2σ2
opt

t´1
ÿ

j“tp

1

“ 2γ2σ2
opt pt´ tpq

ď 2γ2σ2
opt ptp`1 ´ tp ´ 1q

ď 2γ2σ2
opt pH ´ 1q . (42)

Using (42) in (41),

E rVts ď
2γ

α

t´1
ÿ

j“tp

αt´jE rDf px̂j , x˚qs ` 2γ2σ2
opt pH ´ 1q . (43)

Then summing up (43) weighted by αv´t for v “ tp`1 ´ 1,

v
ÿ

t“tp

αv´tE rVts ď
2γ

α

v
ÿ

t“tp

αv´t
t´1
ÿ

j“tp

αt´jE rDf px̂j , x˚qs ` 2γ2
v
ÿ

t“tp

αv´tσ2
opt pH ´ 1q . (44)

We now bound the first term in (44) by adding more terms in the inner sum, since Df px̂j , x˚q ě 0 and t´ 1 ď
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v ´ 1 ď v:

v
ÿ

t“tp

αv´t
t´1
ÿ

j“tp

αt´jE rDf px̂j , x˚qs ď
v
ÿ

t“tp

αv´t
v
ÿ

j“tp

αt´jE rDf px̂j , x˚qs

“

v
ÿ

t“tp

v
ÿ

j“tp

αv´jE rDf px̂j , x˚qs

“ pv ´ tpq
v
ÿ

j“tp

αv´jE rDf px̂j , x˚qs

“ ptp`1 ´ tp ´ 1q
v
ÿ

j“tp

αv´jE rDf px̂j , x˚qs

ď pH ´ 1q
v
ÿ

j“tp

αv´jE rDf px̂j , x˚qs . (45)

Combining (45) and (44) we have,

v
ÿ

t“tp

αv´t ¨ E rVts ď
2γ pH ´ 1q

α

v
ÿ

j“tp

αv´j ¨ E rDf px̂j , x˚qs ` 2γ2σ2
opt pH ´ 1q

v
ÿ

t“tp

αv´t.

Finally, renaming the variable j gives us the claim of this lemma. �

8.2 Proof of Theorem 3

Proof. Let ptpq
8
p“1 index all the times t at which communication and averaging happen. Taking expectations in

Lemma 7 and letting rt “ x̂t ´ x˚,

E
”

‖rt`1‖2
ı

ď p1´ γµqE
”

‖rt‖2
ı

` 2γLE rVts `
2γ2σ2

opt

M
´
γ

2
E rDf px̂t, x˚qs (46)

“ p1´ γµqE
”

‖rt‖2
ı

`

´

2γLE rVts ´
γ

2
Df px̂t, x˚q

¯

`
2γ2σ2

opt

M
. (47)

Let T “ tp ´ 1 for some p P N, then expanding out E
”

‖rt‖2
ı

in (46),

E
”

‖rT`1‖2
ı

ď p1´ γµq
T`1 E

”

‖x̂0 ´ x˚‖2
ı

`

T
ÿ

t“0

p1´ γµq
T´i 2γ2σ2

opt

M

`

T
ÿ

i“0

p1´ γµq
T´i

´

2γLE rVis ´
γ

2
Df px̂i, x˚q

¯

ď p1´ γµq
T`1 E

”

‖x0 ´ x˚‖2
ı

`
2γσ2

opt

µM
`
γ

2

T
ÿ

i“0

p1´ γµq
T´i E r4LVi ´Df px̂i, x˚qs . (48)

It remains to bound the last term in (48). We have

T
ÿ

i“0

p1´ γµq
T´i

p4LE rVis ´Df px̂i, x˚qq

“

p
ÿ

k“1

tk´1
ÿ

i“tk´1

p1´ γµq
T´i

p4LE rVis ´Df px̂i, x˚qq

“

p
ÿ

k“1

p1´ γµq
T´ptk´1q

tk´1
ÿ

tk´1

p1´ γµq
tk´1´i E r4LVi ´Df px̂i, x˚qs , (49)
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where in the first line we just count i by decomposing it over all the communication intervals. Fix k P N and let
vk “ tk ´ 1. Then by Lemma 10 we have,

vk
ÿ

i“tk

p1´ γµq
vk´i E rVis ď

2γpH ´ 1q

α

vk
ÿ

i“tk

αvk´iE rDf px̂i, x˚qs `
vk
ÿ

i“tk

αvk´i2γ2σ2pH ´ 1q, (50)

where α “ 1´ γµ. Using (50) in (49),

4L
vk
ÿ

i“tk´1

p1´ γµq
vk´i E rVss ´

vk
ÿ

i“tk´1

p1´ γµq
vk´i E rDf px̂i, x˚qs

ď 4L

¨

˝

2γ pH ´ 1q

1´ γµ

vk
ÿ

i“tk´1

p1´ γµq
vk´i E rDf px̂i, x˚qs `

vk
ÿ

i“tk´1

p1´ γµq
vk´i 2γ2σ2

opt pH ´ 1q

˛

‚

´

vk
ÿ

i“tk´1

p1´ γµq
vk´i E rDf px̂i, x˚qs

“

vk
ÿ

i“tk´1

p1´ γµq
vk´i 8γ2σ2

opt pH ´ 1qL´
vk
ÿ

i“tk´1

ˆ

1´
8γL pH ´ 1q

1´ γµ

˙

p1´ γµq
vk´i E rDf px̂i, x˚qs

ď

vk
ÿ

i“tk´1

p1´ γµq
vk´i 8γ2σ2

opt pH ´ 1qL, (51)

where in in the third line we used that our choice of γ guarantees that 1´ 8γLH
1´γµ ě 0. Using (51) in (49),

T
ÿ

i“0

p1´ γµq
T´iE r4LVi ´Df px̂i, x˚qs

ď

p
ÿ

k“1

p1´ γµq
T´ptk´1q

tk´1
ÿ

i“tk´1

p1´ γµq
tk´1´i E r4LVi ´Df px̂i, x˚qs

ď

p
ÿ

k“1

p1´ γµq
T´ptk´1q

tk´1
ÿ

i“tk´1

p1´ γµq
tk´1´i

8γ2σ2
opt pH ´ 1qL

“

p
ÿ

k“1

tk´1
ÿ

i“tk´1

p1´ γµq
T´i

8γ2σ2 pH ´ 1qL

“

T
ÿ

i“0

p1´ γµq
T´i

8γ2σ2
opt pH ´ 1qL

ď
8σ2

optγ pH ´ 1qL

µ
. (52)

Using (52) in (48),

E
”

‖rT`1‖2
ı

ď p1´ γµq
T`1 E

”

‖x0 ´ x˚‖2
ı

`
2γσ2

opt

µM
`
γ

2

T
ÿ

i“0

p1´ γµq
T´i E r4LVi ´Df px̂i, x˚qs

ď p1´ γµq
T`1 E

”

‖x0 ´ x˚‖2
ı

`
2γσ2

opt

µM
`

4σ2
optγ

2 pH ´ 1qL

µ
,

which is the claim of the theorem. �

8.3 Proof of Theorem 4

Proof. Start with Lemma 7 with µ “ 0, then the conditional expectations satisfies

E
”

‖x̂t`1 ´ x˚‖2
ı (31)
ď ‖x̂t ´ x˚‖2 ` 2γLVt `

2γ2σ2
opt

M
´
γ

2
Df px̂t, x˚q.
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Taking full expectations and rearranging,

γ

2
E rDf px̂t, x˚qs ď E

”

‖x̂t ´ x˚‖2
ı

´ E
”

‖x̂t`1 ´ x˚‖2
ı

` 2γLE rVts `
2γ2σ2

opt

M
.

Averaging as t varies from 0 to T ´ 1,

γ

2T

T´1
ÿ

t“0

E rDf px̂t, x˚qs ď
1

T

T´1
ÿ

t“0

´

E
”

‖x̂t ´ x˚‖2
ı

´ E
”

‖x̂t`1 ´ x˚‖2
ı¯

`
2γL

T

T´1
ÿ

t“0

E rVts `
2γ2σ2

opt

M

“
1

T

´

‖x0 ´ x˚‖2 ´ E
”

‖x̂T ´ x˚‖2
ı¯

`
2γL

T

T´1
ÿ

t“0

E rVts `
2γ2σ2

opt

M

ď
‖x0 ´ x˚‖2

T
`

2γL

T

T´1
ÿ

t“0

E rVts `
2γ2σ2

opt

M
. (53)

To bound the sum of deviations in (53), we use Lemma 10 with µ “ 0 (and noticing that because µ “ 0 we have
α “ 1),

tp`1´1
ÿ

t“tp

E rVts ď
tp`1´1
ÿ

t“tp

`

2γpH ´ 1qE rDf px̂t, x˚qs ` 2γ2σ2
optpH ´ 1q

˘

. (54)

Since by assumption T is a synchronization point, then there is some k P N such that T “ tk. To estimate the
sum of deviations in (53) we use double counting to decompose it over each epoch, use (54), and then use double
counting again:

T´1
ÿ

t“0

E rVts “
k´1
ÿ

p“0

tp`1´1
ÿ

t“tp

E rVts

(54)
ď

k´1
ÿ

p“0

tp`1´1
ÿ

t“tp

`

2γHE rDf px̂t, x˚qs ` 2γ2σ2
opt pH ´ 1q

˘

“

T´1
ÿ

t“0

`

2γ pH ´ 1qE rDf px̂t, x˚qs ` 2γ2σ2
optpH ´ 1q

˘

. (55)

Using (55) in (53) and rearranging we get,

γ

2T

T´1
ÿ

t“0

E rDf px̂t, x˚qs ď
‖x0 ´ x˚‖2

T
`

2γL

T

T´1
ÿ

t“0

`

2γpH ´ 1qE rDf px̂t, x˚qs ` 2γ2σ2
optpH ´ 1q

˘

`
2γ2σ2

opt

M

γ

2T

T´1
ÿ

t“0

p1´ 8γpH ´ 1qLqE rDf px̂t, x˚qs ď
‖x0 ´ x˚‖2

T
`

2γ2σ2
opt

M
` 4γ3Lσ2

optpH ´ 1q.

By our choice of γ we have that 1´ 8γLpH ´ 1q ě 2
10 , using this with some algebra we get

γ

10T

T´1
ÿ

t“0

E rDf px̂t, x˚qs ď
‖x0 ´ x˚‖2

T
`

2γ2σ2
opt

M
` 4γ3Lσ2

optpH ´ 1q.

Dividing both sides by γ{10 and using Jensen’s inequality yields the theorem’s claim. �

9 Proofs for Heterogeneous data

9.1 Preliminary Lemmas

Lemma 11. Suppose that Assumptions 1 and 3 hold with µ ě 0 for heterogeneous data. Then for expectation
conditional on x1t , x

2
t , . . . , x

m
t and for M ě 2, we have

E
”

‖gt‖2
ı

ď 2L2Vt ` 8LDf px̂t, x˚q `
4σ2

dif

M
. (56)
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Proof. Starting with the left-hand side,

E
”

‖gt‖2
ı (13)
ď 2E

»

–

∥∥∥∥∥gt ´ 1

M

M
ÿ

m“1

∇fmpx̂t, zmq

∥∥∥∥∥
2
fi

fl` 2E

»

–

∥∥∥∥∥ 1

M

n
ÿ

m“1

∇fmpx̂t, zmq

∥∥∥∥∥
2
fi

fl . (57)

To bound the first term in (57) we have that using the L-smoothness of fmp¨, zmq,

2E

»

–

∥∥∥∥∥gt ´ 1

M

M
ÿ

m“1

∇fmpx̂t, zmq

∥∥∥∥∥
2
fi

fl “ 2E

»

–

∥∥∥∥∥ 1

M

M
ÿ

m“1

∇fmpxmt , zmq ´∇fmpx̂t, zmq

∥∥∥∥∥
2
fi

fl

ď
2

M

M
ÿ

m“1

E
”

‖∇fmpxmt , zmq ´∇fmpx̂t, zmq‖
2
ı

ď
2L2

M

M
ÿ

m“1

‖xmt ´ x̂t‖
2
. (58)

and where in the second inequality we have used Jensen’s inequality and the convexity of the map x ÞÑ‖ x ‖2.
For the second term in (57), we have

E

»

–

∥∥∥∥∥ 1

M

M
ÿ

m“1

∇fmpx̂t, zmq

∥∥∥∥∥
2
fi

fl

(6)
“ E

»

–

∥∥∥∥∥ 1

M

M
ÿ

m“1

∇fmpx̂t, zmq ´
1

M

M
ÿ

m“1

∇fmpx̂tq

∥∥∥∥∥
2
fi

fl

`

∥∥∥∥∥ 1

M

M
ÿ

m“1

∇fmpx̂tq

∥∥∥∥∥
2

.

(59)

For the first term in (59) we have by the independence of z1, z2, . . . , zm,

E

»

–

∥∥∥∥∥ 1

M

M
ÿ

m“1

∇fmpx̂t, zmq ´
1

M

M
ÿ

m“1

∇fmpx̂tq

∥∥∥∥∥
2
fi

fl “
1

M2

M
ÿ

m“1

E
”

‖∇fmpx̂t, zmq ´∇fmpx̂tq‖2
ı

(8)
ď

1

M2

M
ÿ

m“1

E
”

‖∇fmpx̂t, zmq‖2
ı

(13)
ď

2

M2

M
ÿ

m“1

E
”

‖∇fmpx̂t, zmq ´∇fmpx˚, zmq‖2
ı

`
2

M2

M
ÿ

m“1

E
”

‖∇fmpx˚, zmq‖2
ı

(11)
ď

4L

M2

M
ÿ

m“1

Dfmpx̂t, x˚q `
2σ2

dif

M

“
4L

M
Df px̂t, x˚q `

2σ2
dif

M
.

Using this in (59) we have,

E

»

–

∥∥∥∥∥ 1

M

M
ÿ

m“1

∇fmpx̂t, zmq

∥∥∥∥∥
2
fi

fl ď
4L

M
Df px̂t, x˚q `

2σ2
dif

M
` E

»

–

∥∥∥∥∥ 1

M

M
ÿ

m“1

∇fmpx̂tq

∥∥∥∥∥
2
fi

fl

“
4L

M
Df px̂t, x˚q `

2σ2
dif

M
` ‖∇fpx̂tq‖2.

Now notice that
‖∇fpx̂tq‖2 “ ‖∇fpx̂tq ´∇fpx˚q‖2 ď 2LDf px̂t, x˚q.

Using this in the previous inequality we have,

E

»

–

∥∥∥∥∥ 1

M

M
ÿ

m“1

∇fmpx̂t, zmq

∥∥∥∥∥
2
fi

fl ď 2L

ˆ

1`
2

M

˙

Df px̂t, x˚q `
2σ2

dif

M
.
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Because M ě 2 we have 1` 2
M ď 2, hence

E

»

–

∥∥∥∥∥ 1

M

M
ÿ

m“1

∇fmpx̂t, zmq

∥∥∥∥∥
2
fi

fl ď 4LDf px̂t, x˚q `
2σ2

dif

M
. (60)

Combining (58) and (60) in (57) we have,

E
”

‖gt‖2
ı

ď 2L2Vt ` 8LDf px̂t, x˚q `
4σ2

dif

M
.

�

Lemma 12. Suppose that Assumption 1 holds with µ ě 0 for heterogeneous data (holds for each fm for
m “ 1, 2, . . . ,M). Then we have,

´
2

M

M
ÿ

m“1

xx̂t ´ x˚,∇fmpxmt qy ď ´2Df px̂t, x˚q ´ µ‖x̂t ´ x˚‖2 ` LVt. (61)

Proof. Starting with the left-hand side,

´2 xx̂t ´ x˚,∇fmpxmt qy “ ´2 xxmt ´ x˚,∇fmpxmt qy ´ 2 xx̂t ´ x
m
t ,∇fmpxmt qy . (62)

The first term in (62) is bounded by strong convexity:

´xxmt ´ x˚,∇fmpxmt qy ď fmpx˚q ´ fmpx
m
t q ´

µ

2
‖xmt ´ x˚‖

2
. (63)

For the second term, we use L-smoothness,

´xx̂t ´ x
m
t ,∇fmpxmt qy ď fmpx

m
t q ´ fmpx̂tq `

L

2
‖xmt ´ x̂t‖

2
. (64)

Combining (64) and (63) in (62),

´2 xx̂t ´ x˚,∇fmpxmt qy ď 2
´

fmpx˚q ´ fmpx
m
t q ´

µ

2
‖xmt ´ x˚‖

2
¯

` 2

ˆ

fmpx
m
t q ´ fmpx̂tq `

L

2
‖xmt ´ x̂t‖

2

˙

“ 2

ˆ

fmpx˚q ´ fmpx̂tq ´
µ

2
‖xmt ´ x˚‖

2
`
L

2
‖xmt ´ x̂t‖

2

˙

.

Averaging over m,

´
2

M

M
ÿ

m“1

xx̂t ´ x˚,∇fmpxmt qy ď ´2 pfpx̂tq ´ fpx˚qq ´
µ

M

M
ÿ

m“1

‖xmt ´ x˚‖
2
`

L

M

M
ÿ

m“1

‖xmt ´ x̂t‖
2
.

Note that the first term is the Bregman divergence Df px̂t, x˚q, and using Jensen’s inequality we have

´ 1
M

řM
m“1 ‖xmt ´ x˚‖

2
ď ´‖x̂t ´ x˚‖2, hence

´
2

M

M
ÿ

m“1

xx̂t ´ x˚,∇fmpxmt qy ď ´2Df px̂t, x˚q ´ µ‖x̂t ´ x˚‖2 ` LVt,

which is the claim of this lemma. �

Lemma 13. Suppose that Assumptions 1 and 3 hold for Algorithm 1 with heterogeneous data and with
supp |tp ´ tp`1| ď H. Let p P N, then for v “ tp`1 ´ 1 and γ ď 1

4LpH´1q we have,

v
ÿ

t“tp

E rVts ď 8Lγ2 pH ´ 1q
2

v
ÿ

k“tp

E rDf px̂k, x˚qs ` 4γ2 pH ´ 1q
2

v
ÿ

k“tp

σ2
dif . (65)
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Proof. Let t be such that tp ď t ď tp`1 ´ 1 “ v. From the definition of Vt,

E rVts “
1

M

M
ÿ

m“1

E
”

‖xmt ´ x̂t‖
2
ı

“
1

M

M
ÿ

m“1

E

»

—

–

∥∥∥∥∥∥
¨

˝xmtp ´ γ
t´1
ÿ

k“tp

gmk

˛

‚´

¨

˝xtp ´ γ
t´1
ÿ

k“tp

gk

˛

‚

∥∥∥∥∥∥
2
fi

ffi

fl

.

Using that xtp “ xmtp for all m we have,

E rVts “
γ2

M

M
ÿ

m“1

E

»

—

–

∥∥∥∥∥∥
t´1
ÿ

k“tp

gmk ´ gk

∥∥∥∥∥∥
2
fi

ffi

fl

(10)
ď

γ2 pt´ tpq

M

M
ÿ

m“1

t´1
ÿ

k“tp

E
”

‖gmk ´ gk‖
2
ı

(8)
ď
γ2 pt´ tpq

M

M
ÿ

m“1

t´1
ÿ

k“tp

E
”

‖gmk ‖
2
ı

ď
γ2 pH ´ 1q

M

M
ÿ

m“1

t´1
ÿ

k“tp

E
”

‖gmk ‖
2
ı

,

where in the third line we used that because gk “ 1
M

řM
m“1 g

m
k then 1

M

řM
m“1 E

”

‖gmk ´ gk‖
2
ı

ď

1
M

řM
m“1 E

”

‖gmk ‖
2
ı

, and in the fourth line we used that t ´ tp ď tp`1 ´ tp ´ 1 ď H ´ 1. Summing up as t

varies from tp to v,

v
ÿ

t“tp

E rVts ď
v
ÿ

t“tp

γ2pH ´ 1q

M

M
ÿ

m“1

t´1
ÿ

k“tp

E
”

‖gmk ‖
2
ı

.

Because t´ 1 ď v ´ 1 ď v we can upper bound the inner sum as follows

v
ÿ

t“tp

E rVts ď
v
ÿ

t“tp

γ2pH ´ 1q

M

M
ÿ

m“1

t´1
ÿ

k“tp

E
”

‖gmk ‖
2
ı

ď

v
ÿ

t“tp

γ2pH ´ 1q

M

M
ÿ

m“1

v´1
ÿ

k“tp

E
”

‖gmk ‖
2
ı

“
γ2pH ´ 1q pv ´ tpq

M

M
ÿ

m“1

v´1
ÿ

k“tp

E
”

‖gmk ‖
2
ı

ď
γ2pH ´ 1q2

M

M
ÿ

m“1

v´1
ÿ

k“tp

E
”

‖gmk ‖
2
ı

ď
γ2pH ´ 1q2

M

M
ÿ

m“1

v
ÿ

k“tp

E
”

‖gmk ‖
2
ı

. (66)

To bound the gradient norm term in (66), we have

E
”

‖gmk ‖
2
ı

ď 3E
”

‖gmk ´∇fmpx̂k, zmq‖
2
ı

` 3E
”

‖∇fmpx̂k, zmq ´∇fmpx˚, zmq‖2
ı

` 3E
”

‖∇fmpx˚, zmq‖2
ı

.
(67)
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The first term in (67) can be bounded by smoothness:

E
”

‖gmk ´∇fmpx̂t, zmq‖
2
ı

“ E
”

‖∇fmpxmk , zmq ´∇fmpx̂t, zmq‖
2
ı

ď L2E
”

‖xmk ´ x̂k‖
2
ı

. (68)

The second term in (67) can be bounded by smoothness and convexity:

E
”

‖∇fmpx̂k, zmq ´∇fmpx˚, zmq‖2
ı (11)
ď 2LE rDfmpx̂k, x˚qs . (69)

Using (69) and (68) in (67) and averaging with respect to m,

1

M

M
ÿ

m“1

E
”

‖gmk ‖
2
ı

ď
3L2

M

M
ÿ

m“1

E
”

‖xmk ´ x̂k‖
2
ı

` 6LDf px̂k, x˚q ` 3σ2
dif

“ 3L2E rVks ` 6LE rDf px̂k, x˚qs ` 3σ2
dif . (70)

Using (70) in (67),

v
ÿ

t“tp

E rVts ď γ2 pH ´ 1q
2

v
ÿ

k“tp

E
“

3L2Vk ` 6LDf px̂k, x˚q ` 3σ2
dif

‰

.

Noticing that the sum
řv
t“tp

E rVts appears in both sides, we can rearrange

´

1´ 3γ2 pH ´ 1q
2
L2

¯

v
ÿ

t“tp

E rVts ď 6Lγ2 pH ´ 1q
2

v
ÿ

k“tp

E rDf px̂k, x˚qs ` 3γ2 pH ´ 1q
2

v
ÿ

k“tp

σ2
dif .

Finally using that our choice γ implies that 1´ 3γ2 pH ´ 1q
2
L2 ě 3

4 we have,

v
ÿ

t“tp

E rVts ď 8Lγ2 pH ´ 1q
2

v
ÿ

k“tp

E rDf px̂k, x˚qs ` 4γ2 pH ´ 1q
2

v
ÿ

k“tp

σ2
dif .

�

Lemma 14 (Optimality gap single recursion). Suppose that Assumptions 1 and 3 hold for Algorithm 1 with
heterogeneous data and with M ě 2. Then for any γ ě 0 we have for expectation conditional on x1t , x

2
t , . . . , x

m
t ,

E
”

‖rt`1‖2
ı

ď p1´ γµq ‖rt‖2 ` γL p1` 2γLqVt ´ 2γ p1´ 4γLqDf px̂t, x˚q `
4γ2σ2

dif

M
, (71)

where rt
def
“ x̂t ´ x˚. In particular, if γ ď 1

8L , then

E
”

‖rt`1‖2
ı

ď p1´ γµq ‖rt‖2 `
5

4
γLVt ´

γ

2
Df px̂t, x˚q `

4γ2σ2
dif

M
, (72)

Proof. First note that x̂t`1 “ x̂t ´ γgt is always true (regardless of whether or not synchronization happens),
hence

‖x̂t`1 ´ x˚‖2 “ ‖x̂t ´ γgt ´ x˚‖2

“ ‖x̂t ´ x˚‖2 ` γ2‖gt‖2 ´ 2γ xx̂t ´ x˚, gty

“ ‖x̂t ´ x˚‖2 ` γ2‖gt‖2 ´
2γ

M

M
ÿ

m“1

xx̂t ´ x˚, g
m
t y .

Let rt “ x̂t ´ x˚, taking conditional expectations then using Lemmas 11 and 12,

E
”

‖rt`1‖2
ı

ď ‖rt‖2 ` γ2E
”

‖gt‖2
ı

´
2γ

M

M
ÿ

m“1

xx̂t ´ x˚,∇fmpxmt qy

(56)
ď ‖rt‖2 ` γ2

ˆ

2L2Vt ` 8LDf px̂t, x˚q `
4σ2

dif

M

˙

´
2γ

M

M
ÿ

m“1

xx̂t ´ x˚,∇fmpxmt qy

(61)
ď p1´ γµq ‖rt‖2 ` γL p1` 2γLqVt ´ 2γ p1´ 4γLqDf px̂t, x˚q `

4γ2σ2
dif

M
.
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If γ ď 1
8L , then 1´ 4γL ě 1

2 and 1` 2γL ď 5
4 , and hence

E
”

‖rt`1‖2
ı

ď p1´ γµq ‖rt‖2 `
5

4
γLVt ´

γ

2
Df px̂t, x˚q `

4γ2σ2
dif

M
,

as claimed. �

9.2 Proof of Theorem 5

Proof. Start with Lemma 14 with µ “ 0,

E
”

‖rt`1‖2
ı

ď ‖rt‖2 `
γ

2

ˆ

5

2
LVt ´Df px̂t, x˚q

˙

`
4γ2σ2

dif

M
.

Taking unconditional expectations and summing up,

T
ÿ

i“1

E
”

‖rt‖2
ı

ď

T´1
ÿ

i“0

E
”

‖rt‖2
ı

`
γ

2

T´1
ÿ

i“0

E
„

5

2
LVi ´Df px̂i, x˚q



`

T´1
ÿ

i“0

4γ2σ2
dif

M
. (73)

Using that T “ tp for some p P N, we can decompose the second term by double counting and bound it by
Lemma 13,

T´1
ÿ

i“0

E
„

5

2
LVi ´Df px̂i, x˚q



“

p
ÿ

k“1

tk´1
ÿ

i“tk´1

E
„

5

2
LVi ´Df px̂i, x˚q



ď

p
ÿ

k“1

tk´1
ÿ

i“tk´1

`

20L2γ2pH ´ 1q2 ´ 1
˘

E rDf px̂i, x˚s `
p
ÿ

k“1

tk´1
ÿ

i“tk´1

10Lγ2pH ´ 1q2σ2
dif .

By assumption on γ we have that 20L2γ2pH ´ 1q2 ´ 1 ď ´1
2 , using this and then using double counting again

we have,

T´1
ÿ

i“0

E
„

5

2
LVi ´Df px̂i, x˚q



ď ´
1

2

p
ÿ

k“1

tk´1
ÿ

i“tk´1

E rDf px̂i, x˚qs `
p
ÿ

k“1

tk´1
ÿ

i“tk´1

10Lγ2pH ´ 1q2σ2
dif

“ ´
1

2

T´1
ÿ

i“0

E rDf px̂i, x˚qs `
T´1
ÿ

i“0

10Lγ2pH ´ 1q2σ2
dif .

Using this in (73),

T
ÿ

i“1

E
”

‖rt‖2
ı

ď

T´1
ÿ

i“0

E
”

‖rt‖2
ı

´
γ

4

T´1
ÿ

i“0

E rDf px̂i, x˚qs `
T´1
ÿ

i“0

ˆ

5Lγ3pH ´ 1q2σ2
dif `

4γ2σ2
dif

M

˙

.

Rearranging, we get

γ

4

T´1
ÿ

i“0

E rDf px̂i, x˚qs ď
T´1
ÿ

i“0

E
”

‖rt‖2
ı

´

T
ÿ

i“1

E
”

‖rt‖2
ı

`

T´1
ÿ

i“0

ˆ

5Lγ3pH ´ 1q2σ2
dif `

4γ2σ2
dif

M

˙

“ ‖r0‖2 ´ E
”

‖rT ‖2
ı

`

T´1
ÿ

i“0

ˆ

5Lγ3pH ´ 1q2σ2
dif `

4γ2σ2
dif

M

˙

ď ‖r0‖2 ` T
ˆ

5Lγ3pH ´ 1q2σ2
dif `

4γ2σ2
dif

M

˙

.

Dividing both sides by γT {4, we get

1

T

T´1
ÿ

i“0

E rDf px̂i, x˚qs ď
4‖r0‖2

γT
`

20γσ2
dif

M
` 16γ2LpH ´ 1q2σ2

dif .

Finally, using Jensen’s inequality and the convexity of f we get the required claim. �
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Figure 5: Results on regularized logistic regression with shared data, ‘a9a’ dataset, with stepsize 0.05
L . With

more local iterations, fewer communication rounds are required to get to a neighborhood of the solution.

10 Extra Experiments

Figure 5 shows experiments done with identical data and Figure 6 shows experiments done with heterogeneous
data in the same setting as described in the main text but with different datasets.

11 Discussion of Dieuleveut and Patel (2019)

An analysis of Local SGD for identical data under strong convexity, Lipschitzness of ∇f , uniformly bounded
variance, and Lipschitzness of ∇2f is given in (Dieuleveut and Patel, 2019), where they obtain a similar commu-
nication complexity to (Stich, 2019) without bounded gradients. However, in the proof of their result for general
non-quadratic functions (Proposition S20) they make the following assumption, rewritten in our notation:

G “ sup
p

¨

˝1`MLHγ

tp`1´1
ÿ

k“tp

‖x̂k ´ x˚‖2
˛

‚ă 8,

where LH is the Lipschitz constant of the Hessian of f (assumed thrice differentiable). Their discussion of G
speculates on the behaviour of iterate distances, e.g. saying that if they are bounded, then the guarantee is
good. Unfortunately, assuming this quantity bounded implies that gradients are bounded as well, making the
improvement over (Stich, 2019) unclear to us. Furthermore, as G depends on the algorithm’s convergence (it
is the distance from the optimum evaluated at various points), assuming it is bounded to prove convergence to
a compact set results in a possibly circular argument. Since G is also used as an upper bound on H in their
analysis, it is not possible to calculate the communication complexity.
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Figure 6: Same experiment as in Figure 3, performed on the ‘mushrooms’ dataset.
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