
Supplementary Material to Private Protocols for
U -Statistics in the Local Model and Beyond

February 28, 2020

A Details and Proofs for Generic LDP Protocol
We start by introducing some notations. We denote by k the number of bins of the quantization
and by π : X → [k] the quantization scheme such that for any data point x ∈ X , π(x) denotes
the quantized version of x (i.e., its image under π). Let ei denote the vector of length k with
a one in the i-th position and 0 elsewhere. A kernel function fA on the quantized domain
[k] is fully described by a matrix A ∈ Rk×k such that fA(i, j) = Ai,j = eTi Aej. We denote by
UA,π = Eµ×µ[Aπ(x),π(y))] the quantized analogue to the quantity Uf .

The proposed protocol, described in Algorithm 1, applies generalized randomized response
on data quantized with π and uses this to compute an unbiased estimate of a quantized
U -statistic. The choice of the quantized kernel A will be discussed below. Crucially, there are
two sources of error in this protocol. More precisely, the mean squared error of the estimate
Ûf,n returned by Algorithm 1 can be bounded as follows:

MSE(Ûf,n) ≤ (Uf − UA,π)2 + E[(UA,π − Ûf,n)2]. (1)

The first term corresponds to the error due to quantization, while the second one is the
estimation error due to randomization needed to satisfy local differential privacy. The latter
will increase with k, thereby constraining k to remain reasonably small. We will thus need to
rely on assumptions on either the kernel or the data distribution to be able to control the
error due to quantization.

In line with the error decomposition in (1), we conduct our analysis by considering the
effect of sampling and randomization together. Therefore, we will not provide a direct bound
on the error between our estimate and the U-statistic of the sample, but directly with respect
to the population quantity Uf . We now show how to control the two sources of error, which
are easily combined to yield Theorem 2.

A.1 Bounding the Error of Randomized Response on Discrete Do-
main

In this part, we bound the second term in (1): we consider that the data is discrete (X = [k])
and derive error bounds for the estimate Ûf,n with respect to UA,π for a given kernel function

1

f̃(i, j) = Ai,j. We propose to use the generalized randomized response mechanism as our
local randomizer R. We introduce some notations. Let β be the probability of R selecting
a response uniformly at random, i.e. let P(R(x) = y) = β/k + (1 − β)χx=y, let b be the
vector of length k with every entry β/k. For convenience, we denote the data sample by
x1, . . . , xn ∈ [k]. Note that these data points are drawn i.i.d. from a distribution D over [k]
(which follows from µ and π) such that P(xi = j) = Dj.

With these notations, we write the expected value of the discretized kernel computed
directly on the randomized data points:

E[(eR(x1))
TAeR(x2)] = E(((1− β)ex1 + b)TA((1− β)ex2 + b))

= E((1− β)2eTx1Aex2 + (1− β)(ex1 + ex2)
TAb+ bTAb).

This is a biased estimator of fA(x1, x2) = ex1Aex2 due to the effect of the randomization. We
correct for this by adding terms and scaling, leading to the estimator used in Algorithm 1:

f̂A(R(x1),R(x2)) = (1− β)−2(eR(x1) − b)TA(eR(x2) − b).

This is an unbiased estimator of the population U-statistic, as for fixed x1 and x2 it is an
unbiased estimator of fA(x1, x2). Averaging over all pairs of randomized inputs, we get the
proposed estimator:

Ûf,n =

(
n

2

)−1 ∑
1≤i<j≤n

f̂A(R(xi),R(xj)),

which is itself a U-statistic on the randomized sample. As this estimator is unbiased, its
mean squared error is equal to its variance, for which the following lemma gives an exact
expression.

Lemma 1. The variance of Ûf,n is given by(
n

2

)−1(
2n− 3

(1− β)2
Var(e(R(x1))

TAD) +
1

(1− β)4
E(Var((eR(x1) − b)AeR(x2) | R(x1)))

)
Proof. Ûf,n is a U -statistic, hence its variance is given by (3) where ζ1 = Var(E(f̂A(R(x1),R(x2)) |
R(x1))) and ζ2 = Var(f̂A(R(x1),R(x2))). We first simplify ζ1:

ζ1 = (1− β)−4Var(E((eR(x1) − b)TA(eR(x2) − b) | R(x1)))

= (1− β)−4Var((eR(x1) − b)TA((1− β)D))

= (1− β)−2Var((eR(x1) − b)TAD)

= (1− β)−2Var((eR(x1))
TAD).

Similarly for ζ2, we have:

ζ2 = Var(E(f̂(R(x1),R(x2)) | R(x1))) + E(Var(f̂(R(x1),R(x2)) | R(x1)))

= ζ1 + (1− β)−4E(Var((eR(x1) − b)TA(eR(x2) − b) | R(x1)))

= ζ1 + (1− β)−4E(Var((eR(x1) − b)TAeR(x2) | R(x1))).

Substituting the values of ζ1 and ζ2 in the variance expression gives the result. �

2

Assuming a uniform bound on the values of f allows a clear and simple bound on the
variance.

Corollary 1. If f(x, x′) ∈ [0, 1] for all x, x′, then

Var(Ûf,n) ≤ 1

n(1− β)2
+

(1 + β)2

2n(n− 1)(1− β)4
.

Proof. Under the boundedness of f , the random variable (eR(x1))TAD takes values in [0, 1]
and so has variance at most 1/4, whilst the random variable (eR(x1)−B)TAeR(x2) takes values
in [−β, 1] and so has variance at most (1 + β)2/4. Substituting these into Lemma 1 gives the
result. �

To achieve local differential privacy with parameter ε, β should be taken to be k/(k+eε−1).
This leads directly to the following result.

Corollary 2 (Variance under randomized reponse). Let X = [k] and assume f takes values
in [0, 1]. We have:

Var(Ûf,n) ≈ (1 + k/ε)2

n
+

(1 + k/ε)4

2n2
≈ k2

nε2
,

where the approximation holds for small ε and n� k2/ε2.

The above result shows that for fixed ε the error incurred by this estimator is within
a constant factor of the error due to the finite sample setting. As expected, k should be
reasonably small for the protocol to yield any utility.

A.2 Bounding the Error of Quantization

We now study the effect of quantization, which is needed to control the error due to privacy
when the domain is continuous or has large cardinality. Recall that we quantize X using a
projection π : X → [k] (assumed to be simple rounding for simplicity), and our goal is to
approximate Uf = Eµ×µ(f(x, y)) by UA,π = Eµ×µ(Aπ(x),π(y)), which we can privately estimate
using the results of Section A.1.

The error incurred by the quantization can be written as follows:

(Uf − UA,π)2 ≤
∫ ∫

(f(x, y)− Aπ(x),π(y))2dµ(y)dµ(x)

=
k∑

i,j=1

∫
π−1(i)

∫
π−1(j)

(f(x, y)− Ai,j)2dµ(y)dµ(x). (2)

To bound this quantization error, we need additional assumptions. We consider two
options, each suggesting a different choice for the quantized kernel Ai,j. We first consider a
Lipschitz assumption on the original kernel function, for which the preferred quantized kernel
minimizes the worst-case bound on (2). Then, we consider a smoothness assumption on the
data distribution, leading to a quantized kernel that attempts to minimize the average-case
error. We stress the fact that in some cases these quantized statistics will match or at least
be very close, meaning that the particular choice of quantized kernel will not be crucial.

3

A.2.1 Assumption of Lipschitz Kernel Function

Our first assumption is motived by the fact that for all data distributions µ, the quantization
error (2) can be bounded by

k∑
i,j=1

µ(π−1(i))µ(π−1(j)) max
x∈π−1(i)
y∈π−1(j)

(f(x, y)− Ai,j)2. (3)

This bound is minimized by choosing the quantized kernel to be

AMid
i,j =

1

2
max

x∈π−1(i)
y∈π−1(j)

f(x, y) +
1

2
min

x∈π−1(i)
y∈π−1(j)

f(x, y), (4)

which we will call the midpoint kernel. With this kernel we can define

∆i,j =
1

4

(
max

x∈π−1(i),y∈π−1(j)
f(x, y)− min

x∈π−1(i),y∈π−1(j)
f(x, y)

)2
,

which allows us to write the bound in equation 3 as

∆ =
k∑

i,j=1

µ(π−1(i))µ(π−1(j))∆i,j.

Note that this is itself a discrete U -statistic over the population. The error can now be
bounded through a bound on ∆. A natural way to achieve this is to uniformly bound ∆i,j,
which can be done by assuming that the kernel function f is Lipschitz. This allows to control
the error within each bin.

Lemma 2 (Quantization error for Lipschitz kernel functions). Let X = [0, 1] and assume
f : X × X → R is Lf -Lipschitz in each input. Let the set of bins be {(2l − 1)/2k : l ∈ [k]}
and let the quantization scheme π perform simple rounding of inputs (affecting them to the
nearest bin). Then we have (Uf − UA,π)2 ≤ L2

f/2k
2.

Proof. By the Lipschitz property of f , we have that |f(x, y)−f(x′, y′)| ≤ Lf (|x−x′|+ |y−y′|)
for all x, x′, y, y′. Since the diameter of each bin is equal to 1/k, we have ∆i,j ≤ L2

f/2k
2 for

all i, j ∈ [k] and the lemma follows. �

As desired, the quantization error decreases with k. Note that the Lipschitz assumption
is met in the important case of the Gini mean difference, while it does not hold for AUC
and Kendall’s tau. Bounding ∆ is not the right approach for such kernels: indeed, for AUC,
∆i,i = 1/2 and so for data distributions µ with µ(π−1(i)) = 1 for some i, the quantization
error ∆ ≥ 1/2. In the next section, we consider generic kernel functions under a smoothness
assumption on the data distributions.

Remark 1 (Empirical Estimation of ∆). The quantization error ∆ is a discrete U -statistic
which can be estimated from the data collected to estimate U . This provides a good empirical
estimate of ∆ after the fact. However, as the data has to be collected before the estimate can be
made it provides no guidance in choosing π (this might be addressed by a multi-round protocol,
which we leave for future work). The empirical assessment of ∆ may provide a tighter bound
on the actual error than can be ascertained by the worst-case Lipschitz assumption.

4

A.2.2 Assumption of Smooth Data Distribution

We now consider a smoothness assumption on the data distribution µ. Specifically, we assume
that the density dµ/dλ with respect to a measure λ (which varies little on π−1(i) for all i) is
C-Lipschitz.

In this case, a more sensible choice of quantized kernel is given by

AAvgi,j =
1

λ(π−1(i))λ(π−1(j))

∫
π−1(i)

∫
π−1(j)

f(x, y)dλ(y)dλ(x), (5)

which we call the average kernel as the value of AAvgi,j corresponds to the (normalized)
expectation of f(x, y), with respect to λ, over points x and y that are mapped to bin i and j
respectively.

Under our smoothness assumption, the quantization error (2) can be bounded as follows.

Lemma 3 (Quantization error for smooth distributions). Let X = [0, 1] and f(x, y) ∈ [0, 1] for
all x, y.1 Assume that dµ/dλ is Lµ-Lipschitz. Then we have (Uf−UA,π)2 ≤ 4L2

µD
2(1+L2

µD
2),

where D is the maximum diameter of the quantization bins.

Proof. For notational convenience, let us denote µ̄i := µ(π−1(i)) and λ̄i := λ(π−1(i)) for each
i. The absolute quantization error with quantized kernel (5) is given by:∣∣∣∣∣

k∑
i,j=1

∫
π−1(i)

∫
π−1(j)

f(x, y)− AAvgi,j dµ(y)dµ(x)

∣∣∣∣∣
≤

k∑
i,j=1

∣∣∣∣∫
π−1(i)

∫
π−1(j)

f(x, y)− AAvgi,j dµ(y)dµ(x)

∣∣∣∣
=

k∑
i,j=1

∣∣∣∣∫
π−1(i)

∫
π−1(j)

f(x, y)dµ(y)dµ(x)− µ̄iµ̄jAAvgi,j

∣∣∣∣ (6)

Note that∫
π−1(i)

∫
π−1(j)

f(x, y)dµ(y)dµ(x) =

∫
π−1(i)

∫
π−1(j)

f(x, y)
dµ(y)

dλ(y)

dµ(x)

dλ(x)
dλ(y)dλ(x),

and

µ̄iµ̄jA
Avg
i,j =

µ̄iµ̄j
λ̄iλ̄j

∫
π−1(i)

∫
π−1(j)

f(x, y)dλ(y)dλ(x).

1Similar arguments can be made in more general metric spaces.

5

Plugging these equations into (6) we get:∣∣∣∣∫
π−1(i)

∫
π−1(j)

f(x, y)dµ(y)dµ(x)− µ̄iµ̄jAAvgi,j

∣∣∣∣
=

∣∣∣∣∫
π−1(i)

∫
π−1(j)

f(x, y)
(dµ(y)

dλ(y)

dµ(x)

dλ(x)
− µ̄iµ̄j
λ̄iλ̄j

)
dλ(y)dλ(x)

∣∣∣∣
≤
∫
π−1(i)

∫
π−1(j)

∣∣∣∣dµ(y)

dλ(y)

dµ(x)

dλ(x)
− µ̄iµ̄j
λ̄iλ̄j

∣∣∣∣ dλ(y)dλ(x) (7)

≤
∫
π−1(i)

∫
π−1(j)

LµD
(

max
z∈π−1(i)

dµ(z)/dλ(z) + max
w∈π−1(j)

dµ(w)dλ(w)
)
dλ(y)dλ(x) (8)

≤
∫
π−1(i)

∫
π−1(j)

(LµD)dλ(y)dµ(x) +

∫
π−1(i)

∫
π−1(j)

(LµD)dµ(y)dλ(x)

+

∫
π−1(i)

∫
π−1(j)

(LµD)(2LµD)dλ(y)dλ(x). (9)

Summing over all i, j and taking the square finally gives the result:(∫ ∫
f(x, y)dµ(y)dµ(x)−

∑
µ(π−1(i))µ(π−1(j))AAvgi,j

)2

≤4L2
µD

2 + 4L4
µD

4.

�

The diameter of quantization bins is typically of order 1/k, hence the quantization error is
of order 1/k2. In practice, λ can simply be taken to be Lebesgue measure, hence computing
(5) amounts to averaging the kernel function over all possible points (x, y) ∈ X that fall in
the bins (i, j), and can be easily approximated by Monte Carlo sampling when one does not
have a closed form expression for the integral.

B Details and Proofs for AUC Protocol

B.1 Proof of Theorem 3

We define Rm = {p ∈ {0, 1}m : ∀p′ � p, h̃−p′h̃
+
p′ > τ} as the set of nodes recursed on at level

m. Similarly, and for m > 0, let Am = Rm−1 · {0, 1} be the active nodes at level m, i.e. those
to be either recursed on or discarded. Then, the set of discarded nodes at level m is defined
as Dm = Am \ Rm. Our algorithm has two main sources of error: (i) the one incurred on
by discarded nodes, i.e. nodes in

⋃
i∈[α]

Dm for whose intervals the algorithm uses a rough

estimate, and (ii) the error in the estimating the contribution to the UAUC of the recursed
nodes, i.e. nodes in

⋃
i∈[α]

Rm.

The threshold τ is carefully chosen according to the error of the estimator ĥ to balance
these two errors. In this way we translate error bounds for ĥ+p , ĥ−p into error bounds for ÛAUC.
Our proof starts by bounding the expected size of Rm.

6

Lemma 4. Consider the instantiation of Equation 10 with a frequency oracle for estimating
h± satisfying ∀p ∈ {0, 1}≤α :

(
E(ĥ±p) = h±p ,E((ĥ±p − h±p)2) ≤ v±

)
, with v± = Cn±α, i.e. the

estimate is unbiased and has uniformly bounded MSE. If a > 1, then for all m ∈ [α],

E(|Rm|) ≤
√
n+ +

√
n−

2(
√
a− 1)

√
Cα
≤ 1√

a− 1

√
n

2Cα

Proof. Let n̂± =
∑

p∈Am max(ĥ±p , 0), the sum of the positive estimated counts of active nodes
at level m.

Note that if p ∈ Rm then h̃+p h̃
−
p ≥ a

√
v+v−. In this case either, ĥ±p = h̃±p and thus

ĥ+p ĥ
−
p ≥ a

√
v+v−, ĥ−p 6= h̃−p and thus ĥ+p > 2

√
av+, or ĥ−p 6= h̃−p and thus ĥ−p > 2

√
av−. In

any of these cases ĥ+p /
√
av+ + ĥ−p /

√
av− ≥ 2.

Therefore

2|Rm| ≤
∑
p∈Rm

ĥ+p√
av+

+
ĥ−p√
av−
≤ n̂+

√
av+

+
n̂−√
av−

and thus
E(|Rm|) ≤ E(n̂+)

2
√
av+

+
E(n̂−)

2
√
av−

.

We bound E(n̂±) as follows

E(n̂±) =
∑
p∈Am

E(max(ĥ±p , 0)) ≤ n± +
∑
p∈Am

E(max(e±p , 0))

≤n± + E(|Am|) max
p∈Am

E(max(e±p , 0)) ≤ n± + E(|Rm−1|) max
p∈Am

E(|e±p |)

≤n± + E(|Rm−1|) max
p∈Am

√
E(|e±p |2) ≤ n± + E(|Rm−1|)√v±

We can now use this to bound the expression for E(|Rm|).

E(|Rm|) ≤ n+

2
√
av+

+
n−

2
√
av−

+
E(|Rm−1|)√

a
(10)

We now need a bound on E(|Rm−1|) so we will proceed by induction.
Let B =

√
n++

√
n−

2(
√
a−1)

√
Cα

. We take E(|Rm−1|) ≤ B as the induction hypothesis, and E(|R0|) =

1 ≤ B as the base case.
The expression on the right hand side of inequality 10 is a monotonically increasing

function of E(|Rm−1|) and has a fixed point

n+

2
√
av+

+ n−

2
√
av−

1− 1√
a

=

n+

2
√
v+

+ n−

2
√
v−√

a− 1
=

√
n+

Cα
+
√

n−

Cα

2(
√
a− 1)

=

√
n+ +

√
n−

2(
√
a− 1)

√
Cα

= B.

Thus we can conclude that
E(|Rm|) ≤ B (11)

7

completing the induction and thus (11) holds for all m.
Finally we note that √

n+ +
√
n− ≤

√
2n

and so √
n+ +

√
n−

2(
√
a− 1)

√
Cα
≤ 1√

a− 1

√
n

2Cα

completing the proof. �

We are now ready to prove Theorem 3.

Proof of Theorem 3. The estimation error Ep = ÛAUC(ĥ+p , ĥ
−
p)−UAUC(h+p , h

−
p) at a given node

p can be written recursively as follows:

Ep =

1
2
(ĥ+p·1 + ĥ+p·0)(ĥ

−
p·1 + ĥ−p·0)− UAUC(h+p , h

−
p) if p ∈ D

0 if p is a leaf
ĥ+p·1ĥ

−
p·0 − h+p·1h−p·0 + Ep·0 + Ep·1 if p ∈ R

We will consider the error Eλ in two parts. Firstly, there is the contribution ED from
those prefixes p ∈ D which we define by setting

ED
m =

∑
p∈Dm−1

1

2
(ĥ+p·1 + ĥ+p·0)(ĥ

−
p·1 + ĥ−p·0)− UAUC(h+p , h

−
p)

and ED =
∑

m∈[α]E
D
m. Secondly, there is the contribution from the prefixes p ∈ R excluding

their recursive subcalls which we define by setting

ER
m =

∑
p∈Rm−1

ĥ+p·1ĥ
−
p·0 − h+p·1h−p·0

and ER =
∑

m∈[α]E
R
m. In bounding both of these we will make use of conditioning on

Fm = (ĥ−p , ĥ
+
p)p∈{0,1}≤m i.e. the answers of the frequency oracles for layers up to m.

We start by bounding ER. For any m ∈ [α], we first show that ER
m is a martingale

difference sequence i.e.

E(ER
m|Fm−1) = E(

∑
p∈Rm−1

(ĥ+p·1ĥ
−
p·0 − h+p·1h−p·0)|Fm−1)

=
∑

p∈Rm−1

E((h+p·1 + e+p·1)(h
−
p·0 + e−p·0)− h+p·1h−p·0)

=
∑

p∈Rm−1

E(h+p·1e
−
p·0 + e+p·0h

−
p·0 + e+p·1e

−
p·0)

= 0

where the final equality holds because E(e±p) = 0 for all p and e+p·1 and e−p·0 are independent.
From this we can conclude that for m′ > m

E(ER
mE

R
m′) = E(E(ER

mE
R
m′ |Fm′−1))) = E(ER

mE(ER
m′ |Fm′−1)) = E(0) = 0

8

and thus

E(ER2
) = E(

∑
m∈[α]

∑
m′∈[α]

ER
mE

R
m′) =

∑
m∈[α]

E(ER
m

2
) =

∑
m∈[α]

E(E(ER
m

2|Fm−1)). (12)

Next we shall bound E(ER
m

2|Fm−1). We start by writing out

E(ER
m

2|Fm−1) = E((
∑

p∈Rm−1

(ĥ+p·1ĥ
−
p·0 − h+p·1h−p·0))2|Fm−1).

By Equation 12 this becomes

E(ER
m

2|Fm−1) =
∑

p∈Rm−1

E((ĥ+p·1ĥ
−
p·0 − h+p·1h−p·0)2|Fm−1).

After expanding the above and removing all the terms that are zero, because they are the
expected value of the product of e±p·i with something independent of it, we are left with

E(ER
m

2|Fm−1) =
∑

p∈Rm−1

E(h+p·1
2
e−p·0

2
+ e+p·0

2
h−p·0

2
+ e+p·1

2
e−p·0

2
)

≤
∑

p∈Rm−1

(v−h+p·1
2

+ v+h−p·0
2
) + |Rm|v+v−

≤ v−n+2
+ v+n−

2
+ |Rm|v+v−.

Subbing this into (12) and using Lemma 4 gives

E(ER2
) ≤ αmax

m
E(v−n+2

+ v+n−
2

+ |Rm|v+v−)

= α(v−n+2
+ v+n−

2
+ max

m
E(|Rm|)v+v−)

≤ n+n−Cα2(n+ + n− +
Cα√
a− 1

√
n

2Cα
)

≤ n+n−Cα2(n+

√
Cαn√

2(
√
a− 1)

)

=: BR

To bound ED, first define EF
m =

∑
p∈Dm−1

1
2
(ĥ+p·1 + ĥ+p·0)(ĥ

−
p·1 + ĥ−p·0)− 1

2
h+p h

−
p and EG

m =∑
p∈Dm

1
2
h+p h

−
p − UAUC(h+p , h

−
p). We refer to the leaves in [0..2α − 1] covered by a path p as

I(p) = {i ∈ [0..d− 1] : p � bi}. Now note that

ED =
∑
p∈D

1

2
(ĥ+p·1 + ĥ+p·0)(ĥ

−
p·1 + ĥ−p·0)−

∑
i∈I(p)

h+bi

∑
j∈I(p),j<i

h−bj =
∑
m∈[α]

EF
m +

∑
m∈[α]

EG
m.

9

We now bound EF
m and EG

m separately. For a leaf node s, let us denote by v(s) the unique
node in D that is a prefix of s. We then have:

E((
∑
m∈[α]

EG
m)2) = E((

∑
p∈D

1

2
h+p h

−
p − UAUC(h+p , h

−
p))2)

≤ E((
∑
p∈D

1

2
h+p h

−
p)2) =

1

4
E((
∑
p∈D

∑
i∈I(p)

h+bi

∑
j∈I(p),j<i

h−bj)
2)

≤ n+2

4
max

s∈[0..d−1]
E((h−v(s))

2).

We can then bound

E(h−v(s)
2
) =

∑
p�p(s)

E(h−p
2Ip=v(s)) =

∑
p�p(s)

E((ĥ−p − e−p)2Ip=v(s))

≤
∑
p�s

E((2
√
av− − e−p)2Ip=v(s)) ≤

∑
p�s

E(4av− − 4
√
av−e−p + e−p

2
)

≤(4a+ 1)αv−.

Thus

E(EG2
) ≤n+2

(a+ 1/4)αv− ≤ C(a+ 1/4)n−n+2
α2.

Furthermore by symmetry between − and +

E(EG2
) ≤ C(a+ 1/4)n−n+ min(n−, n+)α2 =: BG.

Secondly we bound
∑

m∈[α]E
F
m. Note that EF

m−1 is a function of Fm−1 and E(EF
m|Fm−1) = 0

so

E((
∑
m

EF
m)2) = E(

∑
m

EF
m

2
) =

∑
m

E(EF
m

2
) =

∑
m

E(E(EF
m

2|Fm−1))

≤
∑
m

E(E((
∑

p∈Dm−1

1

2
(ĥ+p·1 + ĥ+p·0)(ĥ

−
p·1 + ĥ−p·0)−

1

2
h+p h

−
p)2|Fm−1))

Similarly to the bound on ER, we now apply the pairwise independence property and note
that ĥ±p·1 + ĥ±p·0 is an unbiased estimator of h±p with variance bounded by 2v±. This results in

E((
∑
m

EF
m)2) ≤

∑
m

E(
∑

p∈Am−1

Ih̃+p h̃−p <τE(h+p
2
v−/2 + v+h−p

2
/2 + v+v−|Fm−1))

≤
∑
m

v−E(
∑

p∈Am−1

Ih̃+p h̃−p <τh
+
p
2
)/2 + v+E(

∑
p∈Am−1

Ih̃+p h̃−p <τh
−
p
2
)/2 + v+v−E(|Am−1|).

Noting that E(Ih̃+p h̃−p <τh
+
p
2
) ≤ min(h+p

2
,

h+p
2
v+

(h+p −
√
v+)2

) ≤ 4v+ and that E(|Am−1|) = 2E(|Rm−2|) ≤
1√
a−1
√

n
2Cα

gives

E((
∑
m

EF
m)2) ≤

∑
m

E(|Am−1|)5v+v− ≤
5
√

2nC1.5α2.5n+n−√
a− 1

:= BF .

10

By the Cauchy-Schwarz inequality we can conclude that,

E(ED2
) ≤ 2(BG +BF).

Finally applying Cauchy-Schwarz again gives

E(E2
λ) = E((ER + EG + EF)2)

≤ 2BR + 4BG + 4BF

= Cn−n+α2(2n+ (4a+ 1) min(n−, n+) +
21
√

2nCα√
a− 1

)

�

Remark 2. The use of Cauchy-Schwarz to combine the separate errors in this proof is
optimized for simplicity rather than minimizing the constants. At the expense of making the
bound substantially more complicated a more precise analysis would reduce the bound. Gaining
up to a factor of two in the case of very large n and min(n−, n+) small compared to n.

The value of a in Theorem 3 can be chosen to minimize the error by taking it to solve√
a(
√
a− 1)2 = 21

√
2ncα/(8 min(n−, n+)) which is approximately

a = (1 +
√

21/8(2Cnα/min(n−, n+)2)
1
4)2.

This leads to the following corollary.

Corollary 3. Let nmin = min(n−, n+) and a = (1 +
√

21/8(2Cnα/n2
min)

1
4)2 = 1 + o(1) then

MSE(ÂUC) ≤ C

nmin(n− nmin)
α2(2n+ (4a+ 1)nmin + 14(Cnn2

minα)
1
4) = O(α2/nmin).

Remark 3. For fixed α this is of the same order as the sampling error incurred in non-private
AUC.

Algorithm variant. An alternative algorithm assigns a value of zero to edges that it
discards. For this algorithm a similar theorem holds by the same argument (actually a slightly
simpler argument) the resulting error bound is

MSE(ÛAUC) = Cn−n+α2(2n+ (8a+ 2) min(n−, n+) +

√
2Cαn

(
√
a− 1)

).

Note that the second term which is of leading order for min(n−, n+) a fixed fraction of n
is twice as large however the final term which is lower order is twenty-one times smaller.
This lower order term might not be negligible in practice and so this algorithm should be
considered. The corresponding choice of a and bound on the final error is given by the
following result.

Corollary 4. Let nmin = min(n−, n+) and a = (1 +
√√

2Cαn
16nmin

)2 = 1 + o(1) then

MSE(ÂUC) ≤ C

nmin(n− nmin)
α2((8a+ 2)nmin + 2n+ (512Cαnn2

min)
1
4) = O(α2/nmin)

11

Algorithm 1: Local Randomizer
Public Parameters: Domain size 2l, privacy budget ε.
Input: Private index q
Output: A single bit z submitted to the server

1 j ← [0..2l − 1] . Selected uniformly at random
2 y := 1√

2l
(−1)〈j,q〉 . y is Mj,xl, where M ∈ {−1, 1}2l×2l is a Hadamard matrix

3 z :=

{
y with probability eε

1+eε

¬y otherwise
. Submit randomized response on y

4 Send j, z to the Aggregator

B.2 Instantiating the Private Hierarchical Histogram ĥ

Theorem 3 does not yield a complete algorithm as it only states that, if we had a differ-
entially private algorithm for computing estimates of a hierarchical histogram that satisfy
the conditions of Theorem 3, then we could solve AUC with the stated accuracy. In this
section we instantiate such algorithm and show that, besides the required error guarantees,
our proposal also has other nice properties, namely (i) it is one round, (ii) each user sends a
single bit, and (iii) it is sublinear in d processing space at the server.

B.2.1 Frequency Oracle

Relevant previous work on estimating hierarchical histograms in the local model includes
the work of Bassily et al. (2017). While in that work the target problem is heavy hitters,
their algorithm is similar to ours, as the server retrieves the heavy hitters by exploring a
hierarchical histogram. Moreover their protocol – called TreeHist – has the nice properties
listed above, as it is one round, every user sends a single bit and requires reconstruction space
sublinear in d. This satisfies the three above conditions. It is thus tempting to reuse the
hierarchical histogram construction from Bassily et al. (2017). However, it does not satisfy
the conditions of Theorem 3, as it is not guaranteed to be unbiased.

Alternative recent algorithms for constructing hierarchical histograms in the local model
are presented in Kulkarni et al. (2019), with the motivation of answering range queries
over a large domain. This proposal is much closer to what we need. However, it has
some shortcomings: first, although it is one round, each user sends O(log(d)) bits, and
more importantly, it requires space O(d) space at the server, as it reconstructs the whole
hierarchical histogram. However, one can tweak the protocol from Kulkarni et al. (2019) to
overcome these limitations. We shall first split the users into log(d) groups (one for each level)
and then for each level we shall apply the frequency oracle. Algorithm 1 and Algorithm 2
show the local randomizer (user side) and frequency oracle (server side) for each histogram.

Let count(q) be the true count of an index q in a histogram. The following lemma is
shown in Kulkarni et al. (2019).

Lemma 5. The frequency oracle, Algorithm 2, run with nl users is unbiased E(zq) = count(q)

12

Algorithm 2: Frequency Oracle
Public Parameters: Domain size 2l, privacy budget ε.
Input: The index ji and response zi of each party i and an index q to estimate the

frequency of
Output: z an estimated count of q

1 For all i, yi := 1√
2l

(−1)〈ji,q〉 . yi is Mji,q, where M ∈ {−1, 1}2l×2l is a
Hadamard matrix

2 zq := eε+1
eε−1

∑
i

yizi . De-bias the sum of contributions

3 Return zq

and satisfies the following bound on the MSE.

E((zq − count(q))2) ≤ 4nle
ε

(eε − 1)2
(13)

Additionally we require the following lemma on the frequency oracle satisfies condition
(3) in Theorem 3 which is given by the following lemma.

Lemma 6. For distinct q, q′ ∈ [0..2l − 1], zq and zq′ are independent i.e. the responses of the
oracle are pairwise independent.

Proof. As each user is independent of every other user it suffices to show that each user’s
contribution to the two entries are independent. Suppose that a user has input q′′ 6= q′,
chooses index j to report and let b be a bit indicating that the user chose z = ¬y in Algorithm
1. That user’s contributions to the two estimates (scaled by 2l) are (−1)〈j,q〉+〈j,q

′′〉+b and
(−1)〈j,q

′〉+〈j,q′′〉+b. Note that we can consider j, q, q′ and q′′ as elements of Fl2. Then q + q′′

and q′ + q′′ are distinct and q′ + q′′ 6= 0. These two facts imply respectively that 〈j, q′ + q′′〉
is independent of 〈j, q + q′′〉 and that 〈j, q′ + q′′〉 is uniformly distributed in F2. Thus the
contributions are independent. �

B.2.2 Splitting Strategies

We will instantiate ĥ by running the frequency oracle above for each level of the hierarchy.
The main choice remaining is how to determine which users contribute to each layer, we will
consider two possibilities here. Firstly we can have everyone contribute to all layers, splitting
their privacy budget. Alternatively, users can be split evenly across levels at random, each
contributing to only one frequency oracle. Another possibility is to assign each user to a level
independently and uniformly, this is similar to splitting them evenly though adds slightly
more noise and is more complicated to analyse. In all cases, conditions 1 and 3 in Theorem 3
follow from Lemmas 5 and 6.

Splitting Privacy Budget Across Layers. In the case of everyone contributing to all
layers the privacy budget can be split using either basic or advanced composition. In either
case condition 4 from Theorem 3 holds as the randomness for each layer is independent.

13

For pure differential privacy we must use basic composition. This allows us to run each
frequency oracle can be run with a privacy budget of ε̃ = ε/α. Lemma 5 then gives a bound
of Oε(nα

2) on the mean squared error of each entry. While this is insufficient to establish
condition 2 of Theorem 3, similar arguments can be used to prove that the algorithm built in
this way achieves pure differential privacy at the cost of an α factor in the MSE.

If we instead settle for (ε, δ)-differential privacy, and assume for convenience that ε ≤√
α ln(2), advanced composition allows each frequency oracle to be run with privacy budget

ε̃ = ε/(
√
α(1 +

√
2 log(1/δ))). Condition 2 in Theorem 3 then holds for some C depending

on ε and δ. This is the implementation and analysis that gives Theorem 3 as it is stated.

Splitting Users Across Layers. When splitting users across levels the frequency oracles
can each be run with privacy budget ε. However, each oracle will have only n/α users and
there is a subsampling error between the total sample and the input given to the frequency
oracle. The squared error due to subsampling is O(1/n) thus Lemma 5 provides a Oε(nα)
bound on the MSE. This means that condition 2 of Theorem 3 holds. This would provide a
version of Theorem 3 with pure differential privacy, however condition 4 from Theorem 3 fails
to hold. Intuitively this is because if a user contributes to one level they can’t contribute
to another level. There are still two things that can be proved about this version of the
algorithm.

Firstly, it is still possible to prove a result like Theorem 3, but in which the MSE is α times
bigger. The proof of this result follows the same steps as that of Theorem 3 except that
the martingale difference sequences argument must be replaced by a bound not assuming
pairwise independence.

A second way of viewing this algorithm is to think of each input as being drawn inde-
pendently from some population distribution and then compare the output to the AUC
of that distribution. That is, given a pair of distributions D±, S± is obtained by sam-
pling each value independently from D±. Denote AUCpop = Ex+∼D+,x−∼D− [f(x+, x−)] and
let MSEpop(ÂUC) = E[(AUCpop − ÂUC)2]. The fact that each of the users has an independent
identically distributed input means that the contribution to each layer is independent, i.e.
we can recover Theorem 3 with MSE replaced by MSEpop. This alternative notion of MSEpop is
the correct notion to work with if the purpose of the deployment of the algorithm is to find
the AUC of the population the sample is drawn from rather than just of the sample. This is
likely to be the case in many applications.

Summary. Table 1 summarizes the choices in the algorithm and analysis. The resulting
orders of the MSE, corresponding to Theorem 4 are given in the final column.

C Details and Proofs for 2PC Protocol

C.1 Proof of Theorem 5 and Discussion

Proof. The ε-DP follows from the Laplace mechanism and the simple composition property
of DP (observing that each input xi appears in exactly P pairs in P).

14

Splitting Analysis Error in ÂUC

Privacy budget Basic composition MSE ≤ O(α
3

nε2
)

Privacy budget Advanced composition MSE ≤ O(α
2 log(1/δ)
nε2

)

Users w.r.t. sample MSE ≤ O(α
3

nε2
)

Users w.r.t. population MSEpop ≤ O(α
2

nε2
)

Table 1: Summary of error bounds for our AUC protocol for different splitting strategies and
analysis techniques.

It is easy to see that Ûf,n is unbiased, hence we only need to bound its variance. We will
separate the part due to subsampling and the part due to privacy. To this end, we decompose
Ûf,n into a noise-free term and a noisy term:

Ûf,n =
2

Pn

∑
(i,j)∈P

f(xi, xj)︸ ︷︷ ︸
Ûf,n,P

+
2

Pn

∑
(i,j)∈P

ηij. (14)

The noisy term is an average of independent Laplace random variables: its variance is equal
to 2P/nε2.

The quantity Ûf,n,P is known as an incomplete U -statistic, whose variance is given by
Blom (1976):

Var(Ûf,n,P) =
4

(Pn)2

(
E[f1(P)]ζ1 + E[f2(P)]ζ2

)
(15)

where ζ1 = Var(f(x1, X2) | x1)), ζ2 = Var(f(X1, X2), and f1(P), f2(P) are the number of
members of P × P which have exactly 1 (respectively 2) indices in common.

We first consider E[f2(P)]. Recall that P is constructed from P permutations σ1, . . . , σP
of the set {1, . . . , n}. As each index appears exactly once in each permutation, it suffices to
consider the self pairs within permutations and the overlaps across pairs of permutations we
get:

E[f2(P)] =
∑
i<j

P∑
p=1

E
[
qpij(P)

(
1 +

∑
p′ 6=p

qp
′

ij (P)
)]
,

where qpij(P) is the number of pairs from the permutation p that contain {i, j}. The probability
of a pair (i, j) to appear in a given permutation is 1/(n− 1), hence using the independence
between permutations we obtain:

E[f2(P)] =
n(n− 1)

2

P

n− 1

(
1 +

P − 1

n− 1

)
=
Pn

2

(
1 +

P − 1

n− 1

)
.

For E[f1(P)], using a similar reasoning we only have to consider overlaps across each
pair of permutations, in which each index pair shares exactly one index with a single pair of

15

another permutation, except when the pair appears twice, hence:

E[f1(P)] =
∑

(i,j)∈P

2(P − 1)− 2
∑
i<j

P∑
p=1

∑
p′ 6=p

E
[
qpij(P)qp

′

ij (P)
]
,

= P (P − 1)n− n(n− 1)
P (P − 1)

(n− 1)2

= P (P − 1)n
(

1− 1

n− 1

)
Putting everything together into (15) we get the desired result. �

Optimal value of P . The optimal value of P depends on the kernel function, the data
distribution and the privacy budget. Roughly speaking, setting P larger than 1 can be
beneficial when ζ2 is large compared to 1/ε2. On the other hand, when ζ2 = 2ζ1 (which is
the minimum value of ζ2, corresponding to the extreme case where the kernel can in fact be
rewritten as a sum of univariate functions (Blom, 1976)), Var(Ûf,n) simplifies to 4ζ1

n
+ 2P

nε2

and P = 1 is optimal. In practice and as illustrated in our experiments, P should be set to a
small constant.

Optimality of subsampling schemes. The proposed subsampling strategy is simple to
implement and leads to an optimal variance, up to an additive term of 2

Pn
P−1
n−1 (ζ2 − 2ζ1) ≥ 0,

among unbiased approximations based on Pn/2 pairs. Note that this additive term is 0
when P = 1 or ζ2 = 2ζ1, and is in general negligible compared to the dominating terms for
small enough P . Optimal variance could be achieved at the cost of a more involved sampling
scheme.2 Alternatively, sampling schemes that can be run independently by each user without
global coordination (such as sampling P/2 other users uniformly at random) lead to a slight
increase in variance as users are not guaranteed to appear evenly across the sampled pairs.

C.2 Implementing 2PC

MPC is a subfield of cryptography concerned with the general problem of computing on
private distributed data in a way in which only the result of the computation is revealed to
the parties, and nothing else. In this paper the number of parties is limited to 2, and the
function to be computed is f̃(x, y). There are several protocols that allow to achieve this
goal, with different trade-offs in terms of security, round complexity, and also differing on
how the functionality f̃ is represented. These alternatives include Yao’s garbled circuits (Yao,
1986; Lindell and Pinkas, 2009), the GMW protocol (Goldreich et al., 1987), and the SPDZ
protocol (Damgård et al., 2011), among others. As some of the functions f̃ we are interested
in involve comparisons (e.g., Gini mean difference and AUC), a Boolean representation is
more suitable, as it will lead to a smaller circuit. Moreover, a constant round protocol is
preferred in our setting, as as users might have limited connectivity. For this reason we choose
garbled circuits as our protocol, for which (Evans et al., 2018) give a detailed description

2In addition to having each data point appear the same number of times in P, one must ensure that no
pair appears more than once.

16

including crucial practical optimizations. Moreover, we assume semi-honest adversaries in
the sequel (see Goldreich, 2004, for a definition of this threat model).

Circuits for kernels. We illustrate the main ideas on Gini mean difference and AUC. As
circuits for floating point arithmetic are large, they are usually avoided in MPC, to instead
rely on fixed point encodings. Hence, we assume that the parties have agreed on a precision,
and hence x, y are integers encoded in two’s complement.

For Gini mean difference we need our 2PC protocol to compute fgini(x, y) := |x− y|.
Let z be x− y, let zk−1, . . . , z0 be the binary encoding of z, where the bitwidth k will be a
constant such as 32 or 64 in practice, and let s = zk−1 · · · zk−1 be the sign bit of z replicated
k times. Then fgini(x, y) can be computed as (z + s) ⊕ s and, thanks to the free-XOR
optimization of garbled circuits (see Evans et al., 2018), the garble circuit evaluation requires
only a subtraction and a summation, and thus is very efficient.

For AUC we need our 2PC protocol to compute fauc(x, y) := x < y, which requires a
single comparison and thus a small number of binary gates to be evaluated in a garbled
circuit.

Circuits for local randomizers. The above circuits need to be extended with output
perturbation corresponding to the Laplace and randomized response mechanisms discussed
above. An important observation when designing efficient circuits for these tasks is the
well-known fact that a random bit with bias 1/p, for any integer p, can be generated from only
two uniform random bits suffice, in expectation. Generating a uniformly random bit is easy
(and extremely cheap using garbled circuits) in the semi-honest model: each party simply
generates a random bit, and then inside the circuit a random bit is reconstructed as the XOR
of two bits. As XORs are for free in garbled circuits this computation is very efficient. The
problem of implementing differentially private mechanisms in MPC was discussed by Dwork
et al. (2006), where the authors present small circuits for sampling from an exponential
distribution requiring only a log(k) biased random bits, which can be constructed in parallel.
Recently, Champion et al. (2019) proposed optimized constructions for several well-known
differentially private mechanisms (including the geometric and Laplace mechanisms), and
empirically showed their concrete efficiency.

D Additional Experiments

D.1 AUC Experiments on Synthetic Data

We illustrate the behavior of our AUC-specific LDP protocol of Section 4 on three synthetic
datasets, and compare its performance with that of our generic LDP protocol of Section 3.
For all datasets, we have 106 inputs in each class (positive and negative) but the score values
of inputs are distributed differently:

• auc_one consists of two distinct inputs (d− 1, 1) and (0,−1) each occurring 106 times.

• In ur, the score value of an input is drawn independently and uniformly from [0..d− 1],
regardless of its class.

17

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

d

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

st
d

er
ro

r
n + = 1000000, n = 1000000, bench = auc_one, algo = auc_specific

= 1, analytical
= 2, analytical
= 1, empirical
= 2, empirical

(a) auc_one

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

d

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

st
d

er
ro

r

n + = 1000000, n = 1000000, bench = ur, algo = auc_specific
= 1, analytical
= 2, analytical
= 1, empirical
= 2, empirical

(b) ur

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

st
d

er
ro

r

n + = 1000000, n = 1000000, bench = ithdigit, algo = auc_specific
= 1, analytical
= 2, analytical
= 1, empirical
= 2, empirical

(c) ithdigit

Figure 1: Mean and std. dev. (over 20 runs) of the absolute error of our AUC-specific LDP
protocol on three synthetic datasets.

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

st
d

er
ro

r

n + = 1000000, n = 1000000, bench = auc_one, algo = generic
= 1, empirical
= 2, empirical

(a) auc_one

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

st
d

er
ro

r

n + = 1000000, n = 1000000, bench = ur, algo = generic
= 1, empirical
= 2, empirical

(b) ur

28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223

d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

st
d

er
ro

r

n + = 1000000, n = 1000000, bench = ithdigit, algo = generic
= 1, empirical
= 2, empirical

(c) ithdigit

Figure 2: Mean and std. dev. (over 20 runs) of the absolute error of our generic LDP protocol
on three synthetic datasets.

• ithdigit consists of two distinct inputs (10−4, 1) and (0,−1) each occurring 106 times.

Figure 1 shows the error that our AUC-specific protocol incurs on the three datasets. On
auc_one, our AUC-specific protocol incurs considerable error due to significant recursion
error, ER

m, being incurred for every level. This example illustrates that our analysis for the
AUC-specific protocol is not far from being tight. On ur, the error is much lower. This is
because (i) the algorithm does not explore any of the lower sections of the tree and so no
recursion error is incurred whilst exploring it, and (ii) within intervals that are discarded the
points are uniformly distributed so the estimation of the AUC within that interval as a half is
effective. Both of these effects will occur approximately whenever the data is smooth so one
can expect the algorithm to do better in the case of smooth data than the analytic bounds
indicate. Finally, on ithdigit, the protocol does not learn anything when the quantization
is smaller or equal to 213, which is expected as all inputs are quantized to the same bin.
However, we see that the protocol achieves low error for d ≥ 214. Importantly, in all cases

18

23 24 25 26 27 28 29 210 211 212 213 214 215 216

d

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

st
d

er
ro

r

n + = 95985, n = 693, bench = diabetes_regression, algo = generic

= 1
= 5
= 2

Figure 3: Mean and std. dev. (over 20 runs) of the absolute error of our generic LDP protocol
on the scores of a logistic regression model trained on a Diabetes dataset.

our AUC-specific protocol scales nicely with the size of the domain. This allows to be rather
agnostic about the level of quantization needed for the problem at hand, which is often not
known in advance.

In contrast, we can see on Figure 2 that the generic protocol scales very poorly with
the domain size due to the use of randomized response. On auc_one and ur, data can be
quantized to a small domain without losing much relevant information, leading to good
performance. In the case of ithdigit however, the generic protocol incurs very large error
in all regimes: quantizing to small domain maps all inputs to the same bin, while quantizing
to large domain leads to large error due to privacy.

D.2 Results of the Generic Protocol on Diabetes dataset

Figure 3 shows the results of our generic LDP protocol of Section 3 for the problem of
computing the AUC on the Diabetes dataset (see Section 6 for results with the AUC-specific
protocol). On this dataset, a fully trained logistic regression model yields scores of positive
and negative points that are well separated. Hence, they can be quantized to a sufficiently
small domain for the protocol to achieve small error.

References
Bassily, R., Nissim, K., Stemmer, U., and Thakurta, A. G. (2017). Practical locally private
heavy hitters. In NIPS.

Blom, G. (1976). Some properties of incomplete U -statistics. Biometrika, 63(3):573–580.

Champion, J., Shelat, A., and Ullman, J. (2019). Securely sampling biased coins with
applications to differential privacy. IACR Cryptology ePrint Archive, 2019:823.

Damgård, I., Pastro, V., Smart, N. P., and Zakarias, S. (2011). Multiparty computation from
somewhat homomorphic encryption. IACR Cryptology ePrint Archive, 2011:535.

19

Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and Naor, M. (2006). Our data,
ourselves: Privacy via distributed noise generation. In EUROCRYPT.

Evans, D., Kolesnikov, V., and Rosulek, M. (2018). A pragmatic introduction to secure
multi-party computation. Foundations and Trends in Privacy and Security, 2(2-3):70–246.

Goldreich, O. (2004). The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press.

Goldreich, O., Micali, S., and Wigderson, A. (1987). How to play any mental game or A
completeness theorem for protocols with honest majority. In STOC, pages 218–229. ACM.

Kulkarni, T., Cormode, G., and Srivastava, D. (2019). Answering range queries under local
differential privacy. In SIGMOD.

Lindell, Y. and Pinkas, B. (2009). A proof of security of yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188.

Yao, A. C. (1986). How to generate and exchange secrets (extended abstract). In FOCS.

20

	Details and Proofs for Generic LDP Protocol
	Bounding the Error of Randomized Response on Discrete Domain
	Bounding the Error of Quantization
	Assumption of Lipschitz Kernel Function
	Assumption of Smooth Data Distribution

	Details and Proofs for AUC Protocol
	Proof of Theorem 3
	Instantiating the Private Hierarchical Histogram h
	Frequency Oracle
	Splitting Strategies

	Details and Proofs for 2PC Protocol
	Proof of Theorem 5 and Discussion
	Implementing 2PC

	Additional Experiments
	AUC Experiments on Synthetic Data
	Results of the Generic Protocol on Diabetes dataset

