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In this document we provide the proofs of the Propo-
sitions stated in the main paper, together with the
posterior predictive distribution of the feature alloca-
tions.

A Posterior predictive distribution of
feature allocations

The data augmentation described in Section 5 in the
main paper allows us to compute the posterior predic-
tive distribution of the n + 1-th object given the first
n ones.

Zn+1 |U1, . . . , Un
d
= Z∗n+1 +

Kn∑
k=1

z̃n+1,kδθ̃k

where Z∗n+1 is independent of the z̃n+1,k which are
distributed as follows

z̃n+1,k |U1, . . . , Un ∼

Ber

1−
κ
(
m̃nj , ∆n+1 +

∑n
i=1 ∆iũij1θ̃k≤Yi

)
κ
(
m̃nj ,

∑n
i=1 ∆iũij1θ̃k≤Yi

)
 .

By the marking theorem for Poisson point processes

and Equation (20), Z∗n+1 =
∑Kn+K∗

n+1

k=Kn+1 δθ̃k is a
Poisson random measure on R+ with mean measure

µ∗n+1(dθ) =
∫∞

0

(
1− e−ω∆n+11θ≤Yn+1

)
dν∗(dω, dθ),

where we recall that

ν∗(dω, dθ) = e−ω
∑n
i=1 ∆i1θ≤Yiρ(ω)dωdθ

=

(
1θ>Yn +

n∑
i=1

e−ω(Tn−Ti−1)1Yi−1<θ≤Yi

)
× ρ(ω)dωdθ

where T0 = Y0 = 0. Therefore, the number K∗n+1 =
Z∗n+1(R+) of new features of the n+1 object is Poisson

distributed with mean

E[Z∗n+1(R+)]

=

∫ ∞
0

∫ ∞
0

(
1− e−ω∆n+11θ≤Yn+1

)
dν∗(dω, dθ)

If follows that

E[Z∗n+1(R+)]

=

n+1∑
i=1

(Yi − Yi−1)

∫ ∞
0

(
1− e−ω∆n+1

)
e−ω(Tn−Ti−1) ρ(ω)dω

(A.1)

The locations θ̃Kn+1, . . . , θ̃Kn+K∗
n+1

are sampled iid

from the piecewise constant distribution on [0, Yn+1]
with pdf proportional to

n+1∑
i=1

1Yi−1<θ≤Yi

∫ ∞
0

(
1− e−ω∆n+1

)
e−ω(Tn−Ti−1) ρ(ω)dω

(A.2)

If B is a GGP, the integral in Equations (A.1) and
(A.2) is tractable and we have∫ ∞

0

(
1− e−ω∆n+1

)
e−ω(Tn−Ti−1) ρ(ω)dω

=

{
η
σ [(Tn+1 − Ti−1 + ζ)σ − (Tn − Ti−1 + ζ)σ] σ > 0

η log
(

1 + ∆n+1

Tn−Ti−1+ζ

)
σ = 0

Proof. We have

Pr(z̃n+1,k = 1 |ω̃k, U1, . . . , Un) = 1− e−ω̃k∆n+1

and

p(ω̃k | U1, . . . , Un) =
ω̃
m̃n,k
k e

−ω̃k
∑n
i=1 ∆iũij1θ̃k≤Yiρ(ω̃k)

κ
(
m̃n,k,

∑n
i=1 ∆iũij1θ̃k≤Yi

)
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Hence

Pr(z̃n+1,k = 1 | U1, . . . , Un)

= 1−
κ
(
m̃n,k,∆n+1 +

∑n
i=1 ∆iũij1θ̃k≤Yi

)
κ
(
m̃n,k,

∑n
i=1 ∆iũij1θ̃k≤Yi

)

The conditional distribution of the latent point process
Un+1 can be written as follows:

p(ũn+1,k | z̃n+1,k = 1, ũ1:n,k)

∝ κ

(
m̃n,k + 1,∆n+1ũn+1,k +

n∑
i=1

∆iũik

)
1un+1,j<1

Proof. We have

p(ũn+1,k | ω̃k, z̃n+1,k = 1, ũ1:n,k)

=
∆n+1ω̃ke

−ũn+1,k∆n+1ω̃k1ũn+1,k<1

1− e−∆n+1ω̃k

and

p(ω̃k | z̃n+1,k = 1, U1, . . . , Un)

∝ (1− e−∆n+1ω̃k)ω̃
m̃n,k
k e

−ω̃k
∑n
i=1 ∆iũij1θ̃k≤Yiρ(ω̃k)

B Proofs

B.1 Proof of Proposition 1

By the marking theorem for Poisson point processes,
the set of points {(ωj)j≥1 | zij = 1} is drawn
from a Poisson point process with mean measure
Yi(1−e−∆iω)ρ(ω)dω. The total number of such points
Zi(R+) is therefore Poisson distributed with mean
E [Zi(R+)] = Yiψ(∆i). Using integration by part, we
have

ψ(t) = t

∫ ∞
0

e−wtρ(w)dw

where

ρ(x) =

∫ ∞
x

ρ(w)dw. (B.1)

Hence, by monotone convergence,

lim
t→∞

ψ(t)

t
=

∫ ∞
0

ρ(w)dw = κ(1, 0)

and it follows that

Ynψ(∆n)
n→∞∼ Yn∆nκ(1, 0)

Finally note that ∆n
n→∞∼ (1 + ξ)−1n−ξ/(ξ+1), hence

Yn∆n → (1 + ξ)−1.

B.2 Proof of Proposition 2

The number of features observed in the first n objects
can be written as

mn :=

n∑
i=1

∑
j≥1

zij =

n∑
i=1

Zi(R+)

Since E[Zn(R+)] = E[mn] − E[mn−1], it follows by
Stolz-Cesàro theorem that

E[mn]
n→∞∼ (1 + ξ)−1κ(1, 0)n.

In order to get the almost sure convergence of mn

to its expectation we can use the Kolmogorov strong
law of large numbers which, under the assumption∑
n≥1 Var

(
Zn(R+)

n

)
<∞, gives

mn − E[mn]

n
→ 0 almost surely.

Recall that Var(Zn(R+)) = E[Zn(R+)]. Therefore the
summability condition on the variance boils down to
the convergence of the sum

∑
n≥1

1
n2Yn ψ(∆n), which

holds true since the elements of the sum are of order
n−2.

B.3 Proof of Proposition 3

Since E[mn,j |B] =
∑n
i=1

(
1− e−ωj∆i

)
1θj<Yi , we have

E[mnj |B]−E[mn−1 j |B]
Tn−Tn−1

= 1−e−ωj∆n

∆n
1θj<Yn → ωj , then by

Stolz-Cesàro theorem we have that

E[mnj |B]
n→∞∼ ωjTn.

We have

Var(mn,j |B) =

n∑
i=1

(
1− e−ωj∆i

)
e−ωj∆i1θj<Yi

≤ E[mn,j |B].

Using the sandwiching argument in Proposition 2 of
Gnedin et al. (2007) it follows that, conditionally on
B,

mnj
E[mnj |B] → 1 almost surely.

B.4 Proof of Proposition 4

Applying Campbell’s theorem

E[Kn] = E[E[Kn | B]]

= E

∑
j

Pr(mn,j > 0 | B)


=

∫ ∞
0

∫ ∞
0

(
1− e−ωfn(θ)

)
ρ(ω)dωdθ

=

∫ Yn

0

ψ(Tn − g(θ))dθ
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where

fn(θ) :=

n∑
i=1

∆i1θ≤Yi = (Tn − g(θ))1θ≤Yn (B.2)

with g(θ) :=
∑∞
i=1 ∆i1θ>Yi is a monotone increasing

step function satisfying, for all θ ≥ 0

max(0, g1(θ)) ≤ g(θ) ≤ g2(θ) (B.3)

where g1(θ) = (θ(ξ+1)/ξ − 1)1/(ξ+1) and g2(θ) = θ1/ξ.

Note that g1(θ)
θ→∞∼ g2(θ)

θ→∞∼ θ1/ξ. As ψ is an
increasing function, it follows∫ Yn

0

ψ(Tn − g2(θ))dθ ≤ E[Kn] ≤
∫ Yn

1

ψ(Tn − g1(θ))dθ

+ ψ(Tn).

Using a change of variable, we obtain∫ Yn

0

ψ(Tn − g2(θ))dθ = ξ

∫ Tn

0

ψ(Tn − θ) θξ−1dθ

Finally, noting that

ψ(t)
t→∞∼ tσ`(t)

where

`(t) =

{
η log(t) σ = 0
η
σ σ ∈ (0, 1)

and using (Di Benedetto et al., 2017, Lemma 14), we
obtain∫ Yn

0

ψ(Tn − g2(θ))dθ
n→∞∼ Γ(ξ + 1)Γ(σ + 1)

Γ(σ + ξ + 1)
n
ξ+σ
ξ+1 `(n)

Similarly, we have∫ Yn

1

ψ(Tn − g1(θ))dθ
n→∞∼ Γ(ξ + 1)Γ(σ + 1)

Γ(σ + ξ + 1)
n
ξ+σ
ξ+1 `(n).

It follows by sandwiching that

E[Kn]
n→∞∼ Γ(ξ + 1)Γ(σ + 1)

Γ(σ + ξ + 1)
n
ξ+σ
ξ+1 `(n).

Using Campbell’s theorem again,

Var[Kn] = Var[E[Kn | B]] + E[Var[Kn | B]]

=

∫ (
1− e−ωfn(θ)

)
e−ωfn(θ)ρ(dω)dωdθ

+

∫ (
1− e−ωfn(θ)

)2

ρ(dω)dωdθ

=

∫ (
1− e−ωfn(θ)

)
ρ(dω)dωdθ

therefore the almost sure asymptotic equivalence fol-
lows by Chebyshev inequality and the strong law of
large numbers for Kn (see (Gnedin et al., 2007, Propo-
sition 2)).

B.5 Proof of Proposition 5

We have the following inequality, for any x ≥ 0

0 ≤ x− (1− e−x) ≤ x2

2
. (B.4)

Let us recall that

Kn,r =
∑
j≥1

1mn,j=r.

where mn,j =
∑n
i=1 zij . Conditional on the CRM B

we have

E[Kn,r |B] =
∑
j≥1

Pr
(
mn,j = r

∣∣∣B) .
Note that Pr

(
mn,j = r

∣∣∣B) only depends on (θj , ωj).

Write Sn,r(θj , ωj) = Pr
(
mn,j = r

∣∣∣B). Let us de-

note qi(θj , ωj) := Pr(zij = 1 | B) = 1 − e−∆iωj1θj≤Yi ;
λn(θj , ωj) :=

∑n
i=1 qi(θj , ωj). Conditional on B the

random variable mn,j has a Poisson-Binomial distribu-
tion with parameters (q1(θj , ωj), . . . , qn(θj , ωj)). For
each fixed (ωj , θj) Le Cam’s inequality Le Cam (1960)
and inequality (B.4) give

∑
r≥0

∣∣∣∣∣Pr(mn,j = r | B)− Poisson (r;λn(θj , ωj))

∣∣∣∣∣
≤ 2

n∑
i=1

qi(θj , ωj)
2 ≤ 2ω2

j

n∑
i=1

∆2
i 1θj≤Yi . (B.5)

where Poisson(r;λ) denote the probability mass func-
tion of a Poisson random variable with rate parameter
λ evaluated at r. Note that for any 0 < λ1 ≤ λ2, using
coupling inequalities (see. e.g. (Roch, 2015, Example
4.10 p. 154))

∑
r≥0

∣∣∣∣∣Poisson(r;λ1)− Poisson(r;λ2)

∣∣∣∣∣ ≤ 2(λ2 − λ1).

Noting that λn(θj , ωj) ≤ ωjfn(θj), where fn is defined
in Equation (B.2), and using inequality (B.4), we ob-
tain

∑
r≥0

∣∣∣∣∣Poisson(r;λn(θj , ωj))− Poisson(r;ωjfn(θj))

∣∣∣∣∣
≤ 2

n∑
i=1

(
ωj∆i − (1− e−ωj∆j )

)
1θj≤Yi

≤ ω2
j

n∑
i=1

∆2
i 1θj≤Yi
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Combining the above inequality with the inequality
(B.5), we obtain the total variation bound∑

r≥0

∣∣∣∣∣Pr(mn,j = r | B)− Poisson (r;ωjfn(θj))

∣∣∣∣∣
≤ 3ω2

j

n∑
i=1

∆2
i 1θj≤Yi . (B.6)

Using Campbell’s theorem,

E

∑
j≥1

ω2
j

n∑
i=1

∆2
i 1θj≤Yi

 = κ(2, 0)

n∑
i=1

Yi∆
2
i

n→∞
� n1/(1+ξ). (B.7)

Using Campbell’s theorem again,

E

∑
j≥1

Poisson (r;ωjfn(θj))


=

1

r!

∫ ∞
0

∫ ∞
0

e−ωfn(θ)ωrfn(θ)r ρ(ω) dωdθ

=
1

r!

∫ ∞
0

κ(r, fn(θ))fn(θ)rdθ

=
1

r!

∫ Yn

0

κ(r, Tn − g(θ))(Tn − g(θ)))rdθ

We use again the inequality (B.3) to bound the above
expression. The upper bound is given by

1

r!

∫ Yn

0

κ(r, Tn − g2(θ))(Tn − g1(θ))rdθ

Using a change of variable, we obtain

ξ

r!

∫ Tn

0

κ(r, Tn − θ)(Tn − g1(θξ)))rθξ−1dθ

=
ξ

r!

∫ Tn

0

κ(r, θ)(g1(θξ))r(Tn − θ)ξ−1dθ. (B.8)

Noting that κ(r, θ)
θ→∞∼ ηθσ−r Γ(r−σ)

Γ(1−σ) and

(g1(θξ))r
θ→∞∼ θr, and using (Di Benedetto et al., 2017,

Lemma 14), we obtain that (B.8) is asymptotically
equivalent to

η
Γ(ξ + 1)Γ(r − σ)

r!Γ(σ + ξ + 1)
n
ξ+σ
ξ+1 .

A similar asymptotic equivalence is obtained for the
lower bound, and we conclude by sandwiching that

E

∑
j≥1

Poisson (r;ωjfn(θj))


n→∞∼ η

Γ(ξ + 1)Γ(r − σ)

r!Γ(σ + ξ + 1)
n
ξ+σ
ξ+1

Combining the above asymptotic result with Equa-
tions (B.6) and (B.7), and assuming ξ + σ > 1, we
conclude

E[Kn,r] = E

∑
j≥1

Pr
(
mn,j = r

∣∣∣B)


n→∞∼ η
Γ(ξ + 1)Γ(r − σ)

r!Γ(σ + ξ + 1)
n
ξ+σ
ξ+1 .

The variance of Kn,r can be written as

Var[Kn,r] = Var[E[Kn,r |B]] + E[Var[Kn,r |B]]

=

∫
Sn,r(θ, ω)ρ(ω)dωdθ

+

∫
Sn,r(θ, ω)(1− Sn,r(θ, ω)) ρ(ω)dωdθ

= E[Kn,r].

Using the result below Proposition 2 in Gnedin et al.

(2007), we obtain, almost surely, E
[∑

r≥j Kn,r

]
n→∞∼∑

r≥j Kn,r. Using a proof similar to that of Corollary
21 in Gnedin et al. (2007), we obtain

Kn,r
n→∞∼ η

Γ(ξ + 1)Γ(r − σ)

r!Γ(σ + ξ + 1)
n
ξ+σ
ξ+1 . (B.9)

Combining Equation (B.9) with Equation (17) gives
the final result.
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