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In this document we provide the proofs of the Propo-
sitions stated in the main paper, together with the
posterior predictive distribution of the feature alloca-
tions.

A Posterior predictive distribution of
feature allocations

The data augmentation described in Section [5] in the
main paper allows us to compute the posterior predic-
tive distribution of the n + 1-th object given the first
n ones.
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By the marking theorem for Poisson point processes
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where Ty = Yy = 0. Therefore, the number K, | =
Zy . 1(R4) of new features of the n+1 object is Poisson
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distributed with mean
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If follows that
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The locations gKn+17'-~7§Kn+K;+1 are sampled iid
from the piecewise constant distribution on [0, Y, 41]
with pdf proportional to
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If B is a GGP, the integral in Equations (A.1]) and
(A.2)) is tractable and we have
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The conditional distribution of the latent point process
U, +1 can be written as follows:
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B Proofs

B.1 Proof of Proposition

By the marking theorem for Poisson point processes,
the set of points {(wj)j>1 | 2z; = 1} is drawn
from a Poisson point process with mean measure
Yi(1—e %) p(w)dw. The total number of such points
Z;(Ry) is therefore Poisson distributed with mean
E[Z;(Ry)] = Yi(A;). Using integration by part, we
have
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Hence, by monotone convergence,
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B.2 Proof of Proposition [2]

The number of features observed in the first n objects
can be written as

i=1 j>1
Since E[Z,(R;)] = E[m,] — E[m,_1], it follows by
Stolz-Cesaro theorem that

(14 &) 'k(1,0)n.

In order to get the almost sure convergence of m,,
to its expectation we can use the Kolmogorov strong
law of large numbers which, under the assumption

> n>1 Var (w) < 00, gives
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Recall that Var(Z,(R;)) = E[Z,(R4)]. Therefore the
summability condition on the variance boils down to
the convergence of the sum Y o, Y, ¢(A,), which
holds true since the elements of the sum are of order
n=2.

B.3 Proof of Proposition

Since E[my, ;|B] = >, (1 — e"%%4) 19, <y,, we have
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Stolz-Cesaro theorem we have that
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Using the sandwiching argument in Proposition 2 of
Gnedin et al| (2007) it follows that, conditionally on
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B.4 Proof of Proposition

Applying Campbell’s theorem
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=E ZPr(an >0]| B)

J
= /Oo /Oo (1 - e_wf"(e)) p(w)dwdd
o Jo

Y.
- / BT, — g(8))do



Giuseppe Di Benedetto, Frangois Caron, Yee Whye Teh

where
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with g(0) := >°7°; A;lpsy, is a monotone increasing

step function satisfying, for all § > 0
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Using a change of variable, we obtain
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and using (Di Benedetto et al., 2017, Lemma 14), we
obtain
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It follows by sandwiching that
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Using Campbell’s theorem again,
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therefore the almost sure asymptotic equivalence fol-
lows by Chebyshev inequality and the strong law of
large numbers for K, (see (Gnedin et al., {2007, Propo-
sition 2)).
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B.5 Proof of Proposition

We have the following inequality, for any z > 0
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Let us recall that
= Z Ly, j=r-
j>1

where m, j = > I, z;;. Conditional on the CRM B

we have
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Write S, -(0;,w;) = Pr (mn,j = ‘ B). Let us de-
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A (05,w5) == > 1 qi(f,w;). Conditional on B the
random variable m,, ; has a Poisson-Binomial distribu-
tion with parameters (¢q1(0;,w;),...,qn(0;,w;)). For
each fixed (wj, ;) Le Cam’s inequality Le Cam|(1960)
and inequality (B.4) give
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where Poisson(r; A) denote the probability mass func-
tion of a Poisson random variable with rate parameter
A evaluated at . Note that for any 0 < A\; < Ao, using
coupling inequalities (see. e.g. (Roch} 2015, Example
4.10 p. 154))
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Noting that A, (0;,w;) < w;fn(8;), where f, is defined

in Equation (B.2)), and using inequality (B.4)), we ob-
tain
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Combining the above inequality with the inequality
(B.5)), we obtain the total variation bound
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Using Campbell’s theorem,
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Using Campbell’s theorem again,
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We use again the inequality (B.3]) to bound the above
expression. The upper bound is given by
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Using a change of variable, we obtain
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Lemma 14), we obtain that is asymptotlcally
equivalent to
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A similar asymptotic equivalence is obtained for the
lower bound, and we conclude by sandwiching that
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Combining the above asymptotic result with Equa-
tions (B.6) and (B.7), and assuming £ + o > 1, we
conclude
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The variance of K, , can be written as
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Using the result below Proposition 2 in |Gnedin et al.
(2007), we obtain, almost surely, E [Z K, r} o
>_r>; Kn,r. Using a proof similar to that of Corollary
21 in |Gnedin et al.| (2007)), we obtain
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Combining Equation with Equation gives
the final result.
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