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Supplementary Material: ADVERSARIAL
ROBUSTNESS GUARANTEES FOR
CLASSIFICATION WITH GAUSSIAN
PROCESSES

In the first Section of this Supplementary Material we
present the proof of Propositions 1 and 2, as well as Theo-
rem 1. Further technical results concerning multiclass clas-
sification are treated in Section B. In Section C we detail
the case of binary classification using the probit likelihood
function. In Section D we detail our approach for comput-
ing a lower bound of the predictive variance and mention
how promising candidate points for the GPC bounding can
be computed. We empirically analyse the computational
complexity of the branch and bound methodology in a run-
time analysis in Section E. In Section F we describe the
datsets used and detail the experimental settings. Finally,
in Section G, details for the interpretability metric we use
in the experimental section are given.

A PROOFS FOR BINARY
CLASSIFICATION BOUNDS

A.1 Proof of Proposition 1

Proof. We detail the proof for minx∈T π(x|D). The max
case follows similarly.

min
x∈T

π(x|D)

(By definition)

=min
x∈T

∫ +∞

−∞
σ(f̄)q(f(x) = f̄ |D)df̄

(By additivity of integrals)

=min
x∈T

N∑

i=1

∫ bi

ai

σ(f̄)q(f(x) = f̄ |D)df̄

(By monotonicity of σ and non-negativity of q)

≥min
x∈T

N∑

i=1

∫ bi

ai

σ(ai)q(f(x) = f̄ |D)df̄

(By definition of minimum and of q)

≥
N∑

i=1

σ(ai)min
x∈T

∫ bi

ai

N (f̄ |µ(x),Σ(x))df̄

A.2 Proof of Proposition 2

Proof. We provide the proof for the min case, similar argu-
ments hold for the max. By definition of µL

T , µU
T , ΣL

T , ΣU
T

we have that:

min
x∈T

∫ b

a
N (f̄ |µ(x),Σ(x))df̄ ≥

min
µ∈[µL

T ,µU
T ]

Σ∈[ΣL
T ,ΣU

T ]

∫ b

a
N (f̄ |µ,Σ)df̄ =

1

2
min

µ∈[µL
T ,µU

T ]

Σ∈[ΣL
T ,ΣU

T ]

(
erf

(
µ− a√
2Σ

)
− erf

(
µ− b√
2Σ

))
:=

1

2
min

µ∈[µL
T ,µU

T ]

Σ∈[ΣL
T ,ΣU

T ]

Φ(µ,Σ).

By looking at the partial derivatives we have that:

∂Φ(µ,Σ)

∂µ
=

√
2√
πΣ

(
e−

(µ−b)2

2Σ − e−
(µ−a)2

2Σ

)
≥ 0⇔ µ ≤ a+ b

2
=: µm

and that if µ ̸∈ [a, b]:

∂Φ(µ,Σ)

∂Σ
=

1√
2πΣ3

(
(µ− bi)e

− (µ−bi)
2

2Σ2 − (µ− ai)e
− (µ−ai)

2

2Σ2

)
≥ 0

⇔ Σ ≤ (µ− a)2 − (µ− b)2

2 log µ−a
µ−b

:= Σm(µ)

otherwise the last inequality has no solutions. As such µm

and Σm will correspond to global maximum wrt to µ and
Σ respectively. As Φ is symmetric wrt µm we have that the
minimum value wrt to µ is always obtained for the point fur-
thest away from µc, that is: µ = argmaxµ∈[µL

T ,µU
T ] |µm −

µ|. The minimum value wrt to Σ will hence be either for
ΣL

T or ΣU
T , that is Σ = argminΣ∈{ΣL

T ,ΣU
T } Φ(µ,Σ).

A.3 Proof of Theorem 1

Proof. We consider the min case. The max case follows
similarly.

In order to show the convergence of the branch and bound,
we need to show that for any test point x there exists r > 0
and a partition of the latent space S = {Si, i = {1, ..., N}}
such that for the interval I = [x− rI, x+ rI] we have that
for any x̄ ∈ I

|π(x̄|D)−
N∑

i=1

σ(ai)min
x∈I

∫ bi

ai

N (f̄ |µ(x),Σ(x))df̄ | ≤ ϵ.

In order to do that, we first observe that by the Lipschitz
continuity of mean and variance we have that for x1, x2 ∈
I , it holds that

|µ(x1)− µ(x2)| ≤ Kµr
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|Σ(x1)− Σ(x2)| ≤ KΣr,

for certain Kµ,KΣ > 0. Now, for Si ∈ S,
consider xi such that

∫ bi
ai

N (f̄ |µ(xi),Σ(xi))df̄ =

minx∈I

∫ bi
ai

N (f̄ |µ(x),Σ(x))df̄ . Further, due to the mono-
tonicity and continuity of σ, we can consider a uniform dis-
cretisation of the y-axis for σ in N intervals. That is, for all
Si ∈ S , we have that σ(bi) = σ(ai)+

1
N . At this point, for

any x̄ ∈ I the following calculations follow

|π(x̄|D)−
N∑

i=1

σ(ai)

∫ bi

ai

N (f̄ |µ(xi),Σ(xi))df̄ | (11)

(By Definition)

=|
∫

σ(f̄)N (f̄ |µ(x̄),Σ(x̄))df̄−

N∑

i=1

σ(ai)

∫ bi

ai

N (f̄ |µ(xi),Σ(xi))df̄ | (12)

(By additivity of integral and re-ordering terms)

=|
N∑

i=1

( ∫ bi

ai

σ(f̄)N (f̄ |µ(x̄),Σ(x̄))df̄ −

∫ bi

ai

σ(ai)N (f̄ |µ(xi),Σ(xi))df̄
)
| (13)

(As for any f̄ ∈ Si, σ(ai) ≤ σ(fi) ≤ σ(ai) +
1

N
)

≤|
N∑

i=1

( ∫ bi

ai

(σ(ai) +
1

N
)N (f̄ |µ(x̄),Σ(x̄))−

σ(ai)N (f̄ |µ(xi),Σ(xi))df̄
)
|

(14)

(By Triangle Inequality)

≤|
N∑

i=1

∫ bi

ai

1

N
N (f̄ |µ(x̄),Σ(x̄))df̄ |+

|
N∑

i=1

(
σ(ai)

∫ bi

ai

N (f̄ |µ(x̄),Σ(x̄))−

N (f̄µ(xi),Σ(xi))df̄
)
| (15)

(By Re-ordering terms and Triangle Inequality)

≤| 1
N

∫
N (f̄ |µ(x̄),Σ(x̄))df̄ |

+
N∑

i=1

σ(ai)|
∫ bi

ai

N (f̄ |µ(x̄),Σ(x̄))−

N (f̄µ(xi),Σ(xi))df̄ | (16)
(By properties of integrals and σ(f) ∈ [0, 1])

≤ 1

N
+

N∑

i=1

|
∫ bi

ai

(N (f̄ |µ(x̄),Σ(x̄))−

N (f̄ |µ(xi),Σ(xi)))df̄ | (17)

Now, as |µ(x̄),−µ(xi), | ≤ Kµr and |Σ2(x̄) − Σ2(xi)| ≤

KΣr, we have that as r → 0 both mean and variance con-
verge to the same value. Hence, this implies that for each
Si ∈ S

lim
r→0

( ∫ bi

ai

N (f̄ |µ(x̄),Σ(x̄))df̄ −
∫ bi

ai

N (f̄ |µ(xi),Σ(xi))df̄
)
= 0.

As a consequence, for any ϵ > 0, we can choose N = ⌈ 2ϵ ⌉
and then select r such that the second term in Eqn (17) is
bounded by ϵ

2 .

B BOUNDS FOR MULTICALSS
CLASSIFICATION

Proof of Proposition 3

Proof. We detail the proof for minx∈T πc(x|D). The max
case follows similarly.

min
x∈T

πc(x|D)

(By definition)

= min
x∈T

∫
σc(f̄)q(f(x) = f̄ |D)df̄

(By additivity of integral)

= min
x∈T

N∑

i=1

∫

Si

σc(f̄)q(f(x) = f̄ |D)df̄

(Because q is non-negative)

≥ min
x∈T

N∑

i=1

∫

Si

min
y∈Si

σc(y)q(f(x) = f̄ |D)df̄

(By definition of infimum)

≥
N∑

i=1

min
y∈Si

σc(y)min
x∈T

∫

Si

q(f(x) = f̄ |D)df̄

(By Definition of q)

=
N∑

i=1

min
y∈Si

σc(y)min
x∈T

∫

Si

N (f̄ |µ(x),Σ(x))df̄

Proposition 3 in the main text implies that if we can com-
pute infimum and supremum of the softmax over a set of
the latent space (shown in Lemma 1) and the mean and co-
variance matrix that maximise a Gaussian integral (shown
in Proposition 4), then upper and lower bounds on πmin(T )
and πmax(T ) can be derived.
Lemma 1. Let S ⊂ R|C| be an axis-parallel hyper-
rectangle. Call fmax = argmaxf∈S σc(f) and fmin =
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argminf∈S σc(f). Assume σ is the softmax function. Then,
fmax and fmin are vertices of S.

Proof. S is an axis-parallel hyper-rectangle. As a conse-
quence, it can be written as intersection of constraints of
the form −fi ≤ −ki,1 and fi ≤ ki,2, where fi is the i-th
component of vector f . Hence, the optimisation problem
for the maximisation case (minimisation case is equivalent)
can be rewritten as follows:

maxσc(f)

such that ∀i ∈ {1, ..., |C|}− fi ≤ −ki,1, fi ≤ ki,2.

In order to solve this problem we can apply the Karush-
Kuhn-Tucker (KKT) conditions. Being the constraints in-
dependent of f , the KKT conditions imply that in order
to conclude the proof we just need to show that for all
f ∈ S, c ∈ {1, ..., |C|}, dσc(f)

dfc
̸= 0. This is shown in

what follows.

For f ∈ Rn and c ∈ {1, ...n} We have

σc(f) =
exp(fc)∑C
j=1 exp(fj)

.

Then, we obtain

dσc(f)

dfc
=

exp(fc)(
∑

j ̸=c exp(fj))

(
∑C

j=1 exp(fj))
2

,

while for i ̸= c we have

dσc(f)

fi
= − exp(fc) exp(fi)

(
∑C

j=1 exp(fj))
2
.

This implies that for f ∈ Rn and i ̸= c we always have

dσc(f)

dfc
> 0

dσc(f)

dfi
< 0.

Note that in Lemma 1 we assumed that S is an hyper-
rectangle. However, the lemma can be trivially extended
to more general sets given by the intersection of arbitrarily
many half-spaces generated by hyper-planes perpendicular
to one of the axis.

The following Lemma is needed to prove Proposition 4.

Lemma 2. Let X and Y be random variables with joint
density function f . Consider measurable sets A and B.
Then, it holds that

P (X ∈ A|Y ∈ B) ≤ sup
y∈B

P (X ∈ A|Y = y).

Proof.

P (X ∈ A|Y ∈ B)

=
P (X ∈ A ∧ Y ∈ B)

P (Y ∈ B)

=

∫
x∈A

∫
y∈B f(X = x ∧ Y = y)dxdy

P (Y ∈ B)

=

∫
x∈A

∫
y∈B f(X = x|Y = y)f(Y = y)dxdy

P (Y ∈ B)

≤
∫
x∈A

∫
y∈B supȳ∈B f(X = x|Y = ȳ)f(Y = y)dxdy

P (Y ∈ B)

=

∫
x∈A supȳ∈B f(X = x|Y = ȳ)dx

∫
y∈B f(Y = y)dy

P (Y ∈ B)

=
supy∈B P (X ∈ A|Y = y)P (X ∈ B)

P (Y ∈ B)

= sup
y∈B

P (X ∈ A|Y = y),

B.1 Proof of Proposition 4.

We consider the supremum case. The infimum follows sim-
ilarly. Let y(x) be a normal random variable with mean
µ(x) and covariance matrix Σ(x). Then, we have

sup
x∈T

∫

S
N (f̄ |µ(x),Σ(x))df̄

= sup
x∈T

P (y(x) ∈ S)

= sup
x∈T

P (∧Ci=1k
1
i ≤ yi(x) ≤ k2i )

= sup
x∈T

C∏

i=1

P (k1i ≤ yi(x) ≤ k2i | ∧Cj=i+1 k
1
j ≤ yj(x) ≤ k2j )

(By Lemma 2)

≤ sup
x∈T

C∏

i=1

sup
f∈Si+1

P (k1i ≤ yi(x) ≤ ki,2|

∧Cj=i+1 yj(x) = fj−i)

≤
C∏

i=1

sup
x∈T,f∈Si+1

P (k1i ≤ yi(x) ≤ k2i |

∧Cj=i+1 yj(x) = fj−i)

Notice that for each i ∈ {1, ..., C}, P (k1i ≤ yi(x) ≤
k2i | ∧Cj=i+1 yj(x) = fj−i) is the integral of a uni-
dimensional Gaussian random variable, as a Gaussian ran-
dom variable conditioned to a jointly Gaussian random vari-
able is still Gaussian.
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C BOUNDS FOR PROBIT BINARY
CLASSIFICATION

For the case that the likelihood σ is taken to be the probit
function, that is, σ(f̄) = Φ(λf̄) is the cdf of the univariate
standard Gaussian distribution scaled by λ > 0, it holds
that

π(x | D) = Φ

(
µ(x)√

λ−2 + Σ(x)

)
,

where µ(x) and Σ(x)are the mean and variance of
q(f(x) = f̄ |D) Bishop (2006). We can use this result to
derive analytic upper and lower bounds for Eqn (2) without
the need to apply Proposition 1, by relying on upper and
lower bounds for the latent mean and variance functions.
This can be obtained by direct inspection of the derivatives
of π(x|D).

Lemma 3. Let T ⊆ Rd. Then, we have that

Φ

(
µL
T√

λ−2 + Σ

)
≤ πmin(T ) (18)

and

πmax(T ) ≤ Φ

(
µU
T√

λ−2 + Σ

)
(19)

with Σ = ΣU
T if µL

T ≥ 0 and ΣL
T otherwise, while Σ = ΣL

T
if µU

T ≥ 0 and ΣU
T otherwise.

D BOUNDS ON LATENT MEAN AND
VARIANCE

In this section of the Supplementary Material we briefly re-
view how lower and upper bounds on the a-posteriori mean
and variance can be computed, and further show how this
give us candidate points for the evaluation of bounds (that
is line 6 in Algorithm 1 of the main paper).

We obtain bounds on latent mean and variance by apply-
ing the framework presented in Cardelli et al. (2019b) for
computation of µL

T , µ
U
T and ΣU

T , and subsequently extend
it for the computation of ΣL

T . Briefly, assuming continu-
ity and differentiability of the kernel function defining the
GPC covariance, it is possible to find linear upper and lower
bounds on the covariance vector, which can be propagated
through the inference formula for q(f(x) = f̄ |D). The
bounding functions obtained in this way can be analytically
optimised for µL

T and µU
T , while convex quadratic program-

ming is used to obtain ΣU
T (see Cardelli et al. (2019b) for

details). Finally, we solve the concave quadratic problem
that arises when computing ΣL

T by adapting methods in-
troduced in Rosen & Pardalos (1986), which reduces the
problem to the solution of 2|D| + 1 linear programming
problems. This is detailed in the following subsection.

As discussed in Section 4 in order to obtain πU
min(T ) and

πL
max(T ) it suffice to evaluate the GPC in any point inside

T . However, the more close πU
min(T ) and πL

max(T ) are to
πmin(T ) and πmax(T ) respectively, the more quicker will
be the convergence of the branch and bound algorithm (as
per line 7 in Algorithm 1 in the main paper). Notice that,
in solving the optimisation problems associated to µL

T , µ
U
T ,

ΣU
T and ΣL

T we obtain four extrema points in T on which
the GPC assume the optimal values a-posteriori mean and
variance values. As these points belong to T and provide
extreme points for the latent function they make promis-
ing candidates for the evaluation of πU

min(T ) and πL
max(T ).

Specifically in line 6 of Algorithm 1 (main paper), we eval-
uate the GPC on all four the extrema and select the one that
gives the best bound among them.

D.1 Lower Bound on Latent Variance

Let r(x) = [r1(x), . . . , rM (x)] be the vector of covari-
ance between a test point and the training set D with
|D| = M , and let R be the inverse covariance matrix
computed in the training set, and Σp be the (input inde-
pendent) self kernel value. By explicitly using the vari-
ance inference formula, we are interested in finding a
lower bound for: minx∈T

(
Σp − r(x)TRr(x)

)
= Σp +

minx∈T

(
−r(x)TRr(x)

)
. We proceed by introducing the

M auxiliary variables ri = ri(x), yielding a quadratic
objective function on the auxiliary variable vector r =
[r1, . . . , rM ], that is −rTRr. Analogously to what is done
in Cardelli et al. (2019b) we can compute two matrices Ar,
Ax and a vector b such that r = r(x) implies Arr+Axx ≤
b, hence obtaining the quadratic program:

min−rTRr (20)
Subject to: Arr+Axx ≤ b

rLi ≤ ri ≤ rUi i = 1, . . . ,M

xL
i ≤ xi ≤ xU

i i = 1, . . . ,m

whose solution provides a lower bound (and hence
a safe approximation) to the original problem
minx∈T

(
−r(x)TRr(x)

)
. Unfortunately, as R is pos-

itive definite, we have that −R is negative definite; hence
the problem posed is a concave quadratic program for
which a number of local optima may exist. As we are
instead dealing with worst-case scenario analyses, we
are actually interested in computing the global minimum.
This however is an NP-hard problem Rosen & Pardalos
(1986) whose exact solution would make a branch and
bound algorithm based on it impractical. Following the
methods discussed in Rosen & Pardalos (1986), we instead
proceed to compute a safe lower bound to that. The main
observation is that, being R symmetric positive definite,
there exist a matrix of eigenvectors U = [u1, . . . ,uM ]
and a diagonal matrix of the associated eigenvalues λi for
i = 1, . . . ,M , Λ such that R = UΛUT . We hence define



Arno Blaas∗, Andrea Patane∗, Luca Laurenti∗

r̂i = uT
1 ri for i = 1, . . . ,M to be the rotated variables and

compute their ranges [r̂Li , r̂Ui ] by solution of the following
2M linear programming problems:

min /max uT
i ri

Subject to: Arr+Axx ≤ b

rLj ≤ ri ≤ rUj j = 1, . . . ,M

xL
j ≤ xi ≤ xU

j j = 1, . . . ,m.

Implementing the change of variables into Problem 20 we
obtain:

min−r̂TΛr̂
Subject to: Âr̂ r̂+Axx ≤ b

r̂Li ≤ r̂i ≤ r̂Ui i = 1, . . . ,M

xL
i ≤ xi ≤ xU

i i = 1, . . . ,m

where we set Â = AU . We then notice that r̂TΛr̂ =∑
i λir̂2i . By using the methods developed in Cardelli et al.

(2019b) it is straightforward to find coefficients of a linear
under approximations αi and βi such that: αi + βir̂i ≤
−λir̂2i for i = 1, . . . ,M . Defining β = [β1, . . . ,βM ], and
α̂ =

∑M
i=1 αi we then have that the solution to the fol-

lowing linear programming problem provides a valid lower
bound to Problem 20 and can be hence used to compute a
lower bound to the latent variance:

min
(
α̂+ βT r̂

)

Subject to: Âr̂ r̂+Axx ≤ b

r̂Li ≤ r̂i ≤ r̂Ui i = 1, . . . ,M

xL
i ≤ xi ≤ xU

i i = 1, . . . ,m.

E RUNTIME ANALYSIS

In this section of the Supplementary Material we empiri-
cally analyse the CPU time required for convergence of Al-
gorithm 1 in the MNIST38 dataset. For the first 50 test
points and a γ−ball T of dimensionality d, we calculated
πmax(T ) up to a pre-specified error tolerance ϵ. We use
γ = 0.125 and γ = 0.25, corresponding to up to 50% of
the normalised input domain. All runtimes analysed below
were obtained on a MacBook Pro with a 2.5 Ghz Intel Core
i7 processor and 16GB RAM running on macOS Mojave
10.14.6.

E.1 Runtime Depending on Dimension of Compact
Subset.

First, we analysed the effect of increasing d, by fixing
ϵ = 0.025 and increasing the number of pixels selected
by SIFT to define T from 1 to 10. The results are shown
in terms of average runtime in Figure 7 on the left. For

γ = 0.25, we can observe the exponential behaviour of
the computational complexity in terms of number of dimen-
sions, as the runtime quickly grows from below 5 seconds
to almost 250 seconds beyond 7 dimensions. However, for
γ = 0.125 the exponential curve seems to be shifted fur-
ther to the right, as still for 10 dimensions Algorithm 1 ter-
minates in only a few seconds. Given that for γ = 0.125,
T spans up to 25% of the input domain (on the selected
pixels), we consider this quite fast.

E.2 Runtime Depending on Error Tolerance

Second, we analysed the effect of the error toler-
ance ϵ, by calculating the bounds for each ϵ ∈
{0.005, 0.01, 0.015, 0.02, 0.025} with the number of pix-
els selected by SIFT (i.e. d) fixed to 5. The results are
shown in Figure 7 on the right. The behaviour seems to be
roughly inversely exponential this time with lower error tol-
erance ϵ naturally demanding higher runtimes. In practice,
one would seldom expect to require precision of ϵ < 0.01
though, at which point Algorithm 1 still terminates in under
2 seconds on average even for γ = 0.25.

F EXPERIMENTAL SETTINGS

F.1 Datasets

Our synthetic two-dimensional dataset contains 1,200
points, of which 50 % belong to Class 1 and 50 % belong to
Class 2. The points were generated by shifting draws from
a two-dimensional standard-normal random variable by 5,
either along the first dimension (Class 1) or along the sec-
ond dimension (Class 2). Subsequently, we normalise the
data by subtracting its mean and dividing by its standard
deviation.

SPAM is a binary dataset that contains 4,601 samples, of
which 60% are benign. Each sample consists of 54 real-
valued and three integer-valued features. However, iden-
tical or better prediction accuracies can be achieved with
models involving only 11 of those 57 variables, among
them e.g. the frequency of the word ’free’ in the email, the
share of $ signs in its body, or the total number of capital
letters, which is why we only use these 11 selected vari-
ables. We normalise the data by subtracting its mean and
dividing by its standard deviation.

MNIST38 contains 8,403 samples of images of handwrit-
ten digits, of which roughly 50 % are 3s and 50 % are 8s.
Each sample consists of a 28×28 pixel image in gray scale
(integer values between 0 and 255) which following con-
vention, we normalise by dividing by 255. For better scala-
bility we then downsample to 14× 14 pixels.

The subset of MNIST which we use to compile MNIST358
contains 5,715 samples of images of handwritten digits, of
which roughly 36 % are 3s, 31 % are 5s and 34 % are 8s.
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Figure 7: Average runtimes of Algorithm 1 to calculate πmax(T ) up to specified error tolerance ϵ among the first 50 test
points of MNIST38. Left: Average runtimes for increasing number of dimensions at ϵ = 0.025. Right: Average runtimes
for different values of ϵ with number of dimensions d = 5.

Each sample consists of a 28×28 pixel image in gray scale
(integer values between 0 and 255) which following con-
vention, we normalise by dividing by 255. For better scala-
bility we then downsample to 14× 14 pixels.

F.2 Experimental Settings

For the binary experiments, we use 1,000 randomly se-
lected points as a training set and 200 randomly selected
points as a test set. For the multiclass experiments, scala-
bility of GPs is even more of an issue so we just work with
500 randomly selected points as training set.

For the GP training of binary classification problems, we
use the GPML package for Matlab. For the GP training
of multiclass classification problems, we use the GPstuff
package.

For the safety verification experiments in Section 6.1, we
used a GPC model with a probit likelihood function and the
Laplace approximation for the posterior. For the synthetic
2D data, the number of epochs (marginal likelihood evalua-
tions) performed during hyper-parameter optimisation was
restricted to 20. For the SPAM data, it was restricted to 40.
Finally for the attacks on MNIST38 it was restricted to 10
and 20.

For the robustness experiments in Section 6.2, we give the
specifications of training in the paper itself.

For the interpretability experiments in Section 6.3, we use
a multiclass GPC model with softmax link function and the
Laplace approximation for the posterior. We limit the num-
ber of iterations performed during hyper-parameter optimi-
sation to 10.

The code for the GPFGS attacks as well as LIME was im-
plemented by us in Matlab according to the original Python
code provided by the authors.

G DETAILS ON INTERPRETABILITY
METRIC

Below, we briefly derive our metric for interpretability anal-
ysis ∆i

γ , which by using our bounds does not rely on local
linearity , in a bit more detail.

For a testpoint x∗ and dimension i, we define T i
γ(x

∗) =
[x∗, x∗ + γ ∗ ei] like in the main paper. To analyse the
impact of changes in dimension i, we propose to analyse
how much the maximum of the assigned class probabilities
can differ from the initial class probability π(x∗) over such
a one-sided interval compared to how much the minimum
differs from that initial probability. In other words, we cal-
culate

∆i
γ(x

∗) =
(
πmax(T

i
γ(x

∗))− π(x∗)
)

(21)

−
(
π(x∗)− πmin(T

i
γ(x

∗))
)
. (22)

If increasing the value of dimension i makes the model fa-
vor assigning lower class probabilities, we would expect
this value to be negative and vice versa. To make it more
robust, we center the analysis by calculating the proposed
metric

∆i
γ(x

∗) =∆i
γ(x

∗)−∆i
−γ(x

∗) (23)

=
(
πmax(T

i
γ(x

∗))− πmax(T
i
−γ(x

∗))
)

(24)

+
(
πmin(T

i
γ(x

∗))− πmin(T
i
−γ(x

∗))
)
. (25)

Finally, if instead of a local analysis a global analysis is
desired, we suggest following LIME’s approach in aggre-
gating local insights to a global insight by averaging over a
selection of test points M

∆i
γ =

1

M

M∑

j=1

∆i
γ(x

j). (26)
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Ideally, M contains all test points; however, if for compu-
tational reasons a subselection is to be made, the SP algo-
rithm in Ribeiro et al. (2016) could be used.
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