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9 Appendices

9.1 Proofs of Theorems

9.1.1 Proof of Theorem 4.1

Uniqueness of the solution The elements of the
Hessian for R̂(�; t) in (6) are:
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Note that the Hessian has positive diagonal elements,
non-positive o↵-diagonal elements, and zero column
sums. With Condition 4.1, this implies that the Hessian
can be regarded as a graph Laplacian for a connected
graph. Following the classical proof of the property of
graph Laplacian (von Luxburg, 2007),
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Then, Condition 4.1 guarantees that “=” is achieved if
and only if v = c1. This proves the uniqueness up to
constant shifts.

Existence of solution Plugging in � = 0, we get
an upperbound for the minimum loss function R̂?(t) :=
R̂(�̂; t):

R̂?(t)  log 2 (24)

As R̂(�; t) is continuous with respect to �, it su�ces
to show that the level set of R̂(·; t) at log 2 within
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if i and j satisfies X̃
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(t) > 0 then the corresponding
summand should be smaller than log 2 so that:
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By Condition 4.1, for any distinct i and j, there exists
an index sequence (i = i0, i1, . . . , in = j such that
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k�1ik > 0 for k = 1, 2, . . . , n. Hence,
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where B 2 (0, 1).

In sum,
k�k1  max
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and this proves the existence part of the theorem.

9.1.2 Proof of Theorem 5.1

The proof of this theorem is based on the proof of
Lemma 1 in Simons and Yao (1999).

Since the kernel function W in Assumption 5.3 has
support (�1, 1), X̃

ij

(t) > 0 if and only if team i
defeated team j at least once any time. In other words,
if Condition 4.1 holds for at least one time point, then
so it does for every time point. Here, we prove that
the probability of Condition 4.1 to hold at at least one
time point converge to 1 as N, T ! 1.
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), the prob-
ability of the event S that no team in a subset S loses
against a team not of S is no larger than
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|S|(N�|S|�1)T (29)

Hence, we bound the probability that data does not
meet Condition 4.1 by a union bound
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as long as Ne�
NTpmin

2  log 2.

Since Ne�
NTpmin

2 � log 2 implies 4Ne�
NTpmin

2 to be
larger than 1, the probability bound holds for any N ,
T , and pmin.

9.1.3 Proof of Theorem 5.2

For readability, in our notation we will omit the depen-
dence on the time point t in the expressions for �̂(t)
and �⇤(t), unless required for clarity.

In our proofs we rely on the results and arguments of
Simons and Yao (1999) to demonstrate consistency for
the maximum likelihood estimator in the static Bradley-
Terry model with an increasing number of parameters.
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). Next, the authors derived a high
probability upper bound on
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j

� u⇤
i

u⇤
i

+ u⇤
j

)

(33)

using the facts that
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where X
ij

is the number of matches in which i defeated
j. The second identity comes from the first order
optimality condition of �̂.

In our time-varying setting, however, the subgradient
optimality of �̂(t) for R̂(�; t) only imply that, for each
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Thus, Eq. (35) does not hold in the dynamic setting,
due to di↵erent X̃
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To make the bias-variance trade-o↵ due to kernel
smoothing more explicit, we decompose the term
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This condition holds for ✏  pmin.

We note that we have also used the bounds
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for any i, j and su�ciently small h, which were shown
in Section 9.1.4.

Then using the union bound,
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To handle the deterministic bias terms �(bias)
i

, we rely
on the following bound, whose proof is given below in
Section 9.1.4.
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Thus, combining all the pieces,
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9.1.4 Proof of Lemma 9.1

Since f is L
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Since | · |W has a finite total variation,
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As a result,
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On the other hand, with a similar argument,
Z 1

0
W

h

(x, t)dx =
X

k

Z

I

k

W
h

(x, t)

=

0

B

B

B

@

X

k

l
k

W
h

(t
k

, t)

+
X

k

Z

I

k

✓

1

h
W

✓

x � t

h

◆

� 1

h
W

✓

t
k

� t

h

◆◆

dx

1

C

C

C

A

 2

D
m

T

X

k

W
h

(t
k

, t) +
V(W )

D
m

Th
,

(58)

implying that

X

k

W
h

(t
k

, t) � D
m

T

2

Z (1�t)/h

�t/h

W (x)dx � D
M

V(W )

2D
m

h
.

(59)

As long as h ! 0 and 1
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9.1.5 Proof of Theorem 5.3

In Section 9.1.3, we showed that
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Since the bound for �(bias)
i

(t) depends only on D
m

,
D

M

, W , and L
f

, it is su�cient to find a bound for

sup
t2[0,1]

max
i

|�(var)
i

(t)|. (64)
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We use a covering approach. For L 2 N, let t
l

= 2l�1
2L

for l = 1, 2, . . . , L. Then for any t 2 [0, 1] there exists
l⇤ such that |t � t
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where t
k

here stands t(i,j)
k

for brevity.

In order to bound the second term in the curly brackets,
we bound each of its summands as follows:
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where we denote W
t

= W
h

(t
k

, t), W
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brevity.

We have seen in Section 9.1.4 that, for any a su�ciently
small h,
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as D
m

 1 and W is L
W

-Lipschitz by assumption.
Hence,
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On the other hand,
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where, again,1
ij

(t
k

) here stands 1(i defeats j at t
k

) for
simplicity.

Using Eq. (42) and a union bound, we get that
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for ✏  pmin.
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and, in turn,
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with probability at least 1� 2
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with probability at least 1 � 2h3

N

when ✏  pmin. Since

✏ 
p

3(1 + ⌘) C
s

h given the choice of h, this bound
holds for all su�ciently small h.

9.1.6 Proof of Theorem 5.4

For convenience, we omit the time index t for �̂(t),
�⇤(t), and pmin(t), unless it is required for clarification.

We seek to replace M(t) in Eq. (16) by a term of pmin.
This requires exp(�⇤

i

� �⇤
j

) to be bounded above by a
function of pmin. The following lemma provides the
desired bound. The proof is in Section 9.1.7.
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for some universal constant 1 < C
p

< 1.5.

Plugging in the new bound on exp(�⇤
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), we get
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instead of 48M(t) (�
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h) in Eq. (16)

This result easily extends to the uniform case Eq. (21).

9.1.7 Proof of Lemma 9.2

Let d0 be the di↵erence in scores which implies a bias
of probability pmin
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Let I1 = {i : �
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< �min + d0}. Plugged in i = imin,
Eq. (34) implies

(N � 1)pmin 
X

j

:
j 6=imin

p
iminj(t)

=
X

j

:
j 6=imin

1

1 + exp(�⇤
j � �⇤

min)

 |I1| � 1

2
+ (N � 1)

pmin

2

(82)

Hence, |I1| � (N � 1)pmin + 1.
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and hence
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Now, without loss of generality we assume that dmax >
2kd0. Then, by the optimality of �⇤ for R(�),
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Thus, dmax  log 2
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+2kd0 for any k. Plug-
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)e, we get that
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for some universal constant C since the derivative of
2 log (2x � 1) (log x + 1) is positive and converges to 0
as x ! 1. Then 2 log (2x � 1) (log x + 1) has a upper-
bounding tangent line with slope 1 � log 2

2(1�1/e)2 , and C
is its y-intercept. This also yields that
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for some universal constant C
p

. In particular, 1 <
C

p

< 1.5.
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9.2 Tuning kernel bandwidth in practical
settings

As noted in Section 2.2, the bandwidth h 2 R
>0 of the

kernel function serves as an e↵ective global smoothing
parameter between subsequent time periods and allows
to borrow information across contiguous time points.
Increasing h, all else held constant, leads to parame-
ter estimates (and hence the derived global rankings)
becoming “smoothed” together across time.

Naturally the question remains on how to tune h in
practical applications in a principled data-driven man-
ner. This is a fundamentally challenging question not
just in our problem but, more generally, in nonpara-
metric regression. Here we present a way to tuning h
with some degree of objectivity based on leave-one-out
cross-validation (LOOCV).

In general settings where we have independent and iden-
tically distributed (i.i.d.) samples, LOOCV assesses the
performance of a predictive model on a single held-out
i.i.d. sample. In our case, each pairwise comparison can
be considered an i.i.d. sample if we take the compared
teams and the time point on which they are compared
as covariates. Remember that (i

m

, j
m

, t
m

) denotes m-
th pairwise comparison where team i

m

won against
team j

m

at time point t
m

for m = 1, . . . , M . Then,
for a given smoothing penalty parameter h, LOOCV
is adapted to our estimation approach as follows:

1. For m = 1, . . . , M , given h > 0:

(a) fit our model with kernel bandwidth h on the
dataset with the m-th comparison held-out;

(b) calculate the negative log-likelihood (nll) of
the previous solution to (i

m

, j
m

, t
m

).

2. Take the average of the negative log-likelihoods to
obtain nll

h

as a loss in the predictive performance
of time-varying Bradley-Terry estimator for given
h on our dataset.

3. Choose the bandwith h⇤ with the smallest nll
h

value.

We apply this data-driven methodology to the exper-
iments and real-life application in Section 6 and Sec-
tion 7.

9.3 Details of Experiments

Here we explain some details of the setting of the
numerical experiments in Section 6.

9.3.1 Bradley-Terry Model as the True
Model

We set the number of teams N = 50 and the number of
time points M = 50. We set n

ij

(t) = 1 for all i, j 2 [N ]
and t 2 [M ].

For the Gaussian process to generate a path for �⇤
i

at t = 1, . . . , M , we use the same covariance matrix
⌃

i

= ⌃ 2 RM⇥M for all i 2 [N ], and ⌃ is set to be a
Teoplitz matrix defined by

⌃
ij

= 1 � M�↵|i � j|r,

and in our experiment we set (↵, r) = (1, 1). The mean
vector is set to be a constant over time, i.e., µ

i

(t) = u
i

for t = 1, . . . , M , and u1, . . . , uN

are i.i.d. generated
from uniform distribution on [0, 1].
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Figure 3: LOOCV curve of our Dynamic Bradley-Terry
model fitted with Gaussian kernel. y-axis: averaged
negative log-likelihood. The optimal h⇤ is 0.03.

Fig. 3 shows the curve of LOOCV of our dynamic
Bradley-Terry model fitted with a Gaussian kernel in
one repetition of our experiment. The curve is for the
setting here and for the agnostic model setting the CV
curve has similar shape. The curve shows a typical
shape of CV curve for tuning parameter. The kernel
bandwidth, h, with smallest nll

h

is h⇤ = 0.03. The
LOOCV procedure is described in Section 9.2.

9.3.2 Agnostic Model Setting

Again we set the number of teams N = 50, the number
of time points M = 50, and n

ij

(t) = 1 for all i, j 2 [N ]
and t 2 [M ]. The covariance matrix is also the same
as section 9.3.1. The only di↵erence lies in the mean
vector. Now the mean vector is still constant over time,
or µ

i

(t) = u
i

for t = 1, . . . , M , but u
i

’s are generated
in a following group-wise way:

1. Set the number of groups G and the index set of
each group I1, . . . , IG so that

P

i

|I
i

| = N . Set the
base support to be [0, b] and the group gap to be
a.



Heejong Bong*, Wanshan Li*, Shamindra Shrotriya*, Alessandro Rinaldo

2. For each i 2 {1, . . . , G}, generate u
j

from
Uniform(a(i � 1), a(i � 1) + b) for all j 2 I

i

.

In our experiment we set G = 5 with each group
containing two randomly picked indices, b = 0.5 and
a = 1.5. Such group-wise generation intends to ensure
that di↵erent teams have distinguishable perofrmance
in pairwise comparison so that the ranking is more
reasonable.

9.3.3 Running Time

Fig. 4 compares the time it takes to fit our model
and the original Bradley-Terry model under 3 di↵erent
settings, where N is the number of teams and M is the
number of time points:

• Fix N , vary M .

• Fix M , vary N .

• Vary N and M together while keeping N = M .
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Figure 4: Comparison of running time of original
Bradley Terry model (oBT) and our Dynamic Bradley
Terry model (DBT). The values are averaged over 20
repetitions.

For our dynamic Bradley-Terry model, the running
time here is measured for fitting the model with a
given kernel parameter h, hence it contains the time
cost of kernel smoothing step and the optimization
step. In real applications, if one wants to select the
best h from a range of values with cross-validation, then
the total computation time would be approximately
the running time here multiplied by the number of
cross-validations.

The results in Fig. 4 shows that with all advantages
our model can bring with, it does not cost much more
in terms of computation time. Furthermore, when the
number of time points M is large while N is relatively
small, our model can cost even less time than the
original Bradley-Terry model.

If one wants to do LOOCV to select h when N and M
are huge, then it could take a long time to finish the
whole procedure. However, in this case we observed in
some extended experiments that with a pre-determined

h in a reasonable range, our model can give fairly good
estimate close to the one given by the best h⇤ selected
by LOOCV. The supporting files of our experiments
can be found in our GitHub repository†.

9.3.4 MLE of the Bradley-Terry Model

Table 4 shows the frequency with which Condition 4.1
holds at a single time point for the original pairwise
comparison data for di↵erent M and N , where n

ij

(t) =
1 for all i, j, t. To be clear, here we just regard the
matrix X̃(t) in Condition 4.1 as the original data rather
than the smoothed data, as it originally was in Ford
(1957). Given {X(t), t 2 [M ]}, the frequency here
refers to #{t : The condition holds for X(t)}/M .

The data are generated as described in Section 6.1, and
the frequency is averaged over 50 repetitions. When
N = M = 10 and n

ij

(t) = 4 for all i, j, t, the frequency
arises to 0.988, illustrating how n

ij

(t) controls the
sparsity of the game matrix and consequently whether
Condition 4.1 holds or not.

(N,M) (5,5) (10,10) (20,10) (30,10) (40,10) (50,10)
Freq. 0.248 0.622 0.902 0.950 0.984 0.984

Table 4: Frequency that Condition 4.1 holds at a single
time point for the original pairwise comparison data.
n
ij

(t) = 1.

As a comparison, under the same setting, for the kernel-
smoothed pairwise comparison data, Condition 4.1 al-
ways holds in the experiment. This fact demonstrates
the advantage of using kernel-smooth, and partly ex-
plains why in our experiments where the data is sparse
our model performs the best.

The frequencies in Table 4 seem high for N > 20, but
from a global perspective, the induced frequency that
Condition 4.1 holds for all M time points could be
much lower. Table 5 shows such frequency in some
settings. Again the values are averaged over 50 repeti-
tions. Remember that in these settings the condition
always holds for kernel-smoothed data.

(N,M) (10,10) (20,10) (30,10) (40,10) (50,10) (60,10)
Freq. 0.02 0.44 0.62 0.86 0.84 0.88

Table 5: Frequency that Condition 4.1 holds for all M
time points for the original pairwise comparison data.
n
ij

(t) = 1.

To make it clearer how n
ij

(t) a↵ects the global con-
nectivity, we make Table 6. In the table we fix
(N, M) = (10, 10).

†
Code available at https://github.com/shamindras/

bttv-aistats2020

https://github.com/shamindras/bttv-aistats2020
https://github.com/shamindras/bttv-aistats2020
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n
ij

(t) 1 2 4 6 8 10
Freq. 0.02 0.48 0.92 0.94 0.96 1.0

Table 6: Frequency that Condition 4.1 holds for all M
time points for the original pairwise comparison data.
(N, M) = (10, 10).
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Figure 5: Divergence of max|�̂| when MLE does not
exist at some time points for the original Bradley-Terry
model.

By direct inspection of the likelihood of the original
Bradley-Terry model, it can be seen that, when the
MLE does not exist, the norm of �̂ will go to infinity
if one uses gradient descent without any regularization.
Fig. 5 shows an example where N = M = 10 and
n
ij

(t) = 1 for all i, j, t.


