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Abstract

Strategic information is valuable either by re-
maining private (for instance if it is sensitive)
or, on the other hand, by being used publicly
to increase some utility. These two objectives
are antagonistic and leaking this information
might be more rewarding than concealing it.
Unlike classical solutions that focus on the
first point, we consider instead agents that
optimize a natural trade-off between both ob-
jectives. We formalize this as an optimization
problem where the objective mapping is regu-
larized by the amount of information revealed
to the adversary (measured as a divergence be-
tween the prior and posterior on the private
knowledge). Quite surprisingly, when com-
bined with the entropic regularization, the
Sinkhorn loss naturally emerges in the opti-
mization objective, making it efficiently solv-
able. We apply these techniques to preserve
some privacy in online repeated auctions.

1 Introduction

In many economic mechanisms and strategic games
involving different agents, asymmetries of information
(induced by a private type, some knowledge on the
hidden state of Nature, etc.) can and should be lever-
aged to increase one’s utility. When these interactions
between agents are repeated over time, preserving some
asymmetry (i.e., not revealing private information) can
be crucial to guarantee a larger utility in the long run.
Indeed, the small short term utility of publicly using
information can be overwhelmed by the long term effect
of revealing it (Aumann et al., [1995).

Informally speaking, an agent should use, and poten-
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tially reveal, some private information only if she gets
a subsequent utility increase in return. Keeping this in-
formation private is no longer a constraint (as in other
classical privacy concepts such as differential privacy
Dwork et al. |2006) but becomes part of the objective,
which is then to decide how and when to use it. For
instance, it might happen that revealing everything
is optimal or, on the contrary, that a non-revealing
policy is the best one. This is roughly similar to a
poker player deciding whether to bluff or not. In some
situations, it might be interesting to focus solely on
the utility even if it implies losing the whole knowledge
advantage, while in other situations, the immediate
profit for using this advantage is so small that playing
independently of it (or bluffing) is better.

After a rigorous mathematical formulation of this util-
ity vs. privacy trade-off, it appears that this problem
can be recast as a regularized optimal transport mini-
mization. In the specific case of entropic regularization,
this problem has received a lot of interest in the recent
years as it induces a computationally tractable way to
approximate an optimal transport distance between
distributions and has thus been used in many appli-
cations (Cuturi, [2013]). Our work showcases how the
new Privacy Regularized Policy problem benefits in
practice from this theory.

Private Mechanisms. Differential privacy is the
most widely used private learning framework (Dworkl]
2011; [Dwork et al., [2006; Reed and Piercel 2010) and
ensures that the output of an algorithm does not sig-
nificantly depend on a single element of the whole
dataset. These privacy constraints are often too strong
for economic applications (as illustrated before, it is
sometimes optimal to disclose publicly some private
information). f-divergence privacy costs have thus
been proposed in recent literature as a promising alter-
native (Chaudhuri et al.; |2019). These f-divergences,
such as Kullback-Leibler, are also used by economists
to measure the cost of information from a Bayesian
perspective, as in the rational inattention literature
(Sims, [2003; [Matéjka and McKay, [2015; Mackowiak and
Wiederholt}, |2015)). It was only recently that this ap-
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proach has been considered to measure “privacy losses”
in economic mechanisms (Eilat et al., 2019). This
model assumes that the designer of the mechanism
has some prior belief on the unobserved and private
information. After observing the action of the player,
this belief is updated and the cost of information cor-
responds to the KL between the prior and posterior
distributions of this private information.

Optimal privacy preserving strategies with privacy con-
straints have been recently studied in this setting under
specific conditions (Eilat et al., [2019). Loss of privacy
can however be directly considered as a cost in the
overall objective and an optimal strategy reveals infor-
mation only if it actually leads to a significant increase
in utility, whereas constrained strategies systematically
reveal as much as allowed by the constraints, without
incorporating the additional cost of this revelation.

Optimal Transport. Finding an appropriate way
to compare probability distributions is a major chal-
lenge in learning theory. Optimal Transport manages
to provide powerful tools to compare distributions in
metric spaces (Villani, 2008). As a consequence, it
has received an increasing interest these past years
(Santambrogiol 2015)), especially for generative models
(Arjovsky et all 2017; (Genevay et al., 2018} [Salimans
et all 2018). However, such powerful distances often
come at the expense of heavy and intractable com-
putations, which might not be suitable to learning
algorithms. It was recently showcased that adding
an entropic regularization term enables fast compu-
tations of approximated distances using Sinkhorn al-
gorithm (Sinkhorn, (1967} |Cuturi, 2013). Since then,
the Sinkhorn loss has also shown promising results for
applications such as generative models (Genevay et al.,
2016}, 2018]), domain adaptation (Courty et al., |2014)
and supervised learning (Frogner et al., |2015), besides
having nice theoretical properties (Peyré and Cuturi,
2019; Feydy et all 2019; |Genevay et al., [2019).

Contributions and Organization of the paper.
The new framework of Privacy Regularized Policy is
motivated by several applications, presented in Sec-
tion [2 and is formalized in Section [3} This problem is
mathematically formulated as some optimization prob-
lem (yet eventually in an infinite dimensional space),
which is convex if the privacy cost is an f-divergence,
see Section [d Also, if the private information space
is discrete, this problem admits an optimal discrete
distribution. The minimization problem then becomes
dimensionally finite, but non-convex.

If the Kullback-Leibler divergence between the prior
and the posterior is considered for the cost of informa-
tion, the problem becomes a Sinkhorn loss minimization
problem. Optimal transport techniques are developed

in Section [5| (based on recent machinery) to compute
partially revealing policies. Finally, with a linear utility
cost, the problem is equivalent to the minimization of
the difference of two convex functions. Using the theo-
ries of these specific problems, different optimization
methods can be compared, which illustrates the practi-
cal aspect of our new model. This is done in Section [f]
where we also compute partially revealing strategies
for repeated auctions.

2 Some Applications

Our model is motivated by different applications de-
scribed in this section: online repeated auctions and
learning models on external servers.

2.1 Online repeated auctions

When a website wants to sell an advertisement slot,
firms such as Google or Criteo take part in an auction
to buy this slot for one of their customer, a process
illustrated in Figure As this interaction happens
each time a user lands on the website, this is no longer a
one-time auction problem, but repeated auctions where
the seller and/or the competitor might observe not just
one bid, but a distribution of bids. As a consequence, if
a firm were bidding truthfully, seller and other bidders
would have access to its true value distribution p. This
has two possible downsides.

First, if the value distribution p was known to the
auctioneer, she could maximize her revenue at the
expense of the bidder utility (Amin et al., [2013} |2014;
Feldman et al., [2016} Golrezaei et al.,[2019)), for instance
with personalized reserve prices. Second, the auctioneer
can sometimes take part in the auction and becomes
a direct concurrent of the bidder (this might be a
unique characteristic of online repeated auctions for
ads). For instance, Google is both running some auction
platforms and bidding on some ad slots for their client.
As a consequence, if the distribution p was perfectly
known to some concurrent bidder, he could use it in
the future, by bidding more or less aggressively or by
trying to conquer new markets.

It is also closely related to online pricing or repeated
posted price auctions. When a user wants to buy a
flight ticket (or any other good), the selling company
can learn the value distribution of the buyer and then
dynamically adapts its prices in order to increase its
revenue. The user can prevent this behavior in order
to maximize her long term utility, even if it means
refusing some apparently good offers in the short term
(in poker lingo, she would be “bluffing”).

As explained in Section [3.1] below, finding the best pos-
sible long term strategy is intractable, as the auctioneer
could always adapt to the bidding strategy, leading to
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Figure 1: Online advertisement auction system.

an arm race where each bidder and auctioneer succes-
sively adapts to the other one’s strategy. Such an arm
race is instead avoided by trading-off between the best
possible response to the auctioneer’s fixed strategy as
well as the leaked quantity of information. The privacy
loss then aims at bounding the incurred loss in bidder’s
utility if the auctioneer adapts her strategy using the
revealed information.

2.2 Learning through external servers

Nowadays, several servers or clusters allow their clients
to perform heavy computations remotely, for instance
to learn some model parameters (say a deep neural
net) for a given training set. The privacy concern when
querying a server can sometimes be handled using
homomorphic encryption (Gilad-Bachrach et all 2016;
Bourse et al., |2018} [Sanyal et al.l 2018)), if the cluster
is designed in that way (typically a public model has
been learned on the server). In this case, the client
sends an encrypted testing set to the server, receives
encrypted predictions and locally recovers the accurate
ones. This technique, when available, is powerful, but
requires heavy local computations.

Consider instead a client wanting to learn a new model
(say, a linear/logistic regression or any neural net) on
a dataset that has some confidential component. Di-
rectly sending the training set would reveal the whole
data to the server owner, besides the risk of someone
else observing it. The agent might instead prefer to
send perturbed datasets, so that the computed model
remains close to the accurate one, while keeping secret
the true data. If the data contain sensitive information
on individuals, then differential privacy is an appro-
priate solution. However, it is often the case that the
private part is just a single piece of information of the
client itself (say, its margin, its current wealth or its
total number of users for instance) that is crucial to the
final learned model but should not be totally revealed
to a competitor. Then differential privacy is no longer
the solution, as there is only a single element to protect

and/or to use. Indeed, some privacy leakage is allowed
and can lead to much more accurate parameters re-
turned by the server and a higher utility at the end;
the Privacy Regularized Policy aims at computing the
best dataset to send to the server, in order to maximize
the utility-privacy trade-off.

3 Model

We first introduce a simple toy example in Section [3.1]
giving insights into the more general problem, whose
formal and general formulation is given in Section [3:2]

3.1 Toy Example

Suppose an agent is publicly playing an action z € X
to minimize a loss  'ci, where ¢ is some loss vector.
The true type k € [K] is only known to the agent and
drawn from a prior pg. Without privacy concern, the
agent would then solve for every k: mingex x 'cg.

Let us denote by z} the optimal solution of that prob-
lem. Besides maximizing her reward, the agent actually
wants to protect the secret type k. After observing the
action = taken by the agent, an adversary can update

her posterior distribution of the hidden type p,.

If the agent were to play deterministically =} when her
type is k, then the adversary could infer the true value
of k based on the played action. The agent should
instead choose her action randomly to hide her true
type to the adversary. Given a type k, the strategy of
the agent is then a probability distribution uj over X
and her expected reward is Ez [ZCTC;C]. In this case,
the posterior distribution after playing the action z is
computed using Bayes rule and if the different pj, have
overlapping supports, then the posterior distribution
is no longer a Dirac mass, i.e., some asymmetry of
information is maintained.

The agent aims at simultaneously minimizing both the
utility loss and the amount of information given to the
adversary. A common way to measure the latter is
given by the Kullback-Leibler (KL) divergence between
the prior and the posterior (Sims, 2003): KL(p.,po) =
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K Pz (k) _ _ po(k)pk(x)
Zk:1 log (;Do(k) ) px(k)v where pm(k) = K polDu(z)

If the information cost scales in utility with A > 0, the
regularized loss of the agent is then z "¢y + AKL(p,, po)

instead of zTci. Overall, the global objective of the
agent is the following minimization:

K

k=1

In the limit case A = 0, the agent follows a totally re-
vealing strategy and deterministically plays x}, given k.
When A = oo, the agent focuses on perfect privacy and
looks for the best action chosen independently of the
type: « 1L k. It corresponds to a so called non-revealing
strategy in game theory and the best strategy is then
to play argmin, x '¢[pg] where c[py] = Zszlpo(k)Ck-
For a positive A, the behavior of the player will then
interpolate between these two extreme strategies.

This problem is related to repeated games with incom-
plete information (Aumann et all |1995)), where players
have private information affecting their utility functions.
Playing some action leaks information to the other play-
ers, who then change their strategies in consequence.
The goal is then to control the amount of information
leaked to the adversaries in order to maximize one’s
own utility. In practice, it can be impossible to com-
pute the best adversarial strategy, e.g., the player is
unaware of how the adversaries would adapt. The util-
ity loss caused by adversarial actions is then modeled
as a function of the amount of revealed information.

3.2 General model

We now introduce formally the general model sketched
by the previous toy example. The agent (or player)
has a private type y € Y drawn according to a prior
po whose support can be infinite. She then chooses an
action z € X to maximize her utility, which depends
on both her action and her type. Meanwhile, she wants
to hide the true value of her type y. A strategy is
thus a mapping Y — P(X), where P(X) denotes the
set of distributions over X’; for the sake of conciseness,
we denote by X|Y € P(X)Y such a strategy. In the
toy example, this mapping was given by k — ug. The
adversary observes her action x and tries to infer the
type of the agent. We assume a perfect adversary, i.e.,
she can exactly compute the posterior distribution p,.

Let ¢(x,y) be the utility loss for playing 2 € X with
the type y € V. The cost of information is ¢priv(X,Y)
where (X,Y) is the joint distribution of the action and
the type. In the toy example given in Section the
utility cost was given by c(z, k) = 2" ¢;, and the privacy
cost was the expected KL divergence between p, and
po. The previous frameworks aimed at minimizing the
utility loss with a privacy cost below some threshold
e > 0, i.e., minimize E, )~ (x,v) [c(x,y)} such that
cpriv(X,Y) < e. Here, this privacy loss has some utility

scaling with A > 0, which can be seen as the value of
information. The final objective of the agent is then to
minimize the following loss:

inf Ep g , Aepi(X,Y). (1
X\Yér;’(/\’)y (z,y)~(X,Y) [C(JC y)} + A cpriv( ) (1)

As mentioned above, the cost of information is here
defined as a measure between the posterior p, and the
prior distribution py of the type, i.e., cpiv(X,Y) =
E.x D(pz, po) for some function In the toy exam-

ple of Section D(ps,po) = KL(ps, po), which is a
classical cost of information in economics.

For a distribution v € P(X x )), we denote by w147
(resp. moxy) the marginal distribution of X (resp. Y):
mixY(A) = v(A x V) and mexy(B) = v(X x B). In
order to have a simpler formulation of the problem,
we remark that instead of defining a strategy by the
conditional distribution X|Y, it is equivalent to see it
as a joint distribution «y of (X,Y’) with a marginal over
the type equal to the prior: moxy = pg. The remaining
of the paper focuses on the problem below, which we
call Privacy Regularized Policy. With the privacy
cost defined as above, the minimization problem is
equivalent to

inf , A D(p., d JY)- PRP
T4 Y=P0

4 A convex minimization problem

In this section, we study some theoretical properties of
the Problem (PRP). We first recall the definition of
an f-divergence.

Definition 1. D is an f-divergence if for all distribu-
tions P, @Q such that P is absolutely continuous w.r.t. Q,

D(P,Q) = fyf (gggzg) dQ(y) where f is a conver
function defined on R with f(1) = 0.

The set of f-divergences includes common divergences
such as the Kullback-Leibler divergence, the reverse
Kullback-Leibler or the Total Variation distance.

Also, the min-entropy defined by D(P,Q) =
log (esssup dP/dQ) is widely used for privacy (To6th
et al., 2004; Smith| 2009). It corresponds to the limit of
the Renyi divergence In (37, pfq; ~*) /(e — 1), when
a — 4oo (Rényi, 1961} Mironov, [2017). Although it
is not an f-divergence, the Renyi divergence derives
from the f-divergence associated to the convex function
t— (t*—=1)/(a—1). f-divergence costs have been
recently considered in the computer science literature
in a non-Bayesian case and then present the good prop-
erties of convexity, composition and post-processing
invariance (Chaudhuri et al., 2019).

In the remaining of the paper, D is an f-divergence.
(PRP)) then becomes a convex minimization problem.

1We here favor ex-ante costs as they suggest that the
value of information can be heterogeneous among types.
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Theorem 1. If D is an f-divergence, (PRP) is a con-
vex problem in v € P(X xy)ﬂ

The proof is given in Appendix [Al Although P(X x Y)
has generally an infinite dimension, it is dimensionally
finite if both sets X and ) are discrete. A minimum
can then be found using classical optimization methods
such as gradient descent. In the case of low dimensional
spaces X and ), they can be approximated by finite
grids. However, the size of the grid grows exponentially
with the dimension and another approach is needed for
large dimensions of X’ and ).

4.1 Discrete type space

We assume here that X is an infinite action space and
Y is of cardinality K (or equivalently, that py is a

discrete prior of size K), so that py = Zleplgéyk.
For a fixed joint distribution ~, let the measure uy be
defined for any A C X by pr(A) = v(A x {yx}) and
=1 ux = muy. The function pF(z) = dd*if((f)),
defined over the support of u by absolute continuity,
is the posterior probability of having the type k& when
playing x. In this specific setting, the tuple (i, (p*)x)
exactly determines ~. is then equivalent to:

it 5 [ [ @t + b (”’;(,g”))}dm:)

(P (N 1<rh< K &
szoleK:1 Pl(‘):l

such that Vk < K,/ p*(z)du(z) = ph.
x

For fixed posterior distributions p*, this is a generalized
moment problem on the distribution p (Lasserrel |2001)).
The same types of arguments can then be used for the
existence and the form of optimal solutions.

Theorem 2. If the prior is dicrete of size K, for
all e > 0, has an e-optimal solution such that
Tix7Y = [ has a finite support of at most K + 2 points.
Furthermore, if X is compact and c(-, yx) is lower semi-
continuous for every k, then it also holds for e = 0.

The proof is delayed to Appendix [A] If the support of
v is included in {(z;,yx) |1 <i< K+2, 1<k <K},
we will denote it as a matrix v, x == v({(@:, yx)})-

Corollary 1. In the case of a discrete prior, (PRP)
is equivalent to:

> ik cl@iyr) + XY YikD(pa;,po)

1n
K+2)XK
(o) e s vz ik

such that Vk < K, Z%’,k = p’g-

7

Although it seems easier to consider the dimensionally
finite problem given by Corollary [} it is not jointly
convex in (v,z). No general algorithms exist to effi-
ciently minimize non-convex problems. We refer the

2Tt is convex in a usual sense and not geodesically here.

reader to (Horst et all [2000) for an introduction to
non-convex optimization.

The remaining of the paper reformulates the problem
to better understand its structure, which then leads
to better local minima. Computing global minima of
Problem is yet left open for future work.

5 Sinkhorn Loss minimization

Formally, (PRPJ) is expressed as Optimal Transport
Minimization for the utility cost ¢ with a regularization
given by the privacy cost. In this section, we focus
on the case where this privacy cost is the Kullback-
Leibler divergence. In this case, the problem becomes
a Sinkhorn loss minimization, which presents compu-
tationally tractable schemes (Peyré and Cuturi, [2019).
If the privacy cost is the KL divergence between the
posterior and the prior, i.e., f(¢) = tlog(t), then the
regularization term corresponds to the mutual informa-
tion I(X;Y). As explained above, this is the classical
cost of information in economics.

Recall that the Sinkhorn loss for given distributions
(1, v) € P(X) x P(Y) is defined by

OTea(u,v) ==

min

bl d b

WEH(H’V)/C(I y)dv(z,y)
dv(z, y)

+ /\/log (dﬂ -

where TI(u,v) {yv € PX xY) | mapy =
w and moxy = v}. Problem with D = KL can
then be rewritten as the following Optimal Transport
minimization:

inf

OTex (12, o).
Lonf e (11, po)

Indeed, observe that dgfb?ﬂg) is the posterior probability
dp.(y), thanks to Bayes rule. The regularization term
in equation then corresponds to D(p.., po) as po = v
and D = KL here. The minimization problem given
by equation is thus equivalent to equation
with the additional constraint my4vy = p. Minimizing
without this constraint is thus equivalent to minimizing
the Sinkhorn loss over all action distributions .

While the regularization term is usually only added to
speed up the computations, it here directly appears in
the cost of the original problem since it corresponds
to the privacy cost! An approximation of OT. x(u,v)
can then be quickly computed for discrete distributions
using Sinkhorn algorithm (Cuturi, 2013)).

Notice that the definition of Sinkhorn loss some-
times differs in the literature and instead considers
[log (dy(z,y)) dy(z,y) for the regularization term.
When p and v are both fixed, the optimal transport
plan v remains the same. As p is varying here, these
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notions yet become different. For this alternative defi-
nition, a minimizing distribution u would actually be
easy to compute. It is much more complex in our prob-
lem because of the presence of p in the denominator of
the logarithmic term.

In the case of discrete support, we can then look for
a distribution p = EJK:? a;0,,;. In case of continuous
distributions, they could still be approximated using
sampled discrete distributions as previously done for
generative models (Genevay et al., 2019} 2018)).

Besides being a new interpretation of Sinkhorn loss,
this reformulation mainly allows to better understand
the problem structure and reduce the support size of
the distribution in the minimization problem.

5.1 Minimization algorithm

We now consider the following minimization problem

over the tuple (a, z):
K42

OTCJ( Z Oci&;i,po)- (3)
i=1

The main difficulties come from the computation of
the objective function and its gradient to use classical
gradient based methods.

inf
(a,2) €A oxX K +2

Sinkhorn algorithm. It was recently suggested to
use the Sinkhorn algorithm, which has a linear conver-
gence rate, to compute OT, x(u,v) for distributions
po= >, @b and v = Z;nzl B;dy; (Knight), [2008;
Cuturi, |2013)). Let K be the exponential cost matrix

c(zi,y5

defined by K; ; = e~ > . In the discrete case, the
unique matrix y solution of the Problem has the
form diag(u)Kdiag(v). The Sinkhorn algorithm then
updates (u,v) < (a/Kwv,3/K Tu) (with component-
wise division) for n iterations or until convergence.

Gradient computation. Computing VOT, , is a
known difficult task (Feydy et al. [2019} [Luise et al.,
2018} |Genevay et all 2018). A simple solution consists
in using automatic differentiation, i.e., computing the
gradient using the chain rule over the simple successive
operations computed during the Sinkhorn algorithm.

The gradient can also be computed from the dual solu-
tion of Problem . This method is faster as it does
not need to store all the Sinkhorn iterations in memory
and backpropagate through them afterwards. Conver-
gence of Sinkhorn algorithm has yet to be guaranteed to
provide an accurate approximation of the gradient (see
Peyré and Cuturi, |2019, for an extended discussion).
Automatic differentiation is used in the experiments
because of this last reason.

6 Experiments and particular cases

In this section, the case of linear utility cost is first con-
sidered and shown to have relations with DC program-
ming, which allows efficient algorithms. The perfor-

mances of different optimization schemes are then com-
pared on a simple example. Simulations based on the
Sinkhorn scheme are then run for the real problem of on-
line repeated auctions. The code is available at jgithub!
com/eboursier/regularized_private_learning.

6.1 Linear utility cost

Section [] described a general optimization scheme for
Problem with a discrete type prior. It used a
dimensionally finite, non-convex problem. An objective
is then to find a local minimum. Local minima can
be found using classical techniques of gradient descent
(Wright!l 2015)). However in some particular cases, bet-
ter schemes are possible as claimed in Section [f for the
particular case of entropic regularization. In the case
of a linear utility for any privacy cost, it is related to
DC programming (Horst et al., 2000). A standard DC
program is of the form mingey f(z) — g(x), where both
f and ¢ are convex functions. Specific optimization
schemes are then possible (Tao and Anl {1997} [Horst
and Thoail [1999; [Horst et al., 2000). In the case of
linear utility costs over a hyperrectangle, can
be reformulated as a DC program stated in Theorem [3]
Its proof is delayed to Appendix [A]l

d
Theorem 3. If X = [[[a, b and c(z,y) = x Ty,
=1

then (PRP) is equivalent to the following DC program:

K+2|| K
min A " pohi(vi) — Y | vindwe)||
’YER(K+2)XK . —1 1
+ i, v 1
K42

such that Vk < K, Z Yik = ng

=1

with ¢(y)' = (b — ar)y'/2

and hi(y;) = (ZTanl %m)f(pgzg{ﬁ)'

More generally, if the cost ¢ is concave and the action
space X is a polytope, optimal actions are located on
the vertices of X. In that case, we can therefore replace
X by the set of its vertices and the problem becomes a
dimensionally finite convex problem as already claimed
in Section [3.2] Unfortunately, for some polytopes such
as hyperrectangles, the number of vertices grows ex-
ponentially with the dimension and the optimization
scheme is no longer tractable in large dimensions.

6.2 Comparing methods on the toy example

We consider the linear utility loss c(z,y) = z "y over
the space X = [—1,1]¢ and the Kullback-Leibler diver-
gence for privacy cost, so that both DC and Sinkhorn
schemes are possible. Different methods exist for DC
programming and they compute either a local or a
global minimum. We here choose the DCA algorithm
(Tao and An| [1997)) as it computes a local minimum
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Figure 2: Comparison of optimization schemes.

and is thus comparable to the other considered schemes.
Figure |2| compares, for different problem parameters,
the convergence rates of usual non-convex optimization
methods (ADAM and RMS), as well as DCA. The for-
mer methods are used on different minimizations given
by Corrolary [1|and Equation (resp. PRP and Sink).

We optimized using projected gradient descent for well
tuned learning rates. The prior p§ is chosen propor-
tional to eZ* for any k € [K], where Zj, is drawn uni-
formly at random in [0, 1]. Each y¥ is taken uniformly
at random in [—1, 1] and is rescaled so that ||y;||1 = 1.
The values are averaged over 200 runs.

The DC method finds better local minima than the
other ones. This was already observed in practice (Tao
and An, [1997)) and confirms that it is more adapted
to the structure of the problem, despite being only
applicable in very specific cases such as linear cost on
hyperrectangles. Also, the PRP method converges to
worse spurious local minima as it optimizes in higher
dimensional spaces than the Sinkhorn method. We
also observed in our experiments that PRP method is
more sensitive to problem parameters than Sinkhorn
method.

The Sinkhorn method seems to perform better for larger
values of A. Indeed, given the actions, the Sinkhorn
method computes the best joint distribution for each
iteration and thus performs well when the privacy cost
is predominant, while DCA computes the best actions
given a joint distribution and thus performs well when
the utility cost is predominant. It is thus crucial to
choose the method which is most adapted to the prob-
lem structure as it can lead to significant improvement
in the solution.

6.3 Utility-privacy in repeated auctions

For repeated second price auctions following a precise
scheme (Leme et al., 2016, there exist numerical meth-
ods to implement an optimal strategy for the bidder
(Nedelec et al., |2019)). However, if the auctioneer knows

that the bidder plays this strategy, he can still infer
the bidder’s type and adapt to it. We thus require to
add a privacy cost to avoid this kind of behavior from
the auctioneer.

For simplicity, bidder’s valuations are assumed to be
exponential distributions, so that the private type y
corresponds to the only parameter of this distribution,
i.e., its expectation: y = E,~,, [v]. Moreover, we as-
sume that the prior py over y is the discretized uniform
distribution on [0, 1] with a support of size K = 10; let
{y;}j=1,..,k be the support of p.

In repeated auctions, values v are repeatedly sampled
from the distribution s, and a bidder policy is a map-
ping B(-) from values to bids, i.e., she bids 8(v) if her
value is v. So a type y; and a policy 5(-) generate
the bid distribution By u,,;, which corresponds to an
action in X in our setting. As a consequence, the set
of actions of the agent are the probability distributions
over R, and an action p; is naturally generated from
the valuation distribution via the optimal monotone
transport map denoted by B;, ie., p; = B;#uyj (San{
tambrogio, [2015). In the particular case of exponential
distributions, this implies that 8/ (v) = 8;(v/y;) where
B; is the unique monotone transport map from Exp(1)
to p;. The revenue of the bidder is then deduced for
exponential distributions (Nedelec et al., |2019)) as

r(Biyi) =1 —c(Bi, y5)
= Eommp) [(450 = Bi(v) + Bi(0)) G (Bi(v)) L, (1) -1 () >0)

where G is the c.d.f. of the maximum bid of the other
bidders. We here consider a single truthful opponent
with a uniform value distribution on [0, 1], so that
G(z) = min(z, 1). This utility is averaged over 10® val-
ues drawn from the corresponding distribution at each
training step and 10° values for the final evaluation.

Considering the KL for privacy cost, we compute a
strategy (v, ) using the Sinkhorn scheme described
in Section Every action (; is parametrized as a
single layer neural network of 100 ReLUs. Figure
represents both utility and privacy as a function of the
regularization factor .
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Figure 3: Privacy-utility trade-off in online repeated auctions.
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Figure 4: Evolution of the bidding strategy with the type and the regularization constant.

Naturally, both the bidder revenue and the privacy
loss decrease with A, going from revealing strategies for
A ~ 1073 to non-revealing strategies for larger \. They
significantly drop at a critical point near 0.05, which
can be seen as the cost of information here. There is
a 8% revenue differencdﬂ between the non revealing
strategy and the partially revealing strategy shown in
Figure Bb] The latter randomizes the type over the
neighboring types and reveals more information when
the revenue is sensible to the action, i.e., for low types
y; here. This strategy thus takes advantage from the
fact that the value of information is here heterogeneous
among types, as desired in the design of our model.

Figure [4 shows the most used action for different types
and A. In the revealing strategy (A = 0), the action
significantly scales with the type. But as A grows, this
rescaling shrinks so that the actions perform for several
types, until having a single action in the non-revealing
strategy. This shrinkage is also more important for
large values of y;. This confirms the observation made

3Which is significant for large firms such as those pre-
sented in Figure[I] besides the revenue difference brought by
considering non truthful strategies (Nedelec et all, [2019).

above: the player loses less by hiding her type for large
values than for low values and she is thus more willing
to hide her type when it is large.

Besides confirming expected results, this illustrates how
the Privacy Regularized Policy is adapted to complex
utility costs and action spaces, such as distributions or
function spaces.

7 Conclusion

We formalized a new utility-privacy trade-off problem
to compute strategies revealing private information only
if it induces a significant increase in utility. For classical
costs in economics, it benefits from recent advances
of Optimal Transport. It yet leads to a hard non-
convex minimization problem and future work includes
designing efficient algorithms computing global minima
for this problem.

We believe that this work is a step towards the design
of optimal utility vs. privacy trade-offs in economic
mechanisms as well as for other applications. Its many
connections with recent topics of interest motivate a
better understanding of them as future work.



Etienne Boursier, Vianney Perchet

Bibliography

K. Amin, A. Rostamizadeh, and U. Syed. Learning
prices for repeated auctions with strategic buyers. In
Advances in Neural Information Processing Systems,
pages 1169-1177, 2013.

K. Amin, A. Rostamizadeh, and U. Syed. Repeated
contextual auctions with strategic buyers. In Ad-
vances in Neural Information Processing Systems,
pages 622—630, 2014.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein
generative adversarial networks. In International
Conference on Machine Learning, pages 214-223,
2017.

R. Aumann, M. Maschler, and R. Stearns. Repeated
games with incomplete information. MIT press, 1995.

F. Bourse, M. Minelli, M. Minihold, and P. Paillier.
Fast homomorphic evaluation of deep discretized
neural networks. In Annual International Cryptology
Conference, pages 483-512, 2018.

S. Boyd and L. Vandenberghe. Convexr optimization.
Cambridge university press, 2004.

K. Chaudhuri, J. Imola, and A. Machanavajjhala. Ca-
pacity bounded differential privacy. In Advances in
Neural Information Processing Systems, pages 3469—
3478, 2019.

N. Courty, R. Flamary, and D. Tuia. Domain adapta-
tion with regularized optimal transport. In Joint Fu-
ropean Conference on Machine Learning and Knowl-
edge Discovery in Databases, pages 274-289, 2014.

M. Cuturi. Sinkhorn distances: Lightspeed computa-
tion of optimal transport. In Advances in Neural
Information Processing Systems, pages 2292-2300,
2013.

C. Dwork. Differential privacy. Encyclopedia of Cryp-
tography and Security, pages 338-340, 2011.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Cal-
ibrating noise to sensitivity in private data analysis.
In Theory of cryptography conference, pages 265—284.
Springer, 2006.

R. Eilat, K. Eliaz, and X. Mu. Optimal Privacy-
Constrained Mechanisms. Technical report, C.E.P.R.
Discussion Papers, 2019.

M. Feldman, T. Koren, R. Livni, Y. Mansour, and
A. Zohar. Online pricing with strategic and patient
buyers. In Advances in Neural Information Process-
ing Systems, pages 3864—-3872, 2016.

J. Feydy, T. Séjourné, F.-X. Vialard, S. i. Amari,
A. Trouve, and G. Peyré. Interpolating between
optimal transport and mmd using sinkhorn diver-
gences. In The 22nd International Conference on

Artificial Intelligence and Statistics, pages 2681-2690,
2019.

C. Frogner, C. Zhang, H. Mobahi, M. Araya-Polo, and
T. Poggio. Learning with a Wasserstein loss. In
Advances in Neural Information Processing Systems,
2015.

A. Genevay, M. Cuturi, G. Peyré, and F. Bach. Stochas-
tic optimization for large-scale optimal transport. In
Advances in Neural Information Processing Systems,
pages 3440-3448, 2016.

A. Genevay, G. Peyre, and M. Cuturi. Learning gen-
erative models with sinkhorn divergences. In Inter-
national Conference on Artificial Intelligence and
Statistics, pages 1608-1617, 2018.

A. Genevay, L. Chizat, F. Bach, M. Cuturi, and
G. Peyré. Sample complexity of sinkhorn divergences.
In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1574-1583, 2019.

R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter,
M. Naehrig, and J. Wernsing. Cryptonets: Applying
neural networks to encrypted data with high through-
put and accuracy. In International Conference on
Machine Learning, pages 201-210, 2016.

N. Golrezaei, A. Javanmard, and V. Mirrokni. Dynamic
incentive-aware learning: Robust pricing in contex-
tual auctions. In Advances in Neural Information
Processing Systems, pages 97569766, 2019.

R. Horst and N. Thoai. DC programming: overview.
Journal of Optimization Theory and Applications,
103(1):1-43, 1999.

R. Horst, P. Pardalos, and N. V. Thoai. Introduction
to global optimization. Springer Science & Business
Media, 2000.

P. Knight. The sinkhorn-knopp algorithm: convergence
and applications. SIAM Journal on Matrix Analysis
and Applications, 30(1):261-275, 2008.

J. Lasserre. Global optimization with polynomials
and the problem of moments. SIAM Journal on
Optimization, 11(3):796-817, 2001.

R. P. Leme, M. Pal, and S. Vassilvitskii. A field guide
to personalized reserve prices. In Proceedings of
the 25th international conference on world wide web,
pages 1093-1102, 2016.

G. Luise, A. Rudi, M. Pontil, and C. Ciliberto. Differen-
tial properties of sinkhorn approximation for learning
with wasserstein distance. In Advances in Neural
Information Processing Systems, pages 5859-5870,
2018.

B. Mackowiak and M. Wiederholt. Business cycle
dynamics under rational inattention. The Review of
Economic Studies, 82(4):1502-1532, 2015.



Utility /Privacy Trade-off through the lens of Optimal Transport

F. Matéjka and A. McKay. Rational inattention to
discrete choices: A new foundation for the multino-

mial logit model. American Economic Review, 105
(1):272-98, 2015.

I. Mironov. Rényi differential privacy. In Proceed-
ings of 30th IEEE Computer Security Foundations
Symposium (CSF), pages 263-275, 2017.

T. Nedelec, N. E. Karoui, and V. Perchet. Learning to
bid in revenue-maximizing auctions. In International
Conference on Machine Learning, pages 4781-4789,
2019.

G. Peyré and M. Cuturi. Computational optimal trans-
port. Foundations and Trends®) in Machine Learn-
ing, 11(5-6):355-607, 2019.

J. Reed and B. Pierce. Distance makes the types grow
stronger: a calculus for differential privacy. In ACM
Sigplan Notices, volume 45, pages 157-168, 2010.

A. Rényi. On measures of entropy and information. In
Proceedings of the Fourth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1:
Contributions to the Theory of Statistics, 1961.

T. Salimans, D. Metaxas, H. Zhang, and A. Radford.
Improving gans using optimal transport. In 6th In-

ternational Conference on Learning Representations,
ICLR 2018, 2018.

F. Santambrogio. Optimal transport for applied math-
ematicians. Birkduser, NY, 55:58-63, 2015.

A. Sanyal, M. Kusner, A. Gascon, and V. Kanade.
Tapas: Tricks to accelerate (encrypted) prediction as
a service. In International Conference on Machine
Learning, pages 4497-4506, 2018.

C. Sims. Implications of rational inattention. Journal
of monetary Economics, 50(3):665-690, 2003.

R. Sinkhorn. Diagonal equivalence to matrices with
prescribed row and column sums. The American
Mathematical Monthly, 74(4):402-405, 1967.

G. Smith. On the foundations of quantitative informa-
tion flow. In International Conference on Founda-
tions of Software Science and Computational Struc-
tures, pages 288-302, 2009.

P. Tao and L. An. Convex analysis approach to DC
programming: Theory, algorithms and applications.
Acta mathematica vietnamica, 22(1):289-355, 1997.

G. Téth, Z. Hornédk, and F. Vajda. Measuring
anonymity revisited. In Proceedings of the Ninth
Nordic Workshop on Secure IT Systems, pages 85—
90, 2004.

C. Villani. Optimal transport: old and new, volume
338. Springer Science & Business Media, 2008.

S. Wright. Coordinate descent algorithms. Mathemati-
cal Programming, 151(1):3-34, 2015.



