
Supplementary Material for “Kernels over Sets of Finite Sets

using RKHS Embeddings, with Application to Bayesian

(Combinatorial) Optimization”

Unless indicated otherwise, referenced equation labels are to be understood with respect to equations of
the main article.

A Elements of literature review

Before reviewing some foundational machine learning papers dealing with kernels on sets of (sub)sets and
related objects, let us start by some preliminary remarks on how an elementary class of positive definite
kernels can be constructed in the context of measure spaces and why these kernels are not necessarily
ideal for the prediction and optimization objectives we have in mind. Consider here a set X equipped
with a sigma-algebra A and a measure µ, making it a measure space (X ,A, µ). Then it comes without
much effort that the mapping k defined by

k : (S, S′) ∈ A2 → µ(S ∩ S′) ∈ [0,∞)

constitutes a positive definite kernel. Indeed, taking arbitrary n ≥ 1, a1, . . . , an ∈ R, S1, . . . , Sn ∈ A and
recalling that µ(S ∩ S′) =

∫
X 1S(u)1S′(u)dµ(u) , we do have

n∑
i=1

n∑
j=1

aiajk(Si, Sj) =

∫
X

(
n∑
i=1

ai1Si
(u)

)2

dµ(u) ≥ 0

In the particular case where X is finite, A is the associated power set P(X ), and µ is the counting
measure, we find that

k(S, S′) = #(S ∩ S′) =
∑
x∈S

∑
x′∈S

1

2
δx,x′ ,

a kernel that does account for the position of points only to the extent that it counts the number of
points simultaneously in both sets (without any account for the closeness of non-coinciding points). Such
a kernel is referred to as default kernel on sets in (Gärtner et al., 2004, Example 4.2), where it appears
as a particular case of an abstract construction denoted default kernel for basic terms (Definition 4.1,
p. 213) and that is also applied for instance to multisets (Example 4.3 of the same page). For the case
of the default kernel on sets, the authors comment following Example 4.2 that “the intuition here is
that using the matching kernel for the elements of the set corresponds to computing the cardinality of
the intersection of the two sets. Alternatively, this computation can be seen as the inner product of the
bit-vectors representing the two sets”.

Yet another important class of kernels for structured data, notably put to the fore by Gärtner et al.
(2004) yet by pointing out high associated computational costs, is the class of convolution kernels dating
back to Haussler (1999). Convolution kernels can accommodate a variety of so-called “composite struc-
tures” by relying on their respective “parts”. They are constructed based on prescribed kernels between
vectors of parts by instantiating and summing them with respect to all vectors of parts generating the
considered compositive structures (Theorem 1 in Haussler (1999)). The proof of the latter theorem turns
out to be based on the following Lemma that focuses on composite structures writing as finite subsets
of a base set (say X , to stick to the notation of the present paper):
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Proposition A.1 (Lemma 1 of Haussler (1999)). Let k be a kernel on X×X and for all finite, nonempty
A,B ⊆ X define k′(A,B) =

∑
x∈A,y∈B k(x, y). Then k′ is a kernel on the product of the set of all finite,

nonempty, subsets of X with itself.

Let us remark that this construction is none other than what we refer to as the double sum kernels
throughout the paper, notably at the heart of (Kim et al., 2019).

In contrast, the approach employed in (Kondor and Jebara, 2003) to create classes of kernels between
sets consists in viewing these sets as samples from multivariate Gaussian distributions and then defin-
ing their baseline kernel in terms of Bhattacharyya affinity between those distributions. The resulting
approach is then further enriched or “kernelized” thanks to the introduction of a second kernel defined
between elementary vectors. In Cuturi et al. (2005), the focus is on kernels on measures characterized by
the fact that the value of the kernel between two measures is a function of their sum, and the proposed
constructions rely on common quantities defined on measures such as entropy or generalized variance.
Quoting the article, “the considered kernels can be used to derive kernels on structured objects, such as
images and texts, by representing these objects as sets of components, such as pixels or words, or more
generally as measures on the space of components”. Here again, given an other kernel on the space of
components itself, the approach is further extended using the “kernel trick”.

Christmann and Steinwart (2010) investigate universal kernels on non-standard input spaces. They
consider in particular a kernel on the set of probability measures obtained by chaining a radial Gaussian
kernel and the RKHS distance between embedded distributions, coinciding in the case of uniform distri-
butions over finite sets with our proposed class of Deep Embedding kernels. They show that in case of
a compact base space and with probability measures endowed with the topology of weak convergence,
the kernels of interest are universal. The reader is also referred to (Berlinet and Thomas-Agnan, 2004;
Smola et al., 2007; Sriperumbudur et al., 2011; Muandet et al., 2017) and references therein for more
background results on RKHS embeddings of probability measures. Besides this, RKHS embeddings are
also at the heart of the thesis Sutherland (2016), focusing on “Scalable, Flexible and Active Learning
on Distributions”. Kernel distribution embeddings have been recently further studied in Simon-Gabriel
and Schölkopf (2018) from a functional analysis perspective, resulting in a proof that for kernels, being
universal, characteristic, and strictly positive definite (where the definitions are slightly extended) are
essentially equivalent. The latter paper gives furthermore a complete characterization of kernels whose
associated Maximum Mean Discrepancy distance metrizes weak convergence, and it is shown in turn
that kernel mean embeddings can be extended from probability measures to Schwartz distributions.

B Proofs of theoretical results

Proposition 1. Let X be a set, kX be a positive definite kernel on X with associated reproducing kernel
Hilbert space HkX , and Sfin(X ) be the set of non-empty finite subsets of X . Let E : S ∈ Sfin(X ) 7→ HkX ,
k0 : Sfin(X )× Sfin(X ) 7→ R, dE : Sfin(X )× Sfin(X ) 7→ [0,∞) be defined by Equations 1,2,3, respectively.
Then,

a) k0(S, S′) = 〈E(S), E(S′)〉HkX
for any S, S′ ∈ Sfin(X ), and k0 is positive definite on Sfin(X ) while dE

is a pseudometric on Sfin(X ).

Let us furthermore introduce for n ≥ 2 the sets

An =

{( (n1−`) times︷ ︸︸ ︷
1

n1

, . . . ,
1

n1

,

` times︷ ︸︸ ︷
n2 − n1

n1n2

, . . . ,
n2 − n1

n1n2

,

(n2−`) times︷ ︸︸ ︷
−1

n2

, . . . ,
−1

n2

)
,

n1, n2 ≥ 1, ` ≥ 0 : n1 + n2 + ` = n

}
⊂ Rn

(n ≥ 2).

b) Then, the following assertions are equivalent:

i) kX satisfies
∑n
i=1

∑n
j=1 aiajkX (xi,xj) > 0 for all n ≥ 2, pairwise distinct x1, . . . ,xn ∈ X , and

(a1, . . . , an) ∈ An.

ii) E is injective.
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iii) dE is a metric on Sfin(X ).

In particular, if kX is strictly positive definite on X , then all three conditions above are fulfilled.

Proof of Prop. 1. a) k(S, S′) = 〈E(S), E(S′)〉HkX
(S, S′ ∈ Sfin(X )) follows directly from scalar prod-

uct bilinearity and 〈kX (x, ·), kX (x′, ·)〉HkX
= kX (x,x′) (x,x′ ∈ X ), by reproducing property. Pos-

itive definiteness is then inherited from the scalar product as, for any n ≥ 1, a1, . . . , an ∈ R and

S1, . . . , Sn ∈ Sfin(X ),
∑n
i=1

∑n
j=1 aiajk(Si, Sj) = ||

∑n
i=1 aiE(Si)||

2

HkX
≥ 0. Similarly, the non-negativity,

symmetry, and triangle inequality for dE are inherited from the metric ||·||HkX
, making the former a

pseudometric on Sfin(X ). b) First, ii) ⇔ iii) as dE(S, S
′) = ||E(S) − E(S′)||HkX

and ii) means that
for S 6= S′ E(S) 6= E(S′), or equivalently ||E(S) − E(S′)||HkX

6= 0 for S 6= S′, which is exactly what is
needed for the pseudo-metric dE to qualify as a metric on Sfin(X ). i) ⇒ ii): Let S = {y1, . . . ,yn1

} and
S′ = {y1, . . . ,yn2

} be distinct elements of Sfin(X ). Let us denote by ` ≥ 0 (` ≤ n1 + n2) the number
of elements in S ∩ S′ and denote n = n1 + n2 − ` and by x1, . . . ,xn the elements of S ∪ S′ ordered so
as to have as first n1 − ` elements those of S\S′, then the ` elements from S ∩ S′, and finally those of
S′\S (the orders within those three categories being arbitrary). Denote further here Xn = (x1, . . . ,xn).
Then,

E(S)− E(S′) =
1

n1

n1−`∑
i=1

kX (xi, ·)

+

(
1

n1
− 1

n2

) n1∑
i=n1−`+1

kX (xi, ·) +
1

n2

n∑
i=n1+1

kX (xi, ·),

whereof, putting ai = 1
n1

(1 ≤ i ≤ n1 − `), ai = 1
n1
− 1

n2
(n1 − `+ 1 ≤ i ≤ n1), ai = 1

n2
(n1 + 1 ≤ i ≤ n),

and noting kX (Xn) = (kX (xi,xj))i,j∈{1,...,n}, we have

||E(S)− E(S′)||HkX
=
√

a′kX (Xn)a > 0

where a = (a1, . . . , an) ∈ An and the positivity follows from i), implying that E(S) 6= E(S′) indeed.
Assuming now that ii) holds and considering elements x1, . . . ,xn ∈ X and a = (a1, . . . , an) ∈ An such as
in i) (with `, n1, n2 following from a), we define this time S = {x1, . . . ,xn1+`} and S′ = {xn1+1, . . . ,xn}
and conclude that i) holds by pointing out that

∑n
i=1

∑n
j=1 aiajkX (xi,xj) = ||E(S)− E(S′)||HkX

> 0,

where S 6= S′ follows from the assumption of pairwise distinct xi’s.

Proposition 2 (Non-strict positive definiteness of double sum kernels). Let us keep the notation of
Proposition 1 and denote furthermore in the case of a finite set X with cardinality c ≥ 1 and elements
Xc = (x1, . . . ,xc) by u : S ∈ Sfin(X ) → u(S) = 1

#S (1xi∈S)1≤i≤c ∈ Rc the mapping returning for any

nonempty subset of X a vector with components 1
#S or 0 depending whether xi ∈ S or not. Then we

have:

a) For X finite, for any S, S′ ∈ Sfin(X ),

k0(S, S′) = u(S)T kX (Xc)u(S′).

Consequently, for q ≥ 1 and S = (S1, . . . , Sq) ∈ Sq, the covariance matrix k0(S) associated with
kX and S can be compactly written as

k0(S) = U(S)T kX (Xc)U(S),

with the notation U(S) = [u(S1), . . . , u(Sq)].

b) For arbitrary X , the two following assertions are mutually exclusive

i) #X = 1 and kX is non-zero.

ii) k0 is not strictly positive definite on Sfin(X ).
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Proof of Prop. 2. a) Putting kX (Xc) = (kX (xi,xj))i,j∈{1,...,c} and u(S) = 1
#S (1xi∈S)1≤i≤c in the right

hand side directly delivers that

u(S)T kX (Xc)u(S) =

c∑
i=1

c∑
j=1

1xi∈S1xj∈S′
kX (xi,xj)

#S#S′
,

which coincides indeed with Eq. 2’s k0(S, S′). Eq. 6 then simply follows as a Gram matrix associated
with the bilinear form defined by Eq. 5. b) That i) ⇒ ii) follows from the fact that if X = {x} has
cardinality 1 and kX is strictly positive definite on X , then Sfin(X ) consists of the single element {x},
and k({x}, {x}) = kX (x,x) > 0 whereof k is strictly positive definite on Sfin(X ). To prove that ii)⇒ i),
let us now consider the case where X ’s cardinality is at least 2 (finite or not). From this assumption,
it is possible to choose two distinct elements in xA,xB ∈ X ; let us denote here X = {xA,xB}, and set
S1 = {xA}, S2 = {xB}, S3 = {xA,xB}, and S = (S1, S2, S3). Following the same route as for Eq. 6, we
then get

k0(S) = U(S)T kX (X)U(S) = M(S)TM(S),

with M(S) = kX (X)
1
2U(S). Hence rank(k0(S)) ≤ rank(kX (X)

1
2 ) = rank(kX (X)) ≤ 2 and so the 3 × 3

matrix rank(k(S)) is non-invertible, proving indeed that k is not strictly positive definite on Sfin(X ).

Remark B.1. The first equation of point a) highlights the fact that even if kX (X) is a positive definite
matrix (in particular, assuming that kX is strictly p.d. on X ), the matrix k0(S) will actually be sys-
tematically singular for q > c. It turns out to also possibly happen in situations where q ≤ c, as is for

instance the case with c = 5, q = 4, and U(S) ∝


1 1 0 0 1
0 0 1 1 1
1 0 0 1 1
0 1 1 0 1

.

Proposition 3 ((Strict) positive definiteness of kDE). Let us consider here again the notation of Propo-
sition 1 and consider furthermore the class of kernels kDE : (S, S′) ∈ Sfin(X )→ kH ◦ dE(S, S′) of Eq. 4,
where kH : [0,∞) → R is chosen such that (h, h′) ∈ H2 → kH(||h − h′||H) is positive definite for any
Hilbert space (H, 〈·, ·, 〉H). Then,

a) kDE is positive definite on Sfin(X ).

b) If furthermore kX satisfies i) of condition b) in Proposition 1, and kH : [0,∞) → R is chosen such
that (h, h′) ∈ H2 → kH(||h − h′||H) is strictly positive definite for any Hilbert space (H, 〈·, ·, 〉H),
then kDE is strictly positive definite on Sfin(X ).

Proof of Prop. 3. Both points essentially rely on the fact that dE(S, S
′) = ||E(S) − E(S′)||HkX

and
that, as Reproducing Kernel Hilbert Space, HkX is in the first place a Hilbert space. Indeed, writing
kDE(S, S′) = kH(||E(S)−E(S′)||HkX

), we then directly obtain a) by composition of the positive definite

kernel (h, h′) ∈ H2 → kH(||h − h′||HkX
) with the mapping E : Sfin(X ) 7→ HkX . As for b), assuming

furthermore kH to be strictly positive definite on any Hilbert space and i) of condition b) in Proposition 1
to hold, then the strict positive definiteness of kDE follows from the one of kH and the injectivity of E
ensured by Proposition 1.

Proposition 4. Let rX be an isotropic positive definite kernel on X = [0, 1]d assumed to be monotonically
decreasing to 0 with respect to the Euclidean distance between elements of X , with range parameter
θX > 0. Then the dErX -diameter of Sp(X ) (p ≥ 1), i.e. supS,S′∈Sp dErX (S, S′), is reached with arguments
{0d, . . . ,0d} and {1d, . . . ,1d}, where 0d = (0, . . . , 0),1d = (1, . . . , 1) ∈ X . Furthermore, the supremum
of this diameter with respect to θX ∈ (0,+∞) is given by

√
2.

Proof of Prop. 4. Let us consider two sets S = {x1, . . . ,xp}, S′ = {x′1, . . . ,x′p} ∈ Sp. Then, from the
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fact that a correlation kernel is upper-bounded by 1, we get

d2
ErX

(S, S′) =
1

p2

 p∑
i=1

p∑
j=1

rX (xi,xj) +

p∑
i=1

p∑
j=1

rX (x′i,x
′
j)

−2

p∑
i=1

p∑
j=1

rX (xi,x
′
j)


≤ 1

p2

2p2 − 2

p∑
i=1

p∑
j=1

rX (xi,x
′
j)


≤ 1

p2

2p2 − 2

p∑
i=1

p∑
j=1

rX (0d,1d)

 ,

where the last inequality follows from the assumed monotonicity of rX with respect to the Euclidean
distance between elements of X and the fact that the maximal distance between two points of X , i.e.
the Euclidean diameter of [0, 1]d, is precisely attained for x = 0d and x′ = 1d. Finally, by assumption
again, rX (0d,1d) is monotonically decreasing to 0 when θX decreases to 0, and so the upper bound of
d2
ErX

tends to 1
p2

(
2p2 − 0

)
= 2, showing that upper bound of the dErX -diameter of Sp with respect to

θX ∈ (0,+∞) is
√

2 indeed, independently of the dimension.

C Complements on the methodology

C.1 Maximum likelihood estimation for GPs with Deep Embedding kernel

In the numerical experiments, we make predictions under a stationary GP model which assumes a
constant unknown trend (following the route of Ordinary Kriging prediction such as exposed in (Roustant
et al., 2012)). When both kX and kH are assumed to be Gaussian kernels (still with the parametrization
mentioned in (Roustant et al., 2012)), the introduced Deep Embedding kernel takes the form

kDE(S, S′) = kH ◦ dE(S, S′)
= σ2

HrH ◦ dE(S, S′) (C.1.1)

= σ2
H exp

(
−1

2

d2
E(S, S

′)

θ2
H

)
, (C.1.2)

where

dE(S, S
′) =

 1

#S#S

∑
x1,x2∈S

exp

(
−1

2

‖x1 − x2‖2

θ2
X

)
+

1

#S′#S′

∑
x′1,x

′
2∈S′

exp

(
−1

2

‖x′1 − x′2‖
2

θ2
X

)

− 2

#S#S′

∑
x∈S,x′∈S′

exp

(
−1

2

‖x− x′‖2

θ2
X

) 1
2

. (C.1.3)

The three hyperparameters are determined by Maximum Likelihood Estimation (MLE). The expres-
sion of kDE as a function of rH in Equation C.1.1 allows us to use the concentrated log-likelihood,
optimized with respect to θH and θX via genetic algorithm with derivatives (Mebane Jr et al., 2011).
This can be done in a similar manner to the method given in Appendix A of Roustant et al. (2012).
Assuming positive values for the hyperparameters, the derivatives of rH(·, ·) with respect to the two
hyperparameters θH and θX exist and are respectively given by:

∂rH(S, S′)

∂θH
= exp

(
−1

2

dE(S, S
′)2

θ2
H

)(
dE(S, S

′)2

θ3
H

)
= rH(S, S′)

(
dE(S, S

′)2

θ3
H

)
, (C.1.4)
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and

∂rH(S, S′)

∂θX
= − 1

2θ2
H

exp

(
−1

2

dE(S, S
′)2

θ2
H

)
∂dE(S, S

′)2

∂θX
= − 1

2θ2
H

rH(S, S′)
∂dE(S, S

′)2

∂θX
, (C.1.5)

where

∂dE(S, S
′)2

∂θX
=

1

#S2

∑
x1,x2∈S

exp

(
−1

2

‖x1 − x2‖2

θ2
X

)(
‖x1 − x2‖2

θ3
X

)

+
1

#S′2

∑
x′1,x

′
2∈S′

exp

(
−1

2

‖x′1 − x′2‖
2

θ2
X

)(
‖x′1 − x′2‖

2

θ3
X

)
(C.1.6)

− 2

#S#S′

∑
x∈S,x′∈S′

exp

(
−1

2

‖x− x′‖2

θ2
X

)(
‖x− x′‖2

θ3
X

)
.

C.2 Condition number and jitter for matrix inversion

The condition number of an n× n positive definite matrix R under the 2-norm is defined by

κ(R) = ‖R‖2
∥∥R−1

∥∥
2

=
λn
λ1
, (C.2.7)

where λn and λ1 are the largest and smallest positive eigenvalues of R, respectively. A matrix is said to
be ill-conditioned when its condition number is larger than some prescribed threshold.

Given an ill-conditioned matrix, one can perturb the matrix by adding a small “jitter” δ to diagonal
in order to decrease its condition number:

Rδ = R + δI, (C.2.8)

where I denotes the identity matrix with appropriate dimension. The eigenvalues of the perturbed matrix
Rδ become λi + δ, i = 1, 2, 3, ..., n where λi is the ith smallest eigenvalue of the original matrix R.

In Gaussian Process modelling, it is not rare that the inversion of ill-conditioned covariance/correlation
matrices constitutes a bottleneck, motivating to introduce a positive jitter δ; yet, finding an appropri-
ate value for such a δ is no straightforward task and too small a value might not fix the issue of near
singularity while too big a value could cause over-regularization and result in a poor surrogate of the
inverse. One approach is to consider the jitter as a model hyperparameter and estimate it, e.g., by MLE.
However, implementing this method may end up introducing positive jitter values even the matrix itself
is well-conditioned. Also, things can be challenging from the computational point of view when δ takes
a variety of values in the course of hyperparameter optimization.

Ranjan et al. (2011) proposed an alternative way by finding a lower bound of the jitter that can
overcome the ill-condition issue while minimizing the over-smoothing. As proven in (Ranjan et al.,
2011), the condition number κ(Rδ), setting a jitter level to

δ (a) =
λn (κ(R)− exp(a))

κ(R)(exp(a)− 1)
, (C.2.9)

will ensure that the condition number of Rδ remains below a prescribed value exp(a).

D Complementary experimental results

D.1 DS kernel +jitter for contaminant source localization test cases

Due to conditioning issues in combinatorial problems, the double sum kernel is not readily applicable
for the contaminant source localization test case. We hence apply the described jitter trick in the case
of GP prediction with DS kernel on this test case. In particular, to find an appropriately small jitter,
we vary the value of “a” = 1, 2, 3, ..., 7 in Equation C.2.9, and compare both prediction and optimization
performances of the modified DS kernel when the corresponding bound values for the jitter are used.

In the numerical experiments, once the jitter δ is set, the correlation matrix Rδ = R + δ is used in
all computations. This includes not only the computation of predictive mean and variance, but also the
log-likelihood as well as its partial derivatives with respect to hyperparameters.
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D.1.1 Prediction performance

Table D.1.1 gives Q2 values for GP models with the proposed DE kernel against DS ones with multiple
values of “a” on the four considered scenarios for the contamination test case (refer to Table 1 in the
main article).

We can see from the table that small values of “a”, e.g. a = 1 and 2, which corresponds to larger
jitter levels, yield higher prediction errors. Here in fact, the DE kernel outperforms the DS kernels on
all cases.

Table D.1.1: Q2 values for GP predictions on contamination test cases with DE versus DS kernels (kDE

versus k0+j)

Q2 Ratio kDE k0 + j1 k0 + j2 k0 + j3 k0 + j4 k0 + j5 k0 + j6 k0 + j7
20:80 0.7607 0.3177 0.5756 0.7117 0.7501 0.7437 0.7109 0.6568
50:50 0.9133 0.3557 0.6506 0.7970 0.8391 0.8445 0.8438 0.8424Src A, Geo 1
80:20 0.9352 0.4060 0.6930 0.8326 0.8728 0.8804 0.8815 0.8818
20:80 0.7239 0.2393 0.4884 0.6399 0.7013 0.7130 0.7025 0.6584
50:50 0.8855 0.3557 0.6430 0.8001 0.8449 0.8485 0.8476 0.8460Src A, Geo 2
80:20 0.9240 0.3352 0.6514 0.8206 0.8673 0.8729 0.8724 0.8719
20:80 0.7977 0.2946 0.5457 0.7087 0.7775 0.7901 0.7720 0.7354
50:50 0.9190 0.3302 0.6450 0.8152 0.8668 0.8746 0.8749 0.8743Src B, Geo 1
80:20 0.9447 0.3878 0.6847 0.8369 0.8818 0.8904 0.8916 0.8918
20:80 0.8486 0.2930 0.5672 0.7434 0.8182 0.8389 0.8398 0.8338
50:50 0.9151 0.3904 0.6916 0.8465 0.8880 0.8944 0.8946 0.8941Src B, Geo 2
80:20 0.9439 0.4922 0.7543 0.8862 0.9207 0.9252 0.9259 0.9258

Figures D.1.1-D.1.8 show residual analyses for both leave-one-out and out-sample validation errors over
four contaminant test cases. Here, we present only results for k0+j2 and k0+j5 (corresponding to the
case when “a”= 2 and “a”= 5, respectively) to give a compact yet representative illustration of compared
performances against the DE kernel.

As one can see, assigning an inappropriate “a” value can lead to very poor predictive results (a = 2).
The fact that using the exposed approach with jitter heavily relies on the value of “a” confers a relative
robustness advantage to strictly positive definite DE kernels as no jitter is needed. This comes of course
at the price of an additional hyperparameter to be fitted, yet with an estimation that can be more
conveniently conducted together with the estimation of the other hyperparameters.
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(a) kDE

(b) k0+j2

(c) k0+j5

Figure D.1.1: Residual analysis on contamination test case (Src A, Geo 1) with (20:80), (a) kDE, (b)
k0+j2 and (c) k0+j5
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(a) kDE

(b) k0+j2

(c) k0+j5

Figure D.1.2: Residual analysis on contamination test case (Src A, Geo 1) with (80:20), (a) kDE, (b)
k0+j2 and (c) k0+j5
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(a) kDE

(b) k0+j2

(c) k0+j5

Figure D.1.3: Residual analysis on contamination test case (Src A, Geo 2) with (20:80), (a) kDE, (b)
k0+j2 and (c) k0+j5
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(a) kDE

(b) k0+j2

(c) k0+j5

Figure D.1.4: Residual analysis on contamination test case (Src A, Geo 2) with (80:20), (a) kDE, (b)
k0+j2 and (c) k0+j5
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(a) kDE

(b) k0+j2

(c) k0+j5

Figure D.1.5: Residual analysis on contamination test case (Src B, Geo 1) with (20:80), (a) kDE, (b)
k0+j2 and (c) k0+j5
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(a) kDE

(b) k0+j2

(c) k0+j5

Figure D.1.6: Residual analysis on contamination test case (Src B, Geo 1) with (80:20), (a) kDE, (b)
k0+j2 and (c) k0+j5
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(a) kDE

(b) k0+j2

(c) k0+j5

Figure D.1.7: Residual analysis on contamination test case (Src B, Geo 2) with (20:80), (a) kDE, (b)
k0+j2 and (c) k0+j5
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(a) kDE

(b) k0+j2

(c) k0+j5

Figure D.1.8: Residual analysis on contamination test case (Src B, Geo 2) with (80:20), (a) kDE, (b)
k0+j2 and (c) k0+j5
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D.1.2 Optimization performance

In line with Section 3.3 of the main article, in this section, we present complete results of (1) the number
of trials such that the minimum is found by EI with kDE and k0 + j in Table D.1.2; (2) the progress
curves in terms of the median value of current best response in Figure D.1.9; and (3) the 95th percentile
of current best response in Figure D.1.10.

Table D.1.2: Number of trials (out of 100) such that minimum is found by EI algorithms with DE and
DS kernels (kDE versus k0+j) on four contamination problems

Problem EI-kDE EI-k0 + j1 EI-k0 + j2 EI-k0 + j3 EI-k0 + j4
(a) Src A, Geo 1 100 17 63 87 95
(b) Src A, Geo 2 66 15 36 46 52
(c) Src B, Geo 1 100 26 59 77 95
(d) Src B, Geo 2 78 42 64 76 81
Problem EI-k0 + j5 EI-k0 + j6 EI-k0 + j7 RANDOM
(a) Src A, Geo 1 98 96 97 0
(b) Src A, Geo 2 46 47 44 0
(c) Src B, Geo 1 96 96 95 0
(d) Src B, Geo 2 82 82 81 0

Figure D.1.9: The median of current best response over 40 iterations on four contamination test cases

Figure D.1.10: The 95th percentile of current best response over 40 iterations on four contamination test
cases

Table D.1.2 indicates that with the DE kernel, EI could locate the true minimum for more replications
than that with the DS kernels (at all jitter levels) for all problems, except for Source B, Geology 2. The
progress curves of median and 95th percentile values suggest that regardless of the jitter level added,
EI-k0 + j method decreases the function value quickly at the beginning of the course when the kernel
is still very well conditioned. With more points in the observation sets, jitter cannot be avoided as the
kernel becomes ill-conditioned. When this happens, the performance of k0 + j heavily depends on the
jitter levels, as the progress curve starts to flatten out. Notice how the EI-kDE curve crosses the EI-k0 +j
one in the 95th percentile plots. Because the model accuracy as well as optimization performance of the
DS kernel relies on the jitter levels, this makes the approach less robust than the DE kernel.
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D.2 Complementary residual analyses for the synthetic and Castem test
cases

(a) kDE

(b) k0

Figure D.2.11: Residual analysis on MAX with (20:80), (a) kDE and (b) k0
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(a) kDE

(b) k0

Figure D.2.12: Residual analysis on MAX with (80:20), (a) kDE and (b) k0
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(a) kDE

(b) k0

Figure D.2.13: Residual analysis on MEAN with (20:80), (a) kDE and (b) k0
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(a) kDE

(b) k0

Figure D.2.14: Residual analysis on MEAN with (80:20), (a) kDE and (b) k0
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(a) kDE

(b) k0

Figure D.2.15: Residual analysis on MIN with (20:80), (a) kDE and (b) k0
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(a) kDE

(b) k0

Figure D.2.16: Residual analysis on MIN with (80:20), (a) kDE and (b) k0
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(a) kDE

(b) k0

Figure D.2.17: Residual analysis on CASTEM with (20:80), (a) kDE and (b) k0
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(a) kDE

(b) k0

Figure D.2.18: Residual analysis on CASTEM with (80:20), (a) kDE and (b) k0

24



References

Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing kernel Hilbert spaces in probability and statistics.
Kluwer Academic Publishers.

Christmann, A. and Steinwart, I. (2010). Universal kernels on non-standard input spaces. In Advances
in neural information processing systems, pages 406–414.

Cuturi, M., Fukumizu, K., and Vert, J. (2005). Semigroup kernels on measures. Journal of Machine
Learning Research, 6:1169–1198.
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