Approximate Inference in Discrete Distributions with
Monte Carlo Tree Search and Value Functions

Lars Buesing, Theophane Weber, Nicolas Hees
DeepMind

Abstract

Exact probabilistic inference in discrete models
is often prohibitively expensive, as it may require
evaluating the (unnormalized) target density on
its entire domain. Here we consider the setting
where only a limited budget of calls to the unnor-
malized target density oracle is available, raising
the challenge of where in the domain to allocate
these function calls in order to construct a good
approximate solution. We formulate this prob-
lem as an instance of sequential decision-making
under uncertainty and leverage methods from re-
inforcement learning for probabilistic inference
with budget constraints. In particular, we pro-
pose the TREESAMPLE algorithm, an adaptation
of Monte Carlo Tree Search to approximate infer-
ence. This algorithm caches all previous queries
to the density oracle in an explicit search tree,
and dynamically allocates new queries based on
a "best-first" heuristic for exploration, using ex-
isting upper confidence bound methods. Our non-
parametric inference method can be effectively
combined with neural networks that compile ap-
proximate conditionals of the target, which are
then used to guide the inference search and enable
generalization across multiple target distributions.
We show empirically that TREESAMPLE outper-
forms standard approximate inference methods
on synthetic factor graphs.

1 Introduction

Probabilistic models are often easy to specify, e.g. by multi-
plying non-negative functions that each reflect an indepen-
dent piece of information, yielding an unnormalized target
density (UTD). However, extracting knowledge from the

Proceedings of the 23™International Conference on Artificial In-
telligence and Statistics (AISTATS) 2020, Palermo, Italy. PMLR:
Volume 108. Copyright 2020 by the author(s).

model, such as marginal distributions of variables, is no-
toriously difficult. For discrete distributions, inference is
#P-complete (Roth, [1996)), and thus at least as hard as (and
suspected to be much harder than) NP-complete problems
(Stockmeyer, [1985)).

The hardness of exact inference, which often prevents its
application in practice, has led to the development of nu-
merous approximate methods such as Markov Chain Monte
Carlo MCMC) and Sequential Monte Carlo (SMC) (Hast{
ings, |1970;|Del Moral et al.,2006). Whereas exact inference
methods need to evaluate and sum the UTD over its entire
domain in the worst case, approximate methods attempt
to reduce computation by concentrating evaluations of the
UTD on regions of the domain that contribute most to the
probability mass. The exact locations of high-probability
regions are, however, often unknown a-priori, and different
approaches use a variety of means to identify them effi-
ciently. In continuous domains, Hamiltonian Monte Carlo,
for instance, guides a set of particles towards high density
regions by using gradients of the target density (Neal et al.,
2011). Instead of exclusively relying on a-priori knowl-
edge (such as a gradient oracle), adaptive approximation
methods use the outcome of previous evaluations of the
UTD to dynamically allocate subsequent evaluations on
promising parts of the domain (Mansinghka et al.| [2009j
Andrieu and Thoms), 2008)). This can be formalized as an
instance of decision-making under uncertainty, where act-
ing corresponds to evaluating the UTD in order to discover
probability mass in the domain (Lu et al., 2018). Form
this viewpoint, approximate inference methods attempt to
explore the target domain based on a-priori information
about the target density as well as on partial feedback from
previous evaluations of the UTD.

In this work, we propose a new approximate inference
method for discrete distributions, termed TREESAMPLE,
that is motivated by the correspondence between probabilis-
tic inference and sequential decision-making highlighted
previously in the literature, e.g. (Dayan and Hinton, |1997;
Rawlik et al., 2013} [Weber et al., [2015). TREESAMPLE
approximates a joint distribution over multiple discrete vari-
ables by a sequential decision-making approach: Variables
are inferred / sampled one variable at a time based on all

Approximate Inference with Monte Carlo Tree Search

previous ones in an arbitrary, pre-specified ordering. An
explicit tree-structured cache of all previous UTD evalu-
ations in maintained, and a heuristic inspired by Upper
Confidence Bounds on Trees (UTC) (Kocsis and Szepesvari,
2006)) for trading off exploration around configurations that
were previously found to yield high values of UTD and
configurations in regions that have not yet been explored,
is applied. Algorithmically, TREESAMPLE amounts to a
variant of Monte Carlo Tree Search (MCTS) (Browne et al.,
2012), modified so that it performs integration rather than
optimization. In contrast to other approximate methods,
it leverages systematic, backtracking tree search with a
"best-first" exploration heuristic. Inspired by prior work
on combining MCTS with function approximation (Silver|
et al., 2016)), we further augment TREESAMPLE with neural
networks that parametrically cache previously computed
approximate solutions of inference sub-problems. This en-
ables generalization across branches of the search tree for
a given target density as well as across inference problems
for different target densities. In particular, we experimen-
tally show that suitably structured neural networks such as
Graph Neural Networks (Battaglia et al [2018)) can effi-
ciently guide the search even on new problem instances by
reducing the effective search space.

2 Inference with Budget Constraint

Notation Let X = (Xi,...,Xy) ~ P% be a discrete
random vector taking values x = (z1,...,zy) in X :=
{1,..., K}V, and let z<,, := (z1,...,2,) € X<, be its
n-prefix and define x,, € X.,, analogously. We assume
the distribution P is given by a factor graph. Denote with
~* its density:

S

M
logy*(z) = Z Y (x) — logZexp Z Ym(x). (1)

m=1 xeX

We denote with Z the normalization constant and with 4
the unnormalized density. We assume that all factors v,,,,
defined in the log-domain, take values in R U {—oo}. Fur-
thermore, scope (),) is assumed to be known for all factors,
where scope(¢,,) C {1,..., N} is the index set of the vari-
ables that v,,, takes as input. We denote the densities of the
conditionals Py | as ¥ (zn|z<n).

Problem Setting and Motivation Consider the problem
of constructing a tractable approximation Px to P%. In
this context, we define tractable as being able to sample
from Px (say in polynomial time in N). Such a Px then
allows Monte Carlo estimates of Ep; [f] ~ Ep, [f] for any
function f of interest in downstream tasks without having
to touch the original Py again. This setup is an example
of model compilation (Darwiche, 2002)). We assume that
the computational cost of inference in P% is dominated
by evaluating any of the factors v,,. Therefore, we are

interested in compiling a good approximation Px using a
fixed computational budget:

Input: Factor oracles 1,...,%p with known
scope(tm,); budget B € N of pointwise
evaluations of any v,

Output: Approximation Px ~ P that allows tractable

sampling

A brute force approach would exhaustively compute all
conditionals P)*(l‘ o P;(lel up to P)*(N‘RN and resort to
ancestral sampling. This entails explicitly evaluating the fac-
tors v, everywhere, likely including "wasteful" evaluations
in regions of X with low density v*, i.e. parts of X that do
not significantly contribute to P . Instead, it may be more
efficient to construct an approximation Pyx that concentrates
computational budget on those parts of the domain X where
the density v*, or equivalently 7, is suspected to be high.
For small budgets B, determining the points where to probe
4 should ideally be done sequentially: Having evaluated %
on values z', . .., 2% with b < B, the choice of 2:**! should
be informed by the previous results 4(x!), ..., 4(x?). If
e.g. the target density is assumed to be "smooth", a point
x "close" to points z¢ with large 4(x*) might also have a
high value §(z) under the target, making it a good candi-
date for future exploration (under appropriate definitions
of "smooth" and "close"). In this view, inference presents
itself as a structured exploration problem of the form stud-
ied in the literature on sequential decision-making under
uncertainty and reinforcement learning (RL), in which we
decide where to evaluate 4 next in order to reduce uncer-
tainty about its exact values. As presented in detail in the
following, borrowing from the RL literature, we will use
a form of tree search that preferentially explores points x7
that share a common prefix with previously found points z°
with high 4.

3 Inference with Monte Carlo Tree Search

In the following, we cast sampling from P as a sequential
decision-making problem in a suitable maximum-entropy
Markov Decision Process (MDP). We show that the target
distribution P% is equal to the solution, i.e. the optimal pol-
icy, of this MDP. This representation of P% as optimal pol-
icy allows us to leverage standard methods from RL for ap-
proximating P%. Our definition of the MDP will capture the
following intuitive procedure: Ateachstepn =1,..., N
we decide how to sample X,, based on the realization z .,
of X, that has already been sampled. The reward function
of the MDP will be defined such that the return (sum of
rewards) of an episode will equal the unnormalized target
density log ¥, therefore "rewarding" samples that have high
probability under the target.

Lars Buesing, Theophane Weber, Nicolas Hees

3.1 Sequential Decision-Making Representation

We first fix an arbitrary ordering of the variables
X1,..., Xn; for now any ordering will do, but see the dis-
cussion in sec.[5] We then construct an episodic, maximum-
entropy MDP M = ((Xy,...,X<n), A, 0, R™) consisting
of episodes of length V. The state space at time step n
is X, and the action space is A = {1,..., K} for all n.
State transitions from x ., to x<,, are deterministic: Exe-
cuting action a € A in state z.,, € X, at step n results in
setting x,, to a, or equivalently the action a is appended to
the current state, i.e. <, = T<n0a = (21,...,Tp_1,0).
A stochastic policy 7 in this MDP is defined by probability
densities 7, (a|z<y) over actions conditioned on x,, for
n = 1,...,N. It induces a joint distribution P% over X
with the density 7(z) = Hﬁle Tn (@ | T <1). Therefore, the
space of stochastic policies is equivalent to the space of
distributions over X.

We now define the reward function of M:

Definition 1 (Reward). Forn = 1..., N, we define the
reward function R,, : X<,, = R U {—o0}, as the sum over
factors 1y, that can be computed from x <, but not already
from x ., ie. :

Rn(xgn) = Z ?/)(ign), ()

YeEMy,

where M, := { ¥, | max(scope(t,)) = n }. We fur-
ther define the maximum-entropy reward as R[(r<y) =
R, (z<pn) — log mp(xn|zan).

To illustrate this definition, assume) is only a function
of x,; then it will contribute to R,,. If, however, it is has
full support scope(w;) = {1,..., N}, then it will con-
tribute to Ry. Evaluating R,, at any input incurs a cost
of |M,,| towards the budget B. This completes the def-
inition of M. From the reward definition follows that
we can write the logarithm of the unnormalized target
density as the refurn, i.e. sum of rewards (without en-
tropy terms) log%(z) = Zf:;l R, (x<n). We now es-
tablish that the MDP M is equivalent to the initial infer-
ence problem by using the standard definition of the value
V.7 (2 <y) of a policy as expected return conditioned on <,
ie. Vi (zep) :=Eq [Zﬁf,:n RT,] where the expectation E
is taken over P§>nlx<n The following straight-forward ob-
servation holds:

Observation 1. The value V™ := V™ () of the initial state
under 7 in the maximum-entropy MDP M is given by the

negative KL-divergence between P% and the target Py, up
to the normalization constant 7 :

VT = —Dku[Px||Px] 4 log Z. 3

The optimal policy ™ = arg max, V'™ is equal to the target
conditionals 7} (Tn|X<pn) = T} (Tn|T<n).

Algorithm 1 TREESAMPLE sampling procedure

1: procedure SAMPLE(tree T, default Q%)
2 T O

3 forn=1,...,N do

4 if z € T then

5 a ~ softmax Qn(:|z)
6: else

7: a ~ softmax Q%(-|z)
8: end if

9: T4 TOoQ

10: end for

11: return x

12: end procedure

Therefore, solving the maximum-entropy MDP M is equal
to finding all target conditionals Py 2 and running the
optimal policy 7* yields samples from P%. In order to
convert the above MDP into a representation that facilitates
finding a solution, we use the standard definition of the state-
action values as Q7 (zn|T<n) == Rn(2<n) + Vi1 (w<n).
This definition together with observation[I]directly results
in (see supplementary material for proof):

Observation 2 (Conditionals as state-action values). The
target conditional is given by the optimal state-action
value function, i.e. vi(tn|x<n) = exp(QL(zn|ran) —
V¥ (x<n)) where the normalizer is given by V,\ (x<p) =
log >, exp Q@ (vn|r<y). Furthermore, the optimal state-
action values obey the soft Bellman equation:

K
Qn(@nlr<n) = Rn(z<n)+log Z exp Qi1 (Tnt1]z<n).

Tn+1 =1
“

3.2 TREESAMPLE Algorithm

In principle, the soft-Bellman equation 4] can be solved by
backwards dynamic programming in the following way. We
can represent the problem as a K -ary tree 7 * over nodes cor-
responding to all partial configurations UTJLO X<p, TOOt &
and each node x ., being the parent of K children x.,,01 to
Z<n 0 K. One can compute all Q-values by starting from all
KN leafs z<n € Xy for which we can compute the state-
action values Q% (zn|z<n) = Ry(x) and solve eqn. []in
reverse order. Furthermore, a simple softmax operation on
each Q7 yields the target conditional (2, |2 <y). Unfor-
tunately, this requires exhaustive evaluation of all factors.

As an alternative to exhaustive evaluation, we propose the
TREESAMPLE algorithm for approximate inference. The
main idea is to construct an approximation Px consisting of
a partial tree T C T* and approximate state-actions values
@ with support on 7. A node in T at depth n corresponds
to a prefix z.,, with the attached vector of state-action
values Qn("|2<n) = (Qn(zn = lzcn),. .., Qn(xy, =
Kl|z<y)) = Q*(‘|x<y) for its K children 2, o 1 to
Z<pn © K (which might not be in tree themselves). Sampling

Approximate Inference with Monte Carlo Tree Search

from Px is defined in algorithm [T} The tree is traversed
from the root @ and at each node, a child is sampled from
the softmax distribution defined by (. If at any point, a
node z<,, is reached that is not in 7, the algorithm falls
back to a distribution defined by a user-specified, default
state-action value function Q?; we will also refer to Q% as
prior state-action value function as it assigns values before
any evaluation of the reward. Later, we will discuss using
learned, parametric functions for Q¢. In the following we
describe how the partial tree 7 is constructed using a given
budget of B of evaluations of the factors v, .

3.2.1 Tree Construction with Soft-Bellman MCTS

TREESAMPLE leverages the correspondence of approxi-
mate inference and decision-making that we have discussed
above. It consists of an MCTS-like algorithm to itera-
tively construct the tree 7 underlying the approximation
Px. Given a partially-built tree T, the tree is expanded (if
budget is still available) using a heuristic inspired by Upper
Confidence Bound (UCB) methods (Auer et al., [2002). It
aims to expand the tree at branches expected to have large
contributions to the probability mass by taking into account
how important a branch currently seems, given by its cur-
rent (Q-value estimates, as well as a measure of uncertainty
of this estimate. The latter is approximated by a compu-
tationally cheap heuristic based on the visit counts of the
branch, i.e. how many reward evaluations have been made
in this branch. The procedure prefers to explore branches
with high @-values and high uncertainty (low visit counts).
The pseudo code of TREESAMPLE is given in full in the
supplementary material, but is briefly summarized in the
following.

Each node z,, in 7, in addition to Q,,(-|x<,,), also keeps
track of its visit count 77(z<,,) € N and the cached reward
evaluation R,,_1(x.,). For a single tree expansion, 7 is
traversed from the root by choosing at each intermediate
node ., the next action @ € {1..., K} in the following
way:

argmax Qn(alr<,)+
ac{l,..,K}

77(9U<n)1/2

1+n(rcpoa))

¢ max(@z(a|w<n)v 6)
Here, the hyperparameters ¢ > 0 and € > 0 determine
the influence of the second term, which can be seen as a
form of exploration bonus and which is computed from the
inverse visit count of the action a relative to the visit counts
of the parent. This rule is inspired by the PUCT variant
employed in (Silver et al.,|2016), but using the default value
Q? for the exploration bonus. When a new node 2% ¢ T
at depth n is reached, the reward function R, (z"°") is
evaluated, decreasing our budget B. The result is cached
and the node is added 7 < 7 U 2" using Q? to initialize
Qnt1(-]z™"). Then the Q)-values are updated: On the path

of the tree-traversal that led to 2™¢%, the values are back-
upped in reverse order using the soft-Bellman equation. This
constitutes the main difference to standard MCTS methods,
which employ max- or averaging backups. This reflects the
difference of sampling / integration to the usual application
of MCTS to maximization / optimization problems. Once
the entire budget is spent, 7 with its tree-structured @ is
returned.

3.2.2 Consistency

As argued above, the exact conditionals 7;; , ; (-|z<y,) can be
computed by exhaustive search in exponential time. There-
fore, a reasonable desideratum for any inference algorithm
is that given a large enough budget B > MK the ex-
act distribution is inferred. In the following we show that
TREESAMPLE passes this basic sanity check. The first im-
portant property of TREESAMPLE is that a tree 7 has the
exact conditional 7;; | (-|z<y) if the unnormalized target
density has been evaluated on all states with prefix x<,
during tree construction. To make this statement precise,
we define 7,_, C 7T as the sub-tree of 7 consisting of
node z<,, and all its descendants in 7. We call a sub-tree
Tz -n fully expanded, or complete, if all partial states with
pre;ﬁx ZT<p are in T, _,. With this definition, we have the
following lemma (proof in the supplementary material):

Lemma 1. Let T,_, be a fully expanded sub-tree of T.
Then, for all nodes x’gm inTe.,, i.e. m > nand z’gn =
T<n, the state-action values are exact:

/ /

Qm-&-l("xgm) Q:n-‘,—l('|x§m)'
Furthermore, constructing the full tree 7* with TREESAM-
PLE incurs a cost of at most M KV evaluations of any of the
factors 1, as there are KV leaf node in 7* and construct-

ing the path from the root & to each leaf requires at most
M oracle evaluations. This leads to the following result:

Corollary 1 (Exhaustive budget consistency). TREESAM-

PLE outputs the correct target distribution Py for budgets
B> MKV .

3.3 TREESAMPLE with Learned Parametric Priors

TREESAMPLE explicitly allows for a "prior" Q% over state-
action values with parameters ¢. It functions as a parametric
approximation to @} o log~.. In principle, an appropri-
ate Q% can guide the search towards regions in X where
probability mass is likely to be found a-priori by the follow-
ing two mechanisms. It scales the exploration bonus in the
PUCT-like decision rule eqn. 5] and it is used to initialize
the state-action values () for a newly expanded node in the
search tree.

If Q? comes from an appropriate function class, it can
transfer knowledge within the inference problem at hand.
Assume we spent some of the available search budget on

Lars Buesing, Theophane Weber, Nicolas Hees

TREESAMPLE to build an approximation 7. Due to the tree-
structure, search budget spent in one branch of the tree does
not benefit any other sibling branch. For many problem:s,
there is however structure that would allow for generalizing
knowledge across branches. This can be achieved via Q¢,
e.g. one could train Q¢ to approximate the Q-values of the
current 7, and (under the right inductive bias) knowledge
would transfer to newly expanded branches. A similar ar-
gument can be made for parametric generalization across
problem instances. Assume a given a family of distributions
{Pi }ie1 for some index-set I. If the different distributions
P?% share structure, it is possible to leverage search computa-
tions performed on P for inference in PJ to some degree.
A natural example for this is posterior inference in the same
underlying model conditioned on different evidence / ob-
servations, similar e.g. to amortized inference in variational
auto-encoders (Kingma and Welling, [2013). Besides trans-
fer, there is a purely computational reason for learning a
parametric Q?. The memory footprint of TREESAMPLE
grows linearly with the search budget B. For large prob-
lems with large budgets B > 0, storing the entire search
tree in memory might not be feasible. In this case, com-
piling the current tree periodically into Q% and rebuilding
it from scratch under prior Q¢ and subsequent refinement
using TREESAMPLE may be preferable.

Concretely, we propose to train Q¢ by regression on state-
action values () generated by TREESAMPLE. For general-
ization across branches, () approximates directly the dis-
tribution of interest; for transfer across distributions, @) ap-
proximates the source distribution, and we apply the trained
Q? for inference search in a different target distribution. We
match Q¢ to Q by minimizing the expected difference of

the values Epy [37, Q7 (X <n) — Qn(-[X<n)[13] wrt. .

4 Experiments

In the following, we empirically compare TREESAMPLE
to other baseline inference methods on different families
of distributions. We quantify approximation error by the
Kullback-Leibler divergence:

M
DkL[Px|Px] =log Z —Ep, | > tm(X)| —H[Px],

m=1

where we refer to the second term as negative expected en-
ergy, and the last term is the entropy of the approximation.
We can get unbiased estimates of these using samples from
Px. For intractable target distributions, we compare differ-
ent inference methods using A Dk, := Dk, —log Z, which
is tractable to compute and preserves ranking of different
approximation methods.

As baselines we consider the following: Sequential Im-
portance Sampling (SIS), Sequential Monte Carlo (SMC)
and for a subset of the environments also Gibbs sampling

(GIBBS) and sampling with loopy belief propagation (BP);
details are given in the supplementary material. We use the
baseline methods in the following way: We generate a set of
particles {x’};< of size I such that we exhaust the budget
B, and then return the (potentially weighted) sum of atoms
> <7 P'6(z,) as the approximation density; here 4 is the
Kronecker delta, and p° are either set to 1 /I for GIBBS, BP
and to the self-normalized importance weights for SIS and
SMC. Hyperparameters for all methods where tuned indi-
vidually for different families of distributions on an initial
set of experiments and then kept constant across all reported
experiments. For further details, see the supplementary ma-
terial. For SIS and SMC, the proposal distribution plays a
comparable role to the state-action prior in TREESAMPLE.
Therefore, for all experiments we used the same parametric
family for Q¢ for TREESAMPLE, SIS and SMC.

For the sake of simplicity, in the experiments we measured
and constrained the inference budget B in terms of reward
evaluations, i.e. each pointwise evaluate of a R,, incurs a
cost of one, instead of factor evaluations.

4.1 TREESAMPLE w/o Parametric Value Function

We first investigated inference without learned paramet-
ric Q?. Instead, we used the simple heuristic of setting
Vavn Q¢ (alr<,) := (N — n)log K, which corresponds
to the state-action values when all factors 1,,, = 0 vanish
everywhere.

Chain Distributions We initially tested the algorithms on
inference in chain-structured factor graphs (CHAINS, CH).
These allow for exact inference in linear time, and therefore
we can get unbiased estimates of the true Kullback-Leibler
divergences. We report results averaged over 10° different
chains of length N = 10 with randomly generated unary
and binary potential functions; for details, see supplemen-
tary material. The number of states per variable was set
to K = 5, yielding KV ~ 107 states in total. The results
shown in fig.[T|as a function of the inference budget B, show
that TREESAMPLE outperforms the SMC baseline (see also
tab.[T). In particular, TREESAMPLE generates approxima-
tions of similar quality compared to SMC with a roughly
30 times smaller budget. We further investigated the energy
and entropy contributions to Dy, separately. We define
Aenergy= —Epy [1] + Epy [9] (lower is better), and
Aentropy= H[P%] —H][Px] (higher is better). Fig.[1]shows
that TREESAMPLE finds approximations that have lower
energy as well as higher entropy compared to SMC.

A known limitation of tree search methods is that they
tend to under-perform for shallow (here small V) decision-
making problems with large action spaces (here large K).
We performed experiments on chain distributions with vary-
ing K and N while keeping the state-space size approxi-
mately constant, i.e. N log K = const. We confirmed that

Approximate Inference with Monte Carlo Tree Search

54 ! ! ! 1 L
4- L
L 3- B
2- L
1- L
0+ 1 1 I I r

2.5 3.0 3.5 4.0 4.5 5.0

log,y budget B

Figure 1:

.o TreeSample ~
SMC

A entropy

—A energy

Comparison of TREESAMPLE to SMC on inference in 1000 randomly generated Markov chains. Left:

Approximation error as a function of inference budget (log-scale), showing that SCM needs more than 30 times the budget
of TREESAMPLE to generate comparable approximations. Right: TREESAMPLE finds approximations with both higher

entropy and lower energy.

Table 1: Approximation error (lower is better) for different

inference methods on four distribution classes.
CH | PM-CH | FGl | FG2

SIS 11.61 9.23 -21.97 -31.70
SMC 1.94 7.08 -24.09 -35.90
GIBBS - - -18.67 -25.12
BP exact exact -21.50 -31.48
TS 0.53 341 -28.89 | -38.709

for very shallow, bushy problems with log K > N, SMC
outperforms TREESAMPLE, whereas TREESAMPLE domi-
nates SMC in all other problem configurations, see figure in
supplementary material.

Next, we considered chain-structured distributions where
the indices of the variables X,, do not correspond to the
ordering in the chain; we call these PERMUTEDCHAINS
(PM-CH). These are in general more difficult to solve as
they exhibit "delayed" rewards, i.e. binary chain potentials
Ym(Xs(n)> Xo(nt1)) depend on non-consecutive variables.
This can create "dead-end" like situations, that SMC, not
having the ability to backtrack, can get easily stuck in. In-
deed, we find that SCM performs only somewhat better on
this class of distributions than SIS, whereas TREESAMPLE
achieves better results by a wide margin. Results on both
families of distributions are shown in tab. [Il

Factor Graphs We also tested the inference algorithms
on two classes of non-chain factor graphs, denoted as FAC-
TORGRAPHS1 (FG1) and FACTORGRAPHS2 (FG2). Dis-
tributions in FACTORGRAPHS1 are over N = 10 variables
with K = 5 states each. Factors were randomly generated
with maximum degree d of 4 and their d¥ values where iid
drawn from N (0, 1). Distributions in FACTORGRAPHS2
are over N = 20 binary variables, i.e. K = 2. These dis-
tributions are generated by two types of of factors: NOT
(degree 2) and MAJORITY (max degree 4), both taking val-
ues in {0, 1}. Results are shown in tab. [I} For both families
of distributions, TREESAMPLE outperforms all considered

baselines by a wide margin. We found that GIBBS gener-
ally failed to find configurations with high energy due to
slow mixing. BP-based sampling was observed to generate
samples with high energy but small entropy, yielding results
comparable to SIS.

4.2 TREESAMPLE with Parametric Value Functions

Next, we investigated the performance of TREESAMPLE, as
well as SMC, with additional parametric state-action value
functions Q¢ (used as proposal for SMC). We focused on
inference problems from FACTORGRAPHS2. We imple-
mented the inference algorithm as a distributed architecture
consisting of a worker and a learner process, both running
simultaneously. The worker requests an inference problem
instance, and performs inference either with TREESAMPLE
or SMC with a small budget of B = 2500 using the cur-
rent parametric Q?. After building the approximation Py,
128 independent samples x* ~ Px are drawn from it and
the inferred Q-values Q,,(-|z%,) fori = 1,...,128 and
n = 1,..., N are written into a replay buffer as training
data; following this, the inference episode is terminated, the
tree is flushed and a new episode starts. The learner process
samples data from the replay as training data for updating
the parametric Q¢ with an SGD step on a minibatch of size
128; then the updated model parameters ¢ are sent to the
worker. We tracked the error of the inference performed
on the worker using the unnormalized A D, as a function
of the number of completed inference episodes. We expect
A Dy, to decrease, as Q¢ adapts to the inference problem,
and therefore becomes better at guiding the search. Sepa-
rately, we also track the inference performance of only using
the value function Q® without additional search around it,
denoted as ADEL. This is a purely parametric approxi-
mation to the inference problem, trained by samples from
TREESAMPLE and SMC respectively. We observed that
ADxy, as well as AD, stabilized after roughly 1500 in-
ference episodes for all experiments. Results were then
averaged over episodes 2000-4000 and are shown in tab.

Lars Buesing, Theophane Weber, Nicolas Hees

Table 2: Approximation error for inference in factor graphs for different types of value functions and training regimes.

value func. %] MLP GNN
single graph N/A Yes Yes No No No No
Nirain N/A 20 20 20 12 16 24
Q? trained by SMC: AD?;L - +1.63 | -0.19 | -0.97 | -1.00 | -1.17 | -0.64
Q% + SMC: ADkL +2.72 | 4293 | +1.64 | +2.56 | 42.00 | +1.64 | +2.10
Q° trained by TREES AMPLE: ADﬁL - -3.61 | -3.86 | -2.05 | -2.12 | -2.52 | -1.83
Q% + TREESAMPLE: ADkr, 0.00 | -3.63 | -3.87 | -2.23 | -2.22 | -2.64 | -2.35

Results in tab. 2] are medians over 20 runs and, to facilitate
comparison, are reported relative to A Dy, for TREESAM-
PLE without value functions.

We first performed a simple set of "sanity-check" experi-
ments on TREESAMPLE with parametric value functions in a
non-transfer setting, where the worker repeatedly solves the
same inference problem arising from a single factor graph.
As value function, we used a simple MLP with 4-layers and
256 hidden units each. As shown in the second column of
tab. 2] approximation error A Dy, decreases significantly
compared to plain TREESAMPLE without value functions.
This corroborates that the value function can indeed cache
part of the previous search trees and facilitate inference if
training and testing factor graphs coincide. Furthermore,
we observed that once Q¢ is fully trained, the inference er-
ror ADE’;L obtaind using only Q¢ is only marginally worse
than A Dy, using Q® plus TREESAMPLE-search on top of
it; see row four and five in tab. [2] respectively. This indi-
cates that the value function was powerful enough in this
experiment to almost cache the entire search computation
of TREESAMPLE.

Next, we investigated graph neural networks (GNNs)
(Battaglia et al., [2018)) as value functions Qd’. This func-
tion class can make explicit use of the structure of the fac-
tor graph instances. Details about the architecture can be
found in (Battaglia et al., 2018)) and the supplementary ma-
terial, but are briefly described in the following. GNNs
consist of two types of networks, node blocks and edge
blocks (we did not use global networks), that are connected
according to the factor graph at hand, and executed mul-
tiple times mimicking a message-passing like procedure.
We used three node block networks, one for each type of
graph node, i.e. variable node (corresponding to a variable
X,.), NOT-factors and MAJORITY-factors. We used four
edge block networks, namely one for each combination
of {incoming,outgoing} x {NOT, MAJORITY}. Empiri-
cally, we found that GNNs slightly outperform MLPs in the
non-transfer setting, see third column of tab. Q} The real
advantage of GNNs comes into play in a transfer setting,
when the worker performs inference in a new factor graph
for each episode. We keep the number of variables fixed
(Nirain = Niest = 20) but vary the number and configura-
tion of factors across problems. GNNs successfully general-
ize across graphs, see fourth column of tab. [2] This is due

to their ability to make use of the graph topology of a new
factor graph instance, by connecting its constituent node and
edge networks accordingly. Furthermore, the node and edge
networks evidently learned generic message passing com-
putations for variable nodes as well as NOT/MAJORITY
factor nodes. The results show that a suitable Q¢ general-
izes knowledge across inference problems, leading to less
approximation error on new distributions. Furthermore, we
investigated a transfer setting where the worker solves infer-
ence problems on factor graphs of sizes Nipain = 12, 16 or
24, but performance is tested on graphs of size Niest = 20;
see columns five to seven in tab. 2] Strikingly, we find that
the value functions generalize as well across problems of
different sizes as they generalize across problems of the
same size. This demonstrates that prior knowledge can suc-
cessfully guide the search and greatly facilitate inference.

Finally, we investigated the performance of SMC with
trained value functions Q¢; see rows one and two in tab.
Overall, we found that performance was worse compared
to TREESAMPLE: Value functions Q? trained by SMC
were found to give worse results ADﬁL compared to those
trained by TREESAMPLE, and overall inference error was
worse compared to TREESAMPLE. Interestingly, we found
that once Q? is fully trained, performing additional SMC
on top of it made results worse. Although initially counter-
intuitive, these results are sensible in our problem setup.
The entropy of SMC approximations ~ log [is essentially
given by the number of particles I that SMC produces; this
number is limited by the budget B that can be used to com-
pute importance weights. Once a parametric Q? is trained,
it does not need to make any further calls to the 1),,, factors,
and can therefore exhibit much higher entropy, therefore
making ADﬁL smaller than ADkr,.

5 Related Work

TREESAMPLE is based on the connection between proba-
bilistic inference and maximum-entropy decision-making
problems established by previous work. This connection
has mostly been used to solve RL problems with inference
methods e.g. (Attiasl 2003 [Hoffman et al.,|2007). Closely
related to our approach, this relationship has also been used
in the reverse direction, i.e. to solve inference problems
using tools from RL (Mnih and Gregor, |2014; (Weber et al.,

Approximate Inference with Monte Carlo Tree Search

2015 [Wingate and Weber, [2013}; |Schulman et al., 2015},
Weber et al.,[2019), however without utilizing tree search
and emphasizing the importance of exploration for infer-
ence. The latter has been recognized in (Lu et al.,|2018)), and
applied to hierarchical partitioning for inference in continu-
ous spaces, see also (Rainforth et al.| 2018]). In contrast to
this, we focus on discrete domains with sequential decision-
making utilizing MCTS and value functions.

For approximating general probabilistic inference problems,
Markov Chain Monte Carlo (MCMC) has proven very suc-
cessful in practice. MCMC operates on a fully specified,
approximate sample which is perturbed iteratively by a tran-
sition operator. The latter is usually designed specifically
for a family of distributions to leverage problem structure
for achieving fast mixing. However, mixing times are diffi-
cult to analyze theoretically and hard to monitor in practice
(Cowles and Carlin, [{1996). TREESAMPLE circumvents the
mixing problem by generating a new sample "from scratch”
when returning to the root node and then iteratively step-
ping through the dimensions of the random vector. Fur-
thermore, TREESAMPLE can make use of powerful neural
networks for approximating conditionals of the target, thus
caching computations for related inference problems. Al-
though, adaptive MCMC methods exist, they usually only
consider small sets of adaptive parameters (Andrieu and
Thoms, 2008). Recently, MCMC methods have been ex-
tended to transition operators generated by neural networks,
which are trained either by adversarial training, meta learn-
ing or mixing time criteria (Song et al.| 2017; [Levy et al.,
2017 |[Neklyudov et al., 2018; Wang et al., |2018)). How-
ever, these were formulated for continuous domains and
rely on differentiability and thus do not carry over directly
to discrete domains.

Our proposed algorithm is closely related to Sequential
Monte Carlo (SMC) methods (Del Moral et al., 2006])), an-
other class of broadly applicable inference algorithms. Of-
ten, these methods are applied to generate approximate sam-
ples by sequentially sampling the dimensions of a random
vector, e.g. in particle filtering for temporal inference prob-
lems (Doucet and Johansen, [2009). Usually, these methods
do not allow for backtracking, i.e. re-visiting previously
discarded partial configurations, although few variants with
some back-tracking heuristics do exist (Klepal et al., |2008;
Grassberger, 2004). In contrast, the TREESAMPLE algo-
rithm decides at every iteration where to expand the current
tree based on a full tree-traversal from the root and there-
fore allows for backtracking an arbitrary number of steps.
Furthermore, we propose to train value functions which
approximately marginalize over the "future" (i.e. variables
following the one in question in the ordering), thus taking
into account relevant downstream effects. |Gu et al.[(2015));
Kempinska and Shawe-Taylor|(2017) introduce adaptive NN
proposals, i.e. value functions in our formulation, but these
are trained to match the "filtering" distribution, thus they

do not marginalize over the future. In the decision-making
formulation, this corresponds to learning proposals based
on immediate rewards instead of total returns. However,
recent work in continuous domains has begun to address
this (Guarniero et al.; 2017;|Heng et al.|[2017; Lawson et al.,
2018} |Piché et al., 2018]), however, they do not make use of
guided systematic search.

Furthermore, Weighted Model Counting (WMC) is an exact
inference method related to TREESAMPLE. The target prob-
ability distribution is represented as Boolean formulas with
associated weights, and inference is carried out by summing
weights over satisfying assignments of the associated SAT
problem (Chavira and Darwiche, 2008)). In particular, it has
been shown that DPLL-style SAT solvers (Davis et al.,|1962)
can be extended to exactly solve general discrete inference
problems (Sang et al.| 2005} Bacchus et al., 2009), often
outperforming other standard methods such as the junction
tree algorithm (Lauritzen and Spiegelhalter, [1988)). Similar
to TREESAMPLE, this DPLL-based approach performs in-
ference by search, i.e. it recursively instantiates variables of
the SAT problem.

6 Discussion

For sake of simplicity, we assumed in this paper that the
computational cost of inference is dominated by evalua-
tions of the factor oracles. This assumption is well justi-
fied e.g. in applications, where some factors represent large
scale scientific simulators (Baydin et al.,[2019)), or in mod-
ern deep latent variable models, where some factors are
given by deep neural networks that take potentially high-
dimensional observations as inputs. If this assumption is
violated, i.e. all factors can be evaluated cheaply, the compar-
ison of TREESAMPLE to SMC and other inference methods
will become less favourable for the former. TREESAMPLE
incurs an overhead for traversing a search tree before ex-
panding it, attempting to use the information of all previous
oracle evaluations. If these are cheap, a less sequential and
more parallel approach, such as SMC, might become more
competitive.

We expect that TREESAMPLE can be improved and ex-
tended in many ways. Currently, the topology of the factor
graph is only partially used for the reward definition and
potentially for graph net value functions. One obvious way
to better leverage it would be to check if after conditioning
on a prefix z.,, corresponding to a search depth n, the
factor graph decomposes into independent components that
can be solved independently. Furthermore, TREESAMPLE
uses a fixed ordering of the variables. However, a good
variable ordering can potentially make the inference prob-
lem much easier. Leveraging existing or developing new
heuristics for a problem-dependent and dynamic variable
ordering could potentially increase the inference efficiency
of TREESAMPLE.

Lars Buesing, Theophane Weber, Nicolas Hees

References

Christophe Andrieu and Johannes Thoms. A tutorial on
adaptive MCMC. Statistics and computing, 18(4):343—
373, 2008.

Hagai Attias. Planning by probabilistic inference. In AIS-
TATS, 2003.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235-256, 2002.

Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi.
Solving # SAT and Bayesian inference with backtracking
search. Journal of Artificial Intelligence Research, 34:
391442, 2009.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Al-
varo Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive bi-
ases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

Atllim Giines Baydin, Lei Shao, Wahid Bhimji, Lukas
Heinrich, Lawrence Meadows, Jialin Liu, Andreas
Munk, Saeid Naderiparizi, Bradley Gram-Hansen, Gilles
Louppe, et al. Etalumis: Bringing Probabilistic Program-

ming to Scientific Simulators at Scale. arXiv preprint
arXiv:1907.03382, 2019.

Cameron B Browne, Edward Powley, Daniel Whitehouse,
Simon M Lucas, Peter I Cowling, Philipp Rohlfshagen,
Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of Monte Carlo tree search
methods. IEEFE Transactions on Computational Intelli-
gence and Al in games, 4(1):1-43, 2012.

Mark Chavira and Adnan Darwiche. On probabilistic infer-
ence by weighted model counting. Artificial Intelligence,
172(6-7):772-799, 2008.

Mary Kathryn Cowles and Bradley P Carlin. Markov chain
Monte Carlo convergence diagnostics: a comparative
review. Journal of the American Statistical Association,
91(434):883-904, 1996.

Adnan Darwiche. A logical approach to factoring belief
networks. KR, 2:409-420, 2002.

Martin Davis, George Logemann, and Donald Loveland. A
machine program for theorem-proving. Communications
of the ACM, 5(7):394-397, 1962.

Peter Dayan and Geoffrey E Hinton. Using expectation-
maximization for reinforcement learning. Neural Compu-
tation, 9(2):271-278, 1997.

Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Se-
quential Monte Carlo samplers. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 68
(3):411-436, 2006.

Arnaud Doucet and Adam M Johansen. A tutorial on parti-
cle filtering and smoothing: Fifteen years later. Handbook
of nonlinear filtering, 12(656-704):3, 2009.

Peter Grassberger. Sequential Monte Carlo methods for
protein folding. arXiv preprint cond-mat/0408571, 2004.

Shixiang Shane Gu, Zoubin Ghahramani, and Richard E
Turner. Neural adaptive sequential Monte Carlo. In Ad-

vances in Neural Information Processing Systems, pages
2629-2637, 2015.

Pieralberto Guarniero, Adam M Johansen, and Anthony
Lee. The iterated auxiliary particle filter. Journal of the
American Statistical Association, 112(520):1636—-1647,
2017.

W Keith Hastings. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 1970.

Jeremy Heng, Adrian N Bishop, George Deligiannidis,
and Arnaud Doucet. Controlled sequential Monte Carlo.
arXiv preprint arXiv:1708.08396, 2017.

Matt Hoffman, Arnaud Doucet, Nando de Freitas, and Ajay
Jasra. Trans-dimensional MCMC for Bayesian policy
learning. In Proceedings of the 20th International Con-
ference on Neural Information Processing Systems, pages
665—-672. Curran Associates Inc., 2007.

Kira Kempinska and John Shawe-Taylor. Adversarial Se-
quential Monte Carlo. In Bayesian Deep Learning (NIPS
Workshop), 2017.

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional Bayes. arXiv preprint arXiv:1312.6114, 2013.

Martin Klepal, Stephane Beauregard, et al. A backtracking
particle filter for fusing building plans with PDR displace-
ment estimates. In 2008 5th Workshop on Positioning,
Navigation and Communication, pages 207-212. IEEE,
2008.

Levente Kocsis and Csaba Szepesvdri. Bandit based Monte-
Carlo planning. In European conference on machine
learning, pages 282-293. Springer, 2006.

Steffen L Lauritzen and David J Spiegelhalter. Local compu-
tations with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Statis-
tical Society: Series B (Methodological), 50(2):157-194,
1988.

Dieterich Lawson, George Tucker, Christian A Naesseth,
Chris J Maddison, Ryan P Adams, and Yee Whye Teh.
Twisted variational sequential Monte Carlo. In Bayesian
Deep Learning Workshop, NIPS, 2018.

Daniel Levy, Matthew D Hoffman, and Jascha Sohl-
Dickstein. Generalizing Hamiltonian Monte Carlo with
neural networks. arXiv preprint arXiv:1711.09268, 2017.

Xiaoyu Lu, Tom Rainforth, Yuan Zhou, Jan-Willem van de
Meent, and Yee Whye Teh. On Exploration, Exploitation
and Learning in Adaptive Importance Sampling. arXiv
preprint arXiv:1810.13296, 2018.

Approximate Inference with Monte Carlo Tree Search

Vikash Mansinghka, Daniel Roy, Eric Jonas, and Joshua
Tenenbaum. Exact and approximate sampling by sys-
tematic stochastic search. In Artificial Intelligence and
Statistics, pages 400-407, 2009.

Andriy Mnih and Karol Gregor. Neural variational infer-
ence and learning in belief networks. arXiv preprint
arXiv:1402.0030, 2014.

Radford M Neal et al. MCMC using Hamiltonian dynamics.
Handbook of markov chain monte carlo, 2(11):2, 2011.

Kirill Neklyudov, Pavel Shvechikov, and Dmitry Vetrov.
Metropolis-Hastings view on variational inference and
adversarial training. arXiv preprint arXiv:1810.07151,
2018.

Alexandre Piché, Valentin Thomas, Cyril Ibrahim, Yoshua
Bengio, and Chris Pal. Probabilistic planning with se-
quential Monte Carlo methods. ICLR 2019, 2018.

Tom Rainforth, Yuan Zhou, Xiaoyu Lu, Yee Whye Teh,
Frank Wood, Hongseok Yang, and Jan-Willem van de
Meent. Inference trees: Adaptive inference with explo-
ration. arXiv preprint arXiv:1806.09550, 2018.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar.
On stochastic optimal control and reinforcement learning
by approximate inference. In Twenty-Third International
Joint Conference on Artificial Intelligence, 2013.

Dan Roth. On the hardness of approximate reasoning. Arti-
ficial Intelligence, 82(1-2):273-302, 1996.

Tian Sang, Paul Beame, and Henry Kautz. Solving Bayesian
networks by weighted model counting. In Proceedings
of the Twentieth National Conference on Artificial Intelli-
gence (AAAI-05), volume 1, pages 475-482. AAAI Press,
2005.

John Schulman, Nicolas Heess, Theophane Weber, and
Pieter Abbeel. Gradient Estimation Using Stochastic
Computation Graphs. CoRR, abs/1506.05254, 2015.

David Silver, Aja Huang, Chris J] Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, loannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of Go with
deep neural networks and tree search. nature, 529(7587):
484, 2016.

Jiaming Song, Shengjia Zhao, and Stefano Ermon. A-nice-
MC: Adversarial training for MCMC. In Advances in Neu-
ral Information Processing Systems, pages 5140-5150,
2017.

Larry Stockmeyer. On approximation algorithms for # P.
SIAM Journal on Computing, 14(4):849-861, 1985.

Tongzhou Wang, Yi Wu, Dave Moore, and Stuart J Russell.
Meta-learning MCMC proposals. In Advances in Neural
Information Processing Systems, pages 4146-4156, 2018.

Theophane Weber, Nicolas Heess, S. M. Ali Eslami, John
Schulman, David Wingate, and David Silver. Reinforced

variational inference. In In Advances in Neural Informa-
tion Processing Systems (NIPS) Workshop on Advances
in Approximate Bayesian Inference. 2015, 2015.

Théophane Weber, Nicolas Heess, Lars Buesing, and David
Silver. Credit Assignment Techniques in Stochastic Com-
putation Graphs. CoRR, abs/1901.01761, 2019.

David Wingate and Theophane Weber. Automated vari-
ational inference in probabilistic programming. arXiv
preprint arXiv:1301.1299, 2013.

	Introduction
	Inference with Budget Constraint
	Inference with Monte Carlo Tree Search
	Sequential Decision-Making Representation
	TreeSample Algorithm
	Tree Construction with Soft-Bellman MCTS
	Consistency

	TreeSample with Learned Parametric Priors

	Experiments
	TreeSample w/o Parametric Value Function
	TreeSample with Parametric Value Functions

	Related Work
	Discussion

