Supplementary Materials

1 Preliminary lemmas

The following lemma gives some fundamental results for $\sin \Theta(U, V)$, which can be easily verified via definition. **Lemma 1.** Let $[U, U_c]$ and $[V, V_c]$ be two orthogonal matrices with $U, V \in \mathbb{R}^{n \times k}$. Then

$$\|\sin\Theta(U,V)\|_{\text{ui}} = \|U_{\text{c}}^{\text{T}}V\|_{\text{ui}} = \|U^{\text{T}}V_{\text{c}}\|_{\text{ui}}.$$

Here $\|\cdot\|_{\text{ui}}$ denotes any unitarily invariant norm, including the spectral norm and Frobenius norm. In particular, for the spectral norm, it holds $\|\sin\Theta(U,V)\| = \|UU^{\mathrm{T}} - VV^{\mathrm{T}}\|$; for the Frobenius norm, it holds $\|\sin\Theta(U,V)\|_F = \frac{1}{\sqrt{2}} \|UU^{\mathrm{T}} - VV^{\mathrm{T}}\|_F$.

The following lemma is the well-known Weyl theorem, which gives the perturbation bound for eigenvalues of Hermitian matrix.

Lemma 2. (Stewart and Sun, 1990, p.203) For two Hermitian matrices $A, \widetilde{A} \in \mathbb{C}^{n \times n}$, let $\lambda_1 \leq \cdots \leq \lambda_n$, $\widetilde{\lambda}_1 \leq \cdots \leq \widetilde{\lambda}_n$ be eigenvalues of A, \widetilde{A} , respectively. Then

$$|\lambda_j - \tilde{\lambda}_j| \le ||A - \tilde{A}||, \quad \text{for } 1 \le j \le n.$$

The following lemma is used to establish the perturbation bound for the invariant subspace of a Hermitian matrix, which is due to Davis and Kahan.

Lemma 3. (Davis and Kahan, 1970, Theorem 5.1) Let H and M be two Hermitian matrices, and let S be a matrix of a compatible size as determined by the Sylvester equation

$$HY - YM = S$$
.

If either all eigenvalues of H are contained in a closed interval that contains no eigenvalue of M or vice versa, then the Sylvester equation has a unique solution Y, and moreover

$$||Y||_{\mathrm{ui}} \le \frac{1}{\delta} ||S||_{\mathrm{ui}},$$

where $\delta = \min |\lambda - \omega|$ over all eigenvalues ω of M and all eigenvalues λ of H.

For a rectangular matrix $A \in \mathbb{R}^{m \times n}$ (without loss of generality, assume $m \geq n$), let the SVD of A be $A = U\Sigma V^{\mathrm{T}}$, where $U = [U_1 \mid U_2 \mid U_3] = [u_1, \ldots, u_k \mid u_{k+1}, \ldots, u_r \mid u_{r+1}, \ldots, u_m] \in \mathbb{R}^{m \times m}$, $V = [V_1 \mid V_2 \mid V_3] = [v_1, \ldots, v_k \mid v_{k+1}, \ldots, v_r \mid v_{r+1}, \ldots, v_n] \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $\Sigma = \begin{bmatrix} \mathrm{diag}(\Sigma_1, \Sigma_2) & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}$, $\Sigma_1 = \mathrm{diag}(\sigma_1, \ldots, \sigma_k)$, $\Sigma_2 = \mathrm{diag}(\sigma_{k+1}, \ldots, \sigma_r)$ with $\sigma_1 \geq \cdots \geq \sigma_r > 0$, $k \leq r = \mathrm{rank}(A)$. Then the spectral decomposition of $\begin{bmatrix} 0 & A \\ A^{\mathrm{T}} & 0 \end{bmatrix}$ can be given by

$$\begin{bmatrix} 0 & A \\ A^{\mathrm{T}} & 0 \end{bmatrix} = X \operatorname{diag}(\Sigma_1, \Sigma_2, -\Sigma_1, -\Sigma_2, 0_{n-r}, 0_{m-r}) X^{\mathrm{T}}, \tag{1}$$

where $X=\frac{1}{\sqrt{2}}\begin{bmatrix} U & -U & 0 & \sqrt{2}U_3 \\ V & V & \sqrt{2}V_3 & 0 \end{bmatrix}$ is an orthogonal matrix.

With the help of (1) and Lemmas 2 and 3, we are able to prove Lemma 4, which established an error bound for singular vectors.

Lemma 4. Given $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, let the SVD of A be given as above. Let $\hat{\sigma}_j$, \hat{u}_j , \hat{v}_j be respectively the approximate singular values, right and left singular vectors of A satisfying that $\widehat{U} = [\hat{u}_1, \dots, \hat{u}_k] \in \mathbb{R}^{m \times k}$ and $\widehat{V} = [\hat{v}_1, \dots, \hat{v}_k] \in \mathbb{R}^{n \times k}$ are both orthonormal, $\widehat{\Sigma} = \widehat{U}^T A \widehat{V} = \operatorname{diag}(\hat{\sigma}_1, \dots, \hat{\sigma}_k)$ with $\hat{\sigma}_1 \ge \dots \ge \hat{\sigma}_k > 0$. Let

$$E = A\widehat{V} - \widehat{U}\widehat{\Sigma}, \qquad F = A^{\mathrm{T}}\widehat{U} - \widehat{V}\widehat{\Sigma}. \tag{2}$$

If

$$||(I_m - \hat{U}\hat{U}^T)A(I_n - \hat{V}\hat{V}^T)|| < \hat{\sigma}_k, \quad \max\{||E||, ||F||\} < \sigma_k - \sigma_{k+1},$$

then

$$\max\{\Theta_{u}, \Theta_{v}\} \leq \eta, \qquad \frac{\|U_{1}\Sigma_{1}V_{1}^{\mathrm{T}} - \widehat{U}\widehat{\Sigma}\widehat{V}^{\mathrm{T}}\|_{\max}}{\|A\|} \leq (\|U_{1}\|_{2,\infty}\Theta_{v} + \|V_{1}\|_{2,\infty}\Theta_{u}) + (1 + 3\|U_{1}\|_{2,\infty}\|V_{1}\|_{2,\infty})\Theta_{u}\Theta_{v},$$

where $\Theta_u = \|\sin\Theta(U_1, \widehat{U})\|$, $\Theta_v = \|\sin\Theta(V_1, \widehat{V})\|$, $\eta = \frac{\max\{\|E\|, \|F\|\}}{\sigma_k - \sigma_{k+1} - \max\{\|E\|, \|F\|\}}$

Proof. Let

$$\begin{split} H &= \begin{bmatrix} 0 & A \\ A^{\mathrm{T}} & 0 \end{bmatrix}, & X_1 &= \frac{1}{\sqrt{2}} \begin{bmatrix} U_1 & -U_1 \\ V_1 & V_1 \end{bmatrix}, \\ \widehat{X}_1 &= \frac{1}{\sqrt{2}} \begin{bmatrix} \widehat{U} & -\widehat{U} \\ \widehat{V} & \widehat{V} \end{bmatrix}, & X_2 &= \frac{1}{\sqrt{2}} \begin{bmatrix} U_2 & -U_2 & 0 & \sqrt{2}U_3 \\ V_2 & V_2 & \sqrt{2}V_3 & 0 \end{bmatrix}. \end{split}$$

By calculations, we have

$$||X_1 X_1^{\mathrm{T}} - \hat{X}_1 \hat{X}_1^{\mathrm{T}}||_{ui} = ||\operatorname{diag}(U_1 U_1^{\mathrm{T}} - \hat{U}\hat{U}^{\mathrm{T}}, V_1 V_1^{\mathrm{T}} - \hat{V}\hat{V}^{\mathrm{T}})||_{ui}$$
(3)

By simple calculations, we have

$$H\widehat{X}_{1} - \widehat{X}_{1}\operatorname{diag}(\widehat{\Sigma}, -\widehat{\Sigma}) = \frac{1}{\sqrt{2}} \begin{bmatrix} A\widehat{V} - \widehat{U}\widehat{\Sigma} & A\widehat{V} - \widehat{U}\widehat{\Sigma} \\ A^{T}\widehat{U} - \widehat{V}\widehat{\Sigma} & -A^{T}\widehat{U} + \widehat{V}\widehat{\Sigma} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} E & E \\ F & -F \end{bmatrix} \triangleq R, \tag{4a}$$

$$HX_2 - X_2 \operatorname{diag}(\Sigma_2, -\Sigma_2, 0, 0) = 0,$$
 (4b)

where (4a) uses (2), (4b) uses the SVD of A. Then it follows from (4a) that

$$||R|| = \left| \operatorname{diag}(E, F) \frac{1}{\sqrt{2}} \begin{bmatrix} I_k & I_k \\ I_k & -I_k \end{bmatrix} \right| = ||\operatorname{diag}(E, F)|| = \max\{||E||, ||F||\}.$$
 (5)

Pre-multiplying (4a) by $X_2^{\rm T}$ and using (4b), we have

$$X_2^{\mathrm{T}}R = X_2^{\mathrm{T}}H\widehat{X}_1 - X_2^{\mathrm{T}}\widehat{X}_1\operatorname{diag}(\widehat{\Sigma}, -\widehat{\Sigma}) = \operatorname{diag}(\Sigma_2, -\Sigma_2, 0, 0)X_2^{\mathrm{T}}\widehat{X}_1 - X_2^{\mathrm{T}}\widehat{X}_1\operatorname{diag}(\widehat{\Sigma}, -\widehat{\Sigma}). \tag{6}$$

To apply Lemma 3 to (6), we need to estimate the gap between the eigenvalues of $\operatorname{diag}(\widehat{\Sigma}, -\widehat{\Sigma})$ and those of $\operatorname{diag}(\Sigma_2, -\Sigma_2, 0, 0)$. Using (4a) and $\widehat{U}^T A \widehat{V} = \widehat{\Sigma}$, we have

$$(H - R\widehat{X}_1^{\mathrm{T}} - \widehat{X}_1 R^{\mathrm{T}})\widehat{X}_1 = H\widehat{X}_1 - R = \widehat{X}_1 \operatorname{diag}(\widehat{\Sigma}, -\widehat{\Sigma}), \tag{7}$$

which implies that $\pm \hat{\sigma}_j$ are eigenvalues of $H - R\widehat{X}_1^{\mathrm{T}} - \widehat{X}_1 R^{\mathrm{T}}$, and the corresponding eigenvectors are $\frac{1}{\sqrt{2}} \begin{bmatrix} \pm \hat{u}_j \\ \hat{v}_j \end{bmatrix}$, for $j = 1, \ldots, k$. Next, we declare that $\hat{\sigma}_1, \ldots, \hat{\sigma}_k$ are the k largest eigenvalues of $H - R\widehat{X}_1^{\mathrm{T}} - \widehat{X}_1 R^{\mathrm{T}}$. This is because

$$\begin{aligned} \max_{\widehat{X}_{1}^{T}x=0} \frac{x^{T}(H-R\widehat{X}_{1}^{T}-\widehat{X}_{1}R^{T})x}{x^{T}x} \\ \leq & \|(I-\widehat{X}_{1}\widehat{X}_{1}^{T})(H-R\widehat{X}_{1}^{T}-\widehat{X}_{1}R^{T})(I-\widehat{X}_{1}\widehat{X}_{1}^{T})\| \\ = & \|(I-\widehat{X}_{1}\widehat{X}_{1}^{T})H(I-\widehat{X}_{1}\widehat{X}_{1}^{T})\| \\ = & \|\begin{bmatrix}I_{m}-\widehat{U}\widehat{U}^{T} & 0 \\ 0 & I_{n}-\widehat{V}\widehat{V}^{T}\end{bmatrix}\begin{bmatrix}0 & A \\ A^{T} & 0\end{bmatrix}\begin{bmatrix}I_{m}-\widehat{U}\widehat{U}^{T} & 0 \\ 0 & I_{n}-\widehat{V}\widehat{V}^{T}\end{bmatrix}\| \\ = & \|(I_{m}-\widehat{U}\widehat{U}^{T})A(I_{n}-\widehat{V}\widehat{V}^{T})\| < \widehat{\sigma}_{k}.\end{aligned}$$

Therefore, by Lemma 2, we have

$$|\sigma_j - \hat{\sigma}_j| \le ||R\hat{X}_1^{\mathrm{T}} + \hat{X}_1 R^{\mathrm{T}}||, \text{ for } j = 1, \dots, k.$$
 (8)

Together with (5), we get

$$|\sigma_{j} - \hat{\sigma}_{j}| \leq \|R\widehat{X}_{1}^{\mathrm{T}} + \widehat{X}_{1}R^{\mathrm{T}}\| = \max_{j} |\lambda_{j}([R, \widehat{X}_{1}] \begin{bmatrix} \widehat{X}_{1}^{\mathrm{T}} \\ R^{\mathrm{T}} \end{bmatrix})| = \max_{j} |\lambda_{j}(\begin{bmatrix} \widehat{X}_{1}^{\mathrm{T}} \\ R^{\mathrm{T}} \end{bmatrix} [R, \widehat{X}_{1}])|$$

$$= \max_{j} |\lambda_{j}(\begin{bmatrix} 0 & I_{k} \\ R^{\mathrm{T}}R & 0 \end{bmatrix})| = \|R\| = \max\{\|E\|, \|F\|\}.$$
(9)

Here we uses the property that for any two matrix $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$, the nonzero eigenvalues of AB and BA are the same.

Now by the assumption that $\max\{||E||, ||F||\} < \sigma_k - \sigma_{k+1}$, we have

$$\hat{\sigma}_k - \sigma_{k+1} = \sigma_k - \sigma_{k+1} + \hat{\sigma}_k - \sigma_k \ge \sigma_k - \sigma_{k+1} - \max\{\|E\|, \|F\|\} > 0, \tag{10}$$

therefore, the eigenvalues of diag(Σ_2 , $-\Sigma_2$, 0, 0) lie in $[-\sigma_{k+1}, \sigma_{k+1}]$, which has no eigenvalues of diag($\widehat{\Sigma}$, $-\widehat{\Sigma}$). We are able to apply Lemma 3 to (6), which yields

$$||X_2^{\mathrm{T}} \widehat{X}_1||_{\mathrm{ui}} \le \frac{||X_2^{\mathrm{T}} R||_{\mathrm{ui}}}{\sigma_k - \sigma_{k+1} - \max\{||E||, ||F||\}}.$$
(11)

Using (3), Lemma 1, (10) and (11), we get

$$\max\{\Theta_u, \Theta_v\} = \|\sin\Theta(X_1, \widehat{X}_1)\| = \|X_2^{\mathrm{T}} \widehat{X}_1\| \le \frac{\|X_2^{\mathrm{T}} R\|}{\sigma_k - \sigma_{k+1} - \max\{\|E\|, \|F\|\}} \le \eta.$$
 (12)

Let

$$\widehat{U} = U\Gamma_u = [U_1, U_2, U_3] \begin{bmatrix} \Gamma_{u1} \\ \Gamma_{u2} \\ \Gamma_{u3} \end{bmatrix}, \quad \widehat{V} = V\Gamma_v = [V_1, V_2, V_3] \begin{bmatrix} \Gamma_{v1} \\ \Gamma_{v2} \\ \Gamma_{v3} \end{bmatrix}, \quad (13)$$

where $\Gamma_{u1} \in \mathbb{R}^{k \times k}$, $\Gamma_{u2} \in \mathbb{R}^{(r-k) \times k}$, $\Gamma_{u3} \in \mathbb{R}^{(m-r) \times k}$, $\Gamma_{v1} \in \mathbb{R}^{k \times k}$, $\Gamma_{v2} \in \mathbb{R}^{(r-k) \times k}$, $\Gamma_{v3} \in \mathbb{R}^{(n-r) \times k}$, and $\begin{bmatrix} \Gamma_{u1} \\ \Gamma_{u2} \\ \Gamma_{u3} \end{bmatrix}$, $\begin{bmatrix} \Gamma_{v1} \\ \Gamma_{v3} \\ \Gamma_{v3} \end{bmatrix}$ are both orthonormal. By (12), we have

$$\left\| \begin{bmatrix} \Gamma_{u2} \\ \Gamma_{u3} \end{bmatrix} \right\| = \Theta_u, \quad \sigma_{\min}(\Gamma_{u1}) = \sqrt{1 - \Theta_u^2}, \quad \left\| \begin{bmatrix} \Gamma_{u2} \\ \Gamma_{u3} \end{bmatrix} \right\| = \Theta_v, \quad \sigma_{\min}(\Gamma_{v1}) = \sqrt{1 - \Theta_v^2}. \tag{14}$$

Substituting (13) into $\widehat{U}^{T}A\widehat{V}=\widehat{\Sigma}$ and using the SVD of A, we have

$$\widehat{\Sigma} = \left[\Gamma_{u1}^{\mathrm{T}}, \Gamma_{u2}^{\mathrm{T}}, \Gamma_{u3}^{\mathrm{T}}\right] \operatorname{diag}(\Sigma_{1}, \Sigma_{2}, 0_{(m-r)\times(n-r)}) \begin{bmatrix} \Gamma_{v1} \\ \Gamma_{v2} \\ \Gamma_{v3} \end{bmatrix} = \Gamma_{u1}^{\mathrm{T}} \Sigma_{1} \Gamma_{v1} + \Gamma_{u2}^{\mathrm{T}} \Sigma_{2} \Gamma_{v2}. \tag{15}$$

Then it follows that

$$\|\Sigma_{1} - \Gamma_{u1}\widehat{\Sigma}\Gamma_{v1}^{T}\| = \|(\Sigma_{1} - \Gamma_{u1}\Gamma_{u1}^{T}\Sigma_{1}) + (\Gamma_{u1}\Gamma_{u1}^{T}\Sigma_{1} - \Gamma_{u1}\Gamma_{u1}^{T}\Sigma_{1}\Gamma_{v1}\Gamma_{v1}^{T}) - \Gamma_{u1}\Gamma_{u2}^{T}\Sigma_{2}\Gamma_{v2}\Gamma_{v1}^{T}\|$$

$$\leq \|I - \Gamma_{u1}\Gamma_{u1}^{T}\|\|\Sigma_{1}\| + \|\Gamma_{u1}\Gamma_{u1}^{T}\|\|I - \Gamma_{v1}\Gamma_{v1}^{T}\|\|\Sigma_{1}\| + \|\Gamma_{u2}\|\|\Gamma_{v2}\|\|\Sigma_{2}\|$$

$$\leq (\Theta_{u}^{2} + \Theta_{v}^{2} + \Theta_{u}\Theta_{v})\|\Sigma_{1}\|.$$
(16)

Finally, using (14), (15), (16) and $\|\Gamma_{u1}\| \le 1$, $\|\Gamma_{v1}\| \le 1$, $\|\widehat{\Sigma}\| \le \|A\|$, we have

$$\begin{split} \|U_{1}\Sigma_{1}V_{1}^{\mathrm{T}} - \widehat{U}\widehat{\Sigma}\widehat{V}^{\mathrm{T}}\|_{\max} &= \max_{i,j} |e_{i}^{\mathrm{T}}(U_{1}\Sigma_{1}V_{1}^{\mathrm{T}} - \widehat{U}\widehat{\Sigma}\widehat{V}^{\mathrm{T}})e_{j}| \\ &= \max_{i,j} |e_{i}^{\mathrm{T}}(U_{1}\Sigma_{1}V_{1}^{\mathrm{T}} - U\Gamma_{u}\widehat{\Sigma}\Gamma_{v}^{\mathrm{T}}V^{\mathrm{T}})e_{j}| \\ &\leq \max_{i,j} |e_{i}^{\mathrm{T}}(U_{1}\Sigma_{1}V_{1}^{\mathrm{T}} - U_{1}\Gamma_{u1}\widehat{\Sigma}\Gamma_{v1}^{\mathrm{T}}V_{1}^{\mathrm{T}})e_{j}| + \|[U_{2},U_{3}]\left[\frac{\Gamma_{u2}}{\Gamma_{u3}}\right]\widehat{\Sigma}\left[\frac{\Gamma_{v2}}{\Gamma_{v3}}\right]^{\mathrm{T}}[V_{2},V_{3}]^{\mathrm{T}}\| \\ &+ \max_{i,j} \left(|e_{i}^{\mathrm{T}}[U_{2},U_{3}]\left[\frac{\Gamma_{u2}}{\Gamma_{u3}}\right]\widehat{\Sigma}\Gamma_{v1}^{\mathrm{T}}V_{1}^{\mathrm{T}}e_{j}| + |e_{i}^{\mathrm{T}}U_{1}\Gamma_{u1}\widehat{\Sigma}\left[\frac{\Gamma_{v2}}{\Gamma_{v3}}\right]^{\mathrm{T}}[V_{2},V_{3}]^{\mathrm{T}}e_{j}|\right) \\ &\leq \max_{i,j} \left(3\|e_{i}^{\mathrm{T}}U_{1}\|\|e_{j}^{\mathrm{T}}V_{1}\|\|A\|\Theta_{u}\Theta_{v} + \|A\|\Theta_{u}\Theta_{v} + \|e_{j}^{\mathrm{T}}V_{1}\|\|A\|\Theta_{u} + \|e_{i}^{\mathrm{T}}U_{1}\|\|A\|\Theta_{v}\right) \\ &\leq \|A\|\left((\|U_{1}\|_{2,\infty}\Theta_{v} + \|V_{1}\|_{2,\infty}\Theta_{u}) + (1 + 3\|U_{1}\|_{2,\infty}\|V_{1}\|_{2,\infty})\Theta_{u}\Theta_{v}\right), \end{split}$$

completing the proof.

Lemma 5. (Tropp, 2015, Corollary 6.1.2) Let S_1, \ldots, S_n be independent random matrices with common dimension $d_1 \times d_2$, and assume that each matrix has uniformly bounded deviation from its mean:

 \Box

$$\|\mathbf{S}_{\mathbf{k}} - \mathbb{E}(\mathbf{S}_k)\| \le L$$
, for each $k = 1, \dots, n$.

Let $\mathbf{Z} = \sum_{k=1}^{n} \mathbf{S}_k$, $v(\mathbf{Z})$ denote the matrix covariance statistic of the sum:

$$\begin{split} v(\mathbf{Z}) &= \max\{\|\mathbb{E}[(\mathbf{Z} - \mathbb{E}(Z))(\mathbf{Z} - \mathbb{E}(Z))^{\mathrm{H}}]\|, \|\mathbb{E}[(\mathbf{Z} - \mathbb{E}(Z))^{\mathrm{H}}(\mathbf{Z} - \mathbb{E}(Z))]\|\} \\ &= \max\{\|\mathbb{E}[\sum_{k=1}^{n} (\mathbf{S}_{k} - \mathbb{E}(\mathbf{S}_{k}))(\mathbf{S}_{k} - \mathbb{E}(\mathbf{S}_{k}))^{\mathrm{H}}]\|, \|\mathbb{E}[\sum_{k=1}^{n} (\mathbf{S}_{k} - \mathbb{E}(\mathbf{S}_{k}))^{\mathrm{H}}(\mathbf{S}_{k} - \mathbb{E}(\mathbf{S}_{k}))]\|\}. \end{split}$$

Then for all $t \geq 0$,

$$\mathbb{P}\{\|\mathbf{Z} - \mathbb{E}(\mathbf{Z})\| \ge t\} \le (d_1 + d_2) \cdot \exp\left(\frac{-t^2/2}{v(\mathbf{Z}) + Lt/3}\right).$$

Lemma 6. For any linear homogeneous function $F: \mathbb{R}^k \to \mathbb{R}^{m \times n}$, assume that the linear system of equations F(x) = C either has a unique solution or has no solution at all. Then it holds

$$\operatorname{argmin}_{x} \|F(x) - C\| = \operatorname{argmin}_{x} \|F(x) - C\|_{F}.$$

Proof. For any $A, B \in \mathbb{R}^{m \times n}$, define $\langle A, B \rangle = \operatorname{trace}(A^{\mathrm{T}}B)$. It is easy to see that $\langle \cdot, \cdot \rangle$ is an inner product over $\mathbb{R}^{m \times n}$. Denote the range space of $F(\cdot)$ by \mathcal{F} , and its orthogonal complement space by \mathcal{F}^{\perp} . Write $C = C_{\mathrm{LS}} + C$ such that $C_{\mathrm{LS}} \in \mathcal{F}$, and $C \in \mathcal{F}^{\perp}$. Then the solutions to $\min \|F(x) - C\|$ and $\min \|F(x) - C\|_F$ are nothing but the solutions to $F(x) = C_{\mathrm{LS}}$. Since $C_{\mathrm{LS}} \in \mathcal{F}$, $F(x) = C_{\mathrm{LS}}$ has at least a solution. By the assumption, the solution should be unique. The proof is completed.

Lemma 7. Let $L_* \in \mathbb{R}^{m \times n}$ with $m \geq n$, let the SVD of L_* be $L_* = U_* \Sigma_* V_*^{\mathrm{T}}$, where $U_* \in \mathbb{R}^{m \times r}$, $V_* \in \mathbb{R}^{n \times r}$ are orthonormal, $\Sigma_* = \mathrm{diag}(\sigma_{1*}, \ldots, \sigma_{r*})$ with $\sigma_{1*} \geq \cdots \geq \sigma_{r*} > 0$. Let $G \in \mathbb{R}^{m \times n}$ be a perturbation to L_* , $X \in \mathbb{R}^{m \times r}$, $Y \in \mathbb{R}^{n \times r}$ have full column rank. Denote $\theta_x = \|\sin \Theta(U_*, X)\|$, $\theta_y = \|\sin \Theta(V_1, Y)\|$. Then

$$\min_{X,Y} \|L_* - G - XY^{\mathrm{T}}\| \ge \sigma_{r*} \max\{\sqrt{1 - \theta_x^2} \theta_y, \sqrt{1 - \theta_y^2} \theta_x\} \sqrt{1 - \theta_x^2} \sqrt{1 - \theta_y^2} - \|G\|.$$

Proof. Let $U_{*,c}$, $V_{*,c}$ be such that $U = [U_*, U_{*,c}]$, $V = [V_*, V_{*,c}]$ are orthogonal. Let $\widehat{X} = U_*C_x + U_{*,c}S_x$, $\widehat{Y} = V_*C_y + V_{*,c}S_y$, where the columns of \widehat{X} , \widehat{Y} form the orthonormal basis for $\mathcal{R}(X)$ and $\mathcal{R}(Y)$, respectively, $C_x^{\mathrm{T}}C_x + S_x^{\mathrm{T}}S_x = I_r$, $C_y^{\mathrm{T}}C_y + S_y^{\mathrm{T}}S_y = I_r$. By Lemma 1, we know that $||S_x|| = \theta_x$, $||S_y|| = \theta_y$.

Noticing that

$$\begin{split} \min_{X,Y} \|L_* - XY^{\mathrm{T}}\|^2 &= \min_{D} \|U^{\mathrm{T}} L_* V - U^{\mathrm{T}} \widehat{X} D \widehat{Y}^{\mathrm{T}} V\|^2 = \min_{D} \left\| \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} C_x \\ S_x \end{bmatrix} D [C_y^{\mathrm{T}}, S_y^{\mathrm{T}}] \right\|^2 \\ &= \left\| \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} C_x \\ S_x \end{bmatrix} [C_x, S_x]^{\mathrm{T}} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} C_y \\ S_y \end{bmatrix} [C_y^{\mathrm{T}}, S_y^{\mathrm{T}}] \right\|^2, \end{split}$$

we have

$$\min_{X,Y} \|L_{*} - XY^{\mathrm{T}}\|^{2} \ge \max \left\{ \left\| C_{x} [C_{x}, S_{x}]^{\mathrm{T}} \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} C_{y} \\ S_{y} \end{bmatrix} S_{y}^{\mathrm{T}} \right\|^{2}, \left\| S_{x} [C_{x}, S_{x}]^{\mathrm{T}} \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} C_{y} \\ S_{y} \end{bmatrix} C_{y}^{\mathrm{T}} \right\|^{2} \right\} \\
\ge \max \left\{ \sigma_{\min}^{2}(C_{x}) \|S_{y}\|^{2}, \sigma_{\min}^{2}(C_{y}) \|S_{x}\|^{2} \right\} \sigma_{\min}^{2} \left([C_{x}, S_{x}]^{\mathrm{T}} \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} C_{y} \\ S_{y} \end{bmatrix} \right) \\
\ge \max \left\{ (1 - \theta_{x}^{2}) \theta_{y}^{2}, (1 - \theta_{y}^{2}) \theta_{x}^{2} \right\} (\sigma_{r*} \sqrt{1 - \theta_{x}^{2}} \sqrt{1 - \theta_{y}^{2}})^{2}$$

Combining it with the fact that $||L_* - G - XY^{\mathrm{T}}|| \ge ||L_* - XY^{\mathrm{T}}|| - ||G||$ for any X, Y, we get the conclusion. \square

Lemma 8. Let L_* , G be the same as in Lemma 7. Let $X = (L_* - G)Y$, where $Y \in \mathbb{R}^{n \times r}$ is orthonormal. Denote $\theta_x = \|\sin\Theta(U_*, X)\|$, $\theta_y = \|\sin\Theta(V_*, Y)\|$. If $\|G\| < \sigma_{r*}\sqrt{1 - \theta_y^2}$, then

$$\sigma_r(X) \ge \sigma_{r*} \sqrt{1 - \theta_y^2} - \|G\|, \qquad \theta_x \le \frac{\|G\|}{\sigma_r \sqrt{1 - \theta_y^2} - \|G\|}.$$

Proof. By Lemma 2 and Lemma 1, we have

$$\sigma_{r}(X) = \sigma_{r}((L_{*} - G)Y) \ge \sigma_{r}(L_{*}Y) - \|GY\| \ge \sigma_{r}(\Sigma_{*}V_{*}^{T}Y) - \|G\| \ge \sigma_{r_{*}}\sigma_{\min}(V_{*}^{T}Y) - \|G\|$$

$$= \sigma_{r_{*}}\sigma_{\min}^{\frac{1}{2}}(Y^{T}V_{*}V_{*}^{T}Y) - \|G\| \ge \sigma_{r_{*}}\sigma_{\min}^{\frac{1}{2}}(I_{r} - Y^{T}(I - V_{*}V_{*}^{T})Y) - \|G\|$$

$$= \sigma_{r_{*}}\sqrt{1 - \|(I - V_{*}V_{*}^{T})Y\|^{2}} - \|G\| = \sigma_{r_{*}}\sqrt{1 - \theta_{y}^{2}} - \|G\| > 0.$$

$$(17)$$

Therefore, X has full column rank. Denote $G_x = (X^T X)^{-\frac{1}{2}}$, $\widehat{X} = X G_x$. Then \widehat{X} and X = AY can be rewritten as $\widehat{X} = AY G_x$. Using Lemma 1 and (17), we have

$$\|\theta_x\| = \|U_{*,c}^{\mathrm{T}} \widehat{X}\| = \|U_{*,c}^{\mathrm{T}} (L_* - G) Y G_x\| \leq \|GY G_x\| \leq \|G\| \|G_x\| \leq \frac{\|G\|}{\sigma_r(X)} \leq \frac{\|G\|}{\sigma_{r*} \sqrt{1 - \theta_y^2 - \|G\|}}.$$

The proof is completed.

Lemma 9. Let $U, X \in \mathbb{R}^{m \times r}$ both have orthonormal columns. It holds $||X||_{2,\infty} \leq ||U||_{2,\infty} + ||\sin \Theta(U,X)||$.

Proof. Let U_c be such that $[U, U_c]$ is an orthogonal matrix. We can write $X = UC_x + U_cS_x$, where $C_x^{\mathrm{T}}C_x + S_x^{\mathrm{T}}S_x = I_r$. By Lemma 1, we have $\|\sin\Theta(U, X)\| = \|U_c^{\mathrm{T}}X\| = \|S_x\|$. Then for any $1 \le i \le m$, we have

$$||e_i^{\mathrm{T}}X|| = ||e_i^{\mathrm{T}}UC_x + e_i^{\mathrm{T}}U_cS_x|| \le ||e_i^{\mathrm{T}}U|| + ||S_x||,$$

the conclusion follows. \Box

Lemma 10. (Jain and Netrapalli, 2015, Lemmas 8,10) Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$. Suppose Ω is obtained by sampling each entry of A with probability $p \in [\frac{1}{4m}, 0.5]$. Then $w.p. \ge 1 - 1/m^{10 + \log \alpha}$,

$$\left\|\frac{1}{p}\Pi_{\Omega}(A) - A\right\| \le \frac{6\sqrt{\alpha m}}{\sqrt{p}} \|A\|_{\max}.$$

2 Proof for Main Theorems

2.1 Proof of Theorem 1

Proof of Theorem 1. First, it holds $\|(I - U_*U_*^{\mathrm{T}})M(I - V_*V_*^{\mathrm{T}})\| = \|(I - U_*U_*^{\mathrm{T}})S_*(I - V_*V_*^{\mathrm{T}})\|$. Then by assumption, we have $\|(I - U_*U_*^{\mathrm{T}})M(I - V_*V_*^{\mathrm{T}})\| < \sigma_{r*}$.

Second, we have

$$||E|| = ||MV_* - U_*\Sigma_*|| = ||L_*V_* - U_*\Sigma_* + S_*V_*|| = ||S_*V_*||,$$

$$||F|| = ||M^TU_* - V_*\Sigma_*|| = ||L_*^TU_* - V_*\Sigma_* + S_*^TU_*|| = ||S_*^TU_*||.$$

It follows

$$\max\{\|E\|, \|F\|\} = \max\{\|S_*V_*\|, \|S_*^{\mathrm{T}}U_*\|\} < \sigma_r - \sigma_{r+1}.$$

Then applying Lemma 4 gives the conclusion.

2.2 Proof of Theorem 2

Throughout the rest of this section, we follow the notations in Algorithm 1. Besides that, we will also adopt the following notations. Denote

$$r = \operatorname{rank}(L_*), \qquad \kappa_* = \kappa_2(L_*), \qquad p' = p(1 - \varrho), \qquad \Omega_t = \Omega/\operatorname{supp}(S_t), \qquad G_t = S_t - S_*.$$
 (18)

The SVDs of L_* is given by

$$L_* = [U_*, U_{*,c}] \operatorname{diag}(\Sigma_*, 0) [V_*, V_{*,c}]^{\mathrm{T}}, \tag{19}$$

where $[U_*, U_{*,c}]$ and $[V_*, V_{*,c}]$ are orthogonal matrices $U_* \in \mathbb{R}^{m \times r}$ and $V_* \in \mathbb{R}^{n \times r}$, $\Sigma_* = \operatorname{diag}(\sigma_{1*}, \dots, \sigma_{r*})$ with $\sigma_{1*} \geq \dots \geq \sigma_{r*} > 0$. Further denote

$$\theta_{x,t} = \|\sin\Theta(U_*, X_t)\|, \qquad \theta_{y,t} = \|\sin\Theta(V_*, Y_t)\|.$$
 (20)

Lemma 11. $||S_t - S_*||_{\max} \le 2||\Pi_{\Omega}(X_t \Sigma_t Y_t^{\mathrm{T}} - L_*)||_{\max} \text{ for } t = 0, 1, \dots$

Proof. Denote $\Phi_* = \text{supp}(S_*)$, $\Phi_t = \text{supp}(S_t)$, it is obvious that $S_t - S_*$ is supported on $\Phi_t \cup \Phi_*$ and $\Phi_t \cup \Phi_* \subset \Omega$. Now we claim that

$$\|\Pi_{\Omega}(S_t - S_*)\|_{\max} \le 2\|\Pi_{\Omega}(X_t \Sigma_t Y_t^{\mathrm{T}} - L_*)\|_{\max}.$$

To show the claim, it suffices to consider the following two cases.

Case (1) For any $(i,j) \in \Phi_t$, it holds $(S_t)_{(i,j)} = (L_* + S_* - X_t \Sigma_t Y_t^{\mathrm{T}})_{(i,j)}$. Then it follows that

$$|(S_t - S_*)_{(i,j)}| = |(L_* - X_t \Sigma_t Y_t^{\mathrm{T}})_{(i,j)}| \le ||\Pi_{\Omega}(X_t \Sigma_t Y_t^{\mathrm{T}} - L_*)||_{\max}.$$

Case (2) For any $(i, j) \in \Phi_* \setminus \Phi_t$, it holds $(S_t)_{(i, j)} = 0$. If $|(S_t - S_*)_{(i, j)}| = |(S_*)_{(i, j)}| > 2 \|\Pi_{\Omega}(X_t \Sigma_t Y_t^{\mathrm{T}} - L_*)\|_{\max}$, then

$$|(L_* + S_* - X_t \Sigma_t Y_t^{\mathrm{T}})_{(i,j)}| > ||\Pi_{\Omega}(L_* - X_t \Sigma_t Y_t^{\mathrm{T}})||_{\max}.$$

Noticing that S_* only changes s entries of $\Pi_{\Omega}(L_* - X_t \Sigma_t Y_t^{\mathrm{T}})$, we know that the (i,j) entry of $|\Pi_{\Omega}(L_* + S_* - X_t \Sigma_t Y_t^{\mathrm{T}})|$ is larger than the (s+1)st largest entry of $|\Pi_{\Omega}(L_* + S_* - X_t \Sigma_t Y_t^{\mathrm{T}})|$. This contradicts with $(i,j) \notin \Phi_t$. \square

Lemma 12. Assume **(A1)**. Denote $r'_s = \frac{\|S_0 - S_*\|_F^2}{\|S_0 - S_*\|^2}$. Let S_0 be obtained as in Algorithm 1. It holds

$$||S_0 - S_*|| \le 2\sqrt{\frac{2\varrho p}{r_s'}} \mu r ||L_*||.$$

Proof. First, for any i, j, we have $L_{ij} = e_i^T U_* \Sigma_* V_*^T e_j$. Using (A1), we have

$$|L_{ij}| \le ||e_i^{\mathrm{T}} U_*|| ||\Sigma_*|| ||e_j^{\mathrm{T}} V_*|| \le \frac{\mu r}{\sqrt{mn}} ||L_*||,$$

and hence

$$||L_*||_{\max} \le \frac{\mu r}{\sqrt{mn}} ||L_*||.$$
 (21)

By Lemma 11, we have

$$||S_0 - S_*||_{\max} \le 2||\Pi_{\Omega}(L_*)||_{\max} \le \frac{2\mu r}{\sqrt{mn}}||L_*||.$$
 (22)

Therefore, using (21), (22) and (A2), we have

$$||S_0 - S_*||_F \le \sqrt{2s} ||S_0 - S_*||_{\max} \le 2\sqrt{2s} ||\Pi_{\Omega}(L_*)||_{\max} \le 2\sqrt{2s} ||L_*||_{\max} \le 2\sqrt{2\varrho p} \mu r ||L_*||.$$
(23)

By the definition of r'_s , it follows that

$$||S_0 - S_*|| \le \frac{||S_0 - S_*||_F}{\sqrt{r_s'}} \le 2\sqrt{\frac{2\varrho p}{r_s'}} \mu r ||L_*||.$$

The proof is completed.

Proof of Theorem 2. By (A3), Lemma 10 and (21), w.p. $\geq 1 - 1/m^{10 + \log \alpha}$, it holds

$$\|\frac{1}{p'}\Pi_{\Omega_0}(L_*) - L_*\| \le \frac{6\sqrt{\alpha m}}{\sqrt{p'}} \|L_*\|_{\max} \le \xi \mu r \|L_*\|.$$
(24)

Using Lemma 12 and (24), we have w.p. $\geq 1 - 1/m^{10 + \log \alpha}$

$$\left\| \frac{1}{p'} \Pi_{\Omega_0}(M - S_0) - L_* \right\| \le \left\| \frac{1}{p'} \Pi_{\Omega_0}(L_*) - L_* \right\| + \frac{1}{p'} \|S_0 - S_*\| \le (\xi + \gamma) \mu r \|L_*\|. \tag{25}$$

Let the SVD of $X_1^{\mathrm{T}} L_* Y_1$ be $X_1^{\mathrm{T}} L_* Y_1 = P \widetilde{\Sigma} Q^{\mathrm{T}}$, where P, Q are orthogonal matrices, $\widetilde{\Sigma} = \mathrm{diag}(\widetilde{\sigma}_1, \dots, \widetilde{\sigma}_r)$. Denote $\widetilde{U} = X_1 P$, $\widetilde{V} = Y_1 Q$, and let

$$E = L_* \widetilde{V} - \widetilde{U} \widetilde{\Sigma}, \qquad F = L_*^{\mathrm{T}} \widetilde{U} - \widetilde{V} \widetilde{\Sigma}.$$
(26)

Then it follows that

$$\|\Sigma_1 - X_1^{\mathrm{T}} L_* Y_1\| = \|X_1^{\mathrm{T}} \left[\frac{1}{p'} \Pi_{\Omega_0} (M - S_0) - L_* \right] Y_1\| \le \|\frac{1}{p'} \Pi_{\Omega_0} (M - S_0) - L_*\|.$$
(27)

Using (25) and (27), by calculations, we get

$$||E|| = ||L_* \widetilde{V} - \widetilde{U} \widetilde{\Sigma}|| = ||L_* Y_1 - X_1 P \widetilde{\Sigma} Q^{\mathrm{T}}|| = ||L_* Y_1 - X_1 X_1^{\mathrm{T}} L_* Y_1||$$

$$\leq ||L_* Y_1 - X_1 \Sigma_1|| + ||X_1 (\Sigma_1 - X_1^{\mathrm{T}} L_* Y_1)||$$

$$= ||L_* Y_1 - \frac{1}{p'} \Pi_{\Omega_0} (M - S_0) Y_1|| + ||\Sigma_1 - X_1^{\mathrm{T}} L_* Y_1||$$

$$\leq 2||\frac{1}{p'} \Pi_{\Omega_0} (M - S_0) - L_*|| \leq 2(\xi + \gamma) \mu r ||L_*||, \quad \text{w.p. } \geq 1 - 1/m^{10 + \log \alpha}.$$
(28)

Similarly, we get

$$||F|| \le 2(\xi + \gamma)\mu r ||L_*||, \quad \text{w.p.} \ge 1 - 1/m^{10 + \log \alpha}.$$
 (29)

Next, we only need to show $\max\{\|E\|, \|F\|\} \le \sigma_{r*}$ and $\|(I_m - \widetilde{U}\widetilde{U}^T)L_*(I_n - \widetilde{V}\widetilde{V}^T)\| < \tilde{\sigma}_r$. Once these two inequalities hold, we may apply Lemma 4.

For the first inequality, using (28), (29) and the assumption $(\xi + \gamma)\mu\kappa r < \frac{1}{6}$, we get

$$\max\{\|E\|, \|F\|\} \le 2(\xi + \gamma)\mu r \|L_*\| < \sigma_{r*}, \quad \text{w.p. } \ge 1 - 1/m^{10 + \log \alpha}. \tag{30}$$

For the second inequality, using (23) and (24), we have

$$\left\| \frac{1}{p'} \Pi_{\Omega}(M - S_0) - L_* \right\| \le \left\| \frac{1}{p'} \Pi_{\Omega}(L_*) - L_* \right\| + \frac{1}{p'} \|S_* - S_0\| \le (\xi + \gamma) \mu r \|L_*\|. \tag{31}$$

Then using Lemma 2, (25),(27) and (31), we have

$$|\tilde{\sigma}_r - \sigma_{r*}| \le |\tilde{\sigma}_r - \hat{\gamma}_{r,0}| + |\hat{\gamma}_{r,0} - \sigma_{r*}| \le ||X_1^{\mathrm{T}} L_* Y_1 - \Sigma_1|| + ||\frac{1}{p'} \Pi_{\Omega_0} (M - S_0) - L_*|| \le 2(\xi + \gamma) \mu r ||L_*||.$$

It follows that

$$\tilde{\sigma}_r \ge \sigma_{r*} - 2(\xi + \gamma)\mu r \|L_*\|. \tag{32}$$

Then using the assumption $(\xi + \gamma)\mu\kappa r < \frac{1}{6}$, (25) and (32), we have

$$\|(I_m - \widetilde{U}\widetilde{U}^{\mathrm{T}})L_*(I_n - \widetilde{V}\widetilde{V}^{\mathrm{T}})\| = \|(I_m - X_1X_1^{\mathrm{T}})[L_* - \frac{1}{p'}\Pi_{\Omega_0}(M - S_0)](I_n - Y_1Y_1^{\mathrm{T}})\|$$

$$\leq \|L_* - \frac{1}{p'}\Pi_{\Omega_0}(M - S_0)\| \leq (\xi + \gamma)\mu r\|L_*\| < \sigma_{r*} - 2(\xi + \gamma)\mu r\|L_*\| \leq \widetilde{\sigma}_r.$$

Now using (28), (29), the assumption $(\xi + \gamma)\mu\kappa r < \frac{1}{6}$ and Lemma 4, we have

$$\max\{\theta_{x,1}, \theta_{y,1}\} = \max\{\|\sin\Theta(U_*, \widetilde{U})\|, \|\sin\Theta(V_*, \widetilde{V})\|\} \le \frac{2(\xi + \gamma)\mu r\kappa}{1 - 1/3} = 3(\xi + \gamma)\mu r\kappa, \tag{33a}$$

$$||L_* - \widetilde{U}\widetilde{\Sigma}\widetilde{V}^{\mathrm{T}}||_{\max}/||L_*|| \le (||U_*||_{2,\infty}\theta_{y,1} + ||V_*||_{2,\infty}\theta_{x,1}) + (1 + 3||U_*||_{2,\infty}||V_*||_{2,\infty})\theta_{x,1}\theta_{y,1}.$$
(33b)

Using the assumption $(\xi + \gamma)\mu\kappa r < \frac{1}{3}\sqrt{\frac{\mu_1'r}{m}}$, by (33a), we have $\max\{\theta_{x,1},\theta_{y,1}\} \leq \sqrt{\frac{\mu_1'r}{m}}$. On the other hand, assumption (A1) implies that

$$||U_*||_{2,\infty} \le \sqrt{\frac{\mu r}{m}}, \qquad ||V_*||_{2,\infty} \le \sqrt{\frac{\mu r}{n}}.$$
 (34)

Then it follows from Lemma 9 that

$$||X_1||_{2,\infty} \le ||U_*||_{2,\infty} + ||\sin\Theta(X_1, U_*)|| \le \sqrt{\frac{\mu r}{m}} + \sqrt{\frac{\mu'_1 r}{m}} \le \sqrt{\frac{\mu_1 r}{m}},$$
 (35a)

$$||Y_1||_{2,\infty} \le ||V_*||_{2,\infty} + ||\sin\Theta(Y_1, V_*)|| \le \sqrt{\frac{\mu r}{n}} + \sqrt{\frac{\mu'_1 r}{m}} \le \sqrt{\frac{\mu_1 r}{n}}.$$
 (35b)

Using the assumption $(\xi + \gamma)\mu\kappa r < \frac{1}{3}\sqrt{\frac{\mu_1'r}{m}}$, (25), (27), (33b), (34) and (35), by calculations, we have

$$\begin{split} \|L_* - X_1 \Sigma_1 Y_1^{\mathrm{T}}\|_{\max} / \|L_*\| &\leq \|L_* - \widetilde{U} \widetilde{\Sigma} \widetilde{V}^{\mathrm{T}}\|_{\max} / \|L_*\| + \|\widetilde{U} \widetilde{\Sigma} \widetilde{V}^{\mathrm{T}} - X_1 \Sigma_1 Y_1^{\mathrm{T}}\|_{\max} / \|L_*\| \\ &= \|L_* - \widetilde{U} \widetilde{\Sigma} \widetilde{V}^{\mathrm{T}}\|_{\max} / \|L_*\| + \|X_1 (X_1^{\mathrm{T}} L_* Y_1 - \Sigma_1) Y_1^{\mathrm{T}}\|_{\max} / \|L_*\| \\ &\leq \|L_* - \widetilde{U} \widetilde{\Sigma} \widetilde{V}^{\mathrm{T}}\|_{\max} / \|L_*\| + \|X_1\|_{2,\infty} \|X_1^{\mathrm{T}} L_* Y_1 - \Sigma_1\| \|Y_1\|_{2,\infty} / \|L_*\| \\ &\leq \|L_* - \widetilde{U} \widetilde{\Sigma} \widetilde{V}^{\mathrm{T}}\|_{\max} / \|L_*\| + \|X_1\|_{2,\infty} \|Y_1\|_{2,\infty} (\xi + \gamma) \mu r \kappa, \\ &\leq (\|U_*\|_{2,\infty} \theta_{y,1} + \|V_*\|_{2,\infty} \theta_{x,1}) + (1 + 3\|U_*\|_{2,\infty} \|V_*\|_{2,\infty}) \theta_{x,1} \theta_{y,1} \\ &+ \|X_1\|_{2,\infty} \|Y_1\|_{2,\infty} \frac{1}{3} \sqrt{\frac{\mu_1' r}{m}} \\ &\leq \left(\sqrt{\frac{\mu r}{m}} \theta_{y,1} + \sqrt{\frac{\mu r}{n}} \theta_{x,1} + \theta_{x,1} \theta_{y,1}\right) + \mathcal{O}(n^{-3/2}), \end{split}$$

which completes the proof.

2.3 Proof of Theorem 3

Proof of Theorem 3. First, we give an upper bound for $\sup_{X \in \mathbb{R}^{m \times r}} \|\Pi_{\Omega_t}(R)\Pi_{\Omega_t}(XY_t^{\mathrm{T}})^{\mathrm{T}}\|/\|X\|$. Let $\{\delta_{ij}\}$ be an independent family of Bernoulli(p') random variables, $X^{\mathrm{T}} = [x_1, \ldots, x_m] \in \mathbb{R}^{r \times m}$ be arbitrary nonzero matrix with $\|X\| = 1$, and $Y_t^{\mathrm{T}} = [y_1, \ldots, y_n]$. Denote $E_{ij} = e_i e_j^{\mathrm{T}}$, $R = [r_{ij}]$, $\mathbf{W}_{il} = \sum_{j,k} \delta_{ij} r_{ij} E_{ij} \delta_{lk} x_k^{\mathrm{T}} y_l E_{kl}^{\mathrm{T}}$, $\mathbf{Z} = \sum_{i,l} \mathbf{Z}_{i,l}$. By calculations, we have

$$\begin{split} & \mathbb{E}(\mathbf{W}_{il}) = p'^2 \sum_{j,k} r_{ij} E_{ij} y_k^{\mathrm{T}} x_l E_{kl}, = p'^2 \sum_{j} r_{ij} E_{ij} y_j^{\mathrm{T}} x_l E_{jl} = p'^2 R_{(i,:)} Y_t x_l E_{il} = 0, \\ & \| \mathbf{W}_{il} \| \leq \sqrt{p'n} \max |r_{ij} x_j^{\mathrm{T}} y_l| \leq \sqrt{\mu' r p'} \| R \|_{\max}, \\ & \| \mathbb{E}[\sum_{i,l} \mathbf{W}_{il} \mathbf{W}_{il}^{\mathrm{T}}] \| = \| \mathbb{E}[\sum_{i,l} (\sum_{j,k} \delta_{ij} r_{ij} E_{ij} \delta_{lk} x_k^{\mathrm{T}} y_l E_{kl}^{\mathrm{T}}) (\sum_{j',k'} \delta_{ij'} r_{ij'} E_{ij'} \delta_{lk'} x_{k'}^{\mathrm{T}} y_l E_{k'l}^{\mathrm{T}})^{\mathrm{T}}] \| = 0, \\ & \| \mathbb{E}[\sum_{i,l} \mathbf{W}_{il}^{\mathrm{T}} \mathbf{W}_{il}] \| = 0. \end{split}$$

By Lemma 5, we have $\mathbb{P}\{\|\mathbf{W}\| > t\} \le (m+n) \exp\left(-\frac{3t/2}{\sqrt{\mu'rp'}\|R\|_{\max}}\right)$. Let $t = \frac{2}{3}(\log(m+n) + 5)\sqrt{\mu'rp'}\|R\|_{\max}$, then w.p. ≥ 0.99 , it holds

$$\|\mathbf{W}\| \le \frac{2}{3}(\log(m+n)+5)\sqrt{\mu'rp'}\|R\|_{\max}.$$
 (36)

Second, It is easy to see that $X_{\text{opt}} = (M - S_t)Y_t$. By calculations, we have

$$\min_{X} \|\Pi_{\Omega_{t}}(XY_{t}^{\mathrm{T}}) - \Pi_{\Omega_{t}}(M - S_{t})\|^{2}
= \min_{\Delta X} \|\Pi_{\Omega_{t}}((X_{\mathrm{opt}} + \Delta X)Y_{t}^{\mathrm{T}}) - \Pi_{\Omega_{t}}((M - S_{t})Y_{t}Y_{t}^{\mathrm{T}} + (M - S_{t})(I - Y_{t}Y_{t}^{\mathrm{T}}))\|^{2}
= \min_{\Delta X} \|\Pi_{\Omega_{t}}(\Delta XY_{t}^{\mathrm{T}}) - \Pi_{\Omega_{t}}(R)\|^{2}.$$
(38)

Then we declare that (38) is minimized when $\Delta X = \widetilde{X}_{\rm opt} - X_{\rm opt}$. This is because (37) is minimized when $X = \widetilde{X}_{\rm opt}$ and $X = X_{\rm opt} + \Delta X$. Thus, we have

$$\|\widetilde{X}_{\text{opt}} - X_{\text{opt}}\| = \|\Delta X\| \le \frac{\sup_{X \in \mathbb{R}^{m \times r}} \|\Pi_{\Omega_t}(R)\Pi_{\Omega_t}(XY_t^{\text{T}})^{\text{T}}\|}{\sigma^2}.$$
(39)

Substituting (36) into (39), we get the conclusion.

2.4 Proof of Theorem 4

Lemma 13. Denote $r_s = \inf_t \frac{\|S_t - S_*\|_F^2}{\|S_t - S_*\|^2}$, $\zeta = \sqrt{\frac{2s\mu r}{mr_s}}$. If $\|L_* - X_t \Sigma_t Y_t^{\mathrm{T}}\|_{\max} \le c_t \|L_*\| \sqrt{\frac{\mu r}{m}}$ for some positive parameter c_t , then

$$||S_t - S_*|| \le 2c_t ||L_*||\zeta, \qquad |\gamma_{i,t} - \sigma_{i*}| \le 2c_t ||L_*||\zeta.$$

Proof. Using Lemma 11, by simple calculations, we have

$$||S_t - S_*|| \le \frac{||S_t - S_*||_F}{\sqrt{r_s}} \le \sqrt{\frac{2s}{r_s}} ||S_t - S_*||_{\max} \le 2\sqrt{\frac{2s}{r_s}} ||\Pi_{\Omega}(L_* - X_t \Sigma_t Y_t^{\mathrm{T}})||_{\max} \le 2c_t ||L_*||\sqrt{\frac{2s\mu r}{mr_s}} = 2c_t ||L_*||\zeta.$$

Then by Lemma 2, we know that

$$|\gamma_{i,t} - \sigma_{i,t}| < ||(M - S_t) - L_*|| = ||S_t - S_*|| < 2c_t ||L_*||\zeta.$$

The proof is completed.

Proof of Theorem 4. First, denote $\bar{X}_{t+1} = (M - S_t)Y_t$, then we know that \bar{X}_{t+1} is the solution to $\min_X \|M - S_t - XY_t^{\mathrm{T}}\|$. Also note that \tilde{X}_{t+1} on line 8 of Algorithm 1 is the solution to $\min_X \|\Pi_{\Omega_t}(M - S_t - XY_t^{\mathrm{T}})\|$. Then by Theorem 3, we have

$$\|\bar{X}_{t+1} - \tilde{X}_{t+1}\| \le C_{LS} \|(M - S_t)(I - Y_t Y_t^{\mathrm{T}})\|_{\max}, \quad \text{w.p. } \ge 0.99.$$

Then it follows that from Lemma 1, Lemma 11 and Lemma 13 that

$$\|\bar{X}_{t+1} - \tilde{X}_{t+1}\| \leq C_{LS}(\|L_{*}(I - Y_{t}Y_{t}^{T})\|_{\max} + \|(S_{t} - S_{*})(I - Y_{t}Y_{t}^{T})\|_{\max})$$

$$\leq C_{LS}(\|L_{*}\|\sqrt{\frac{\mu r}{m}}\theta_{y,t} + \|S_{t} - S_{*}\|_{2,\infty}) \leq C_{LS}(\|L_{*}\|\sqrt{\frac{\mu r}{m}}\theta_{y,t} + \sqrt{2p\varrho n}\|S_{t} - S_{*}\|_{\max})$$

$$\leq C_{LS}(\|L_{*}\|\sqrt{\frac{\mu r}{m}}\theta_{y,t} + 2\sqrt{2p\varrho n}\|L_{*} - X_{t}\Sigma_{t}Y_{t}^{T}\|_{\max}) \leq \frac{C}{\sqrt{m}}\|L_{*}\|\theta_{y,t}. \tag{40}$$

Second, using Lemma 13 and $4c\kappa\zeta < 1$, we have

$$||S_t - S_*|| < 2c\theta_{y,t}||L_*||\zeta \le \sqrt{2}c||L_*||\zeta < \frac{\sigma_{r*}}{\sqrt{2}} \le \sigma_{r*}\sqrt{1 - \theta_{y,t}^2},\tag{41}$$

Then by Lemma 8, we know that

$$\|\sin\Theta(\bar{X}_{t+1}, U_*)\| \le \frac{\|S_t - S_*\|}{\sigma_{r*}\sqrt{1 - \theta_{y,t}^2 - \|S_t - S_*\|}}.$$
(42)

Using (42), the assumption $||L_* - X_t \Sigma_t Y_t^{\mathrm{T}}||_{\max} \le c ||L_*|| \theta_{y,t} \sqrt{\frac{\mu r}{m}}$, Lemma 13 and $\theta_{y,t} \le \frac{1}{\sqrt{2}}$, we get

$$\|\sin\Theta(\bar{X}_{t+1}, U_*)\| \le \frac{2c\|L_*\|\zeta\theta_{y,t}}{\frac{\sigma_{r*}}{\sqrt{2}} - 2c\|L_*\|\zeta\theta_{y,t}} \le \frac{2\sqrt{2}c\kappa\zeta\theta_{y,t}}{1 - 2c\kappa\zeta} < 4\sqrt{2}c\kappa\zeta\theta_{y,t}. \tag{43}$$

Therefore, using Lemma 1, (40) and (43), we have

$$\|\theta_{x,t+1}\| = \|U_{*,c}^{\mathsf{T}} X_{t+1}\| = \|U_{*,c}^{\mathsf{T}} \widetilde{X}_{t+1} R_{x,t+1}^{-1}\| \le \|U_{*,c}^{\mathsf{T}} \bar{X}_{t+1} R_{x,t+1}^{-1}\| + \|U_{*,c}^{\mathsf{T}} (\widetilde{X}_{t+1} - \bar{X}_{t+1}) R_{x,t+1}^{-1}\|$$

$$\le \|R_{x,t+1}^{-1}\| (\|\sin\Theta(\bar{X}_{t+1}, U_*)\| \|\bar{X}_{t+1}\| + \|\widetilde{X}_t - \bar{X}_t\|)$$

$$\le \frac{1}{\sigma_r(\widetilde{X}_{t+1})} \Big(4\sqrt{2}c\kappa\zeta \|\bar{X}_{t+1}\| + \frac{C}{\sqrt{m}} \|L_*\| \Big) \theta_{y,t}.$$

$$(44)$$

Now using Lemma 2, (40), $\theta_{y,t} \leq \frac{1}{\sqrt{2}}$ and (41), we have

$$\begin{split} \|\bar{X}_{t+1}\| &= \|(M-S_t)Y_t\| \le \|L_*Y\| + \|S_t - S_*\| \le \|L_*\| + \sqrt{2}c\|L_*\|\zeta, \\ \sigma_r(\widetilde{X}_{t+1}) &\ge \sigma_r(\bar{X}_{t+1}) - \frac{C}{\sqrt{m}} \|L_*\|\theta_{y,t} \ge \sigma_r((M-S_t)Y_t) - \frac{C}{\sqrt{2m}} \|L_*\| \ge \sigma_r(L_*Y_t) - \|S_t - S_*\| - \frac{C}{\sqrt{2m}} \|L_*\| \\ &\ge \sigma_{r*}\sqrt{1 - \theta_{y,t}^2} - \sqrt{2}c\|L_*\|\zeta - \frac{C}{\sqrt{2m}} \|L_*\| \ge \frac{\sigma_{r*}}{\sqrt{2}} - \sqrt{2}c\|L_*\|\zeta - \frac{C}{\sqrt{2m}} \|L_*\|. \end{split}$$

Substituting them into (44), we get the conclusion.

2.5 Proof of Theorem 5

Lemma 14. Follow the notations and assumptions in Lemma 1. Then

$$\|L_* - \widehat{X}_{t+1} R_{x,t+1} Y_t^{\mathrm{T}}\|_{\max} \le \left((1 + C_{\mathrm{LS}} \sqrt{\frac{\mu' r}{n}}) \sqrt{\frac{\mu r}{m}} + (1 + C_{\mathrm{LS}} \sqrt{2\varrho p n}) \sqrt{\frac{\mu' r}{n}} 2c\zeta \right) \|L_*\| \theta_{y,t}.$$

Proof. Direct calculations give rise to

$$\|L_{*} - \widetilde{X}_{t+1}Y_{t}^{\mathrm{T}}\|_{\max} \leq \|L_{*} - (M - S_{t})Y_{t}Y_{t}^{\mathrm{T}}\|_{\max} + \|(M - S_{t})Y_{t}Y_{t}^{\mathrm{T}} - \widetilde{X}_{t+1}Y_{t}^{\mathrm{T}}\|_{\max}$$

$$\leq \|L_{*} - (M - S_{t})Y_{t}Y_{t}^{\mathrm{T}}\|_{\max} + \|(M - S_{t})Y_{t} - \widetilde{X}_{t+1}\|\sqrt{\frac{\mu'r}{n}}$$

$$\leq \|L_{*} - (M - S_{t})Y_{t}Y_{t}^{\mathrm{T}}\|_{\max} + C_{\mathrm{LS}}\sqrt{\frac{\mu'r}{n}}\|(M - S_{t})(I - Y_{t}Y_{t}^{\mathrm{T}})\|_{\max}$$

$$\leq (1 + C_{\mathrm{LS}}\sqrt{\frac{\mu'r}{n}})\|L_{*}(I - Y_{t}Y_{t}^{\mathrm{T}})\|_{\max} + (1 + C_{\mathrm{LS}}\sqrt{2\varrho pn})\sqrt{\frac{\mu'r}{n}}\|S_{t} - S_{*}\|_{\max}$$

$$\leq \left((1 + C_{\mathrm{LS}}\sqrt{\frac{\mu'r}{n}})\sqrt{\frac{\mu r}{m}} + (1 + C_{\mathrm{LS}}\sqrt{2\varrho pn})\sqrt{\frac{\mu'r}{n}}2c\zeta\right)\|L_{*}\|\theta_{y,t}$$

$$(45c)$$

where (45a) uses $||Y_t||_{2,\infty} \leq \sqrt{\frac{\mu'r}{m}}$, (45b) uses Theorem 3, (45c) uses the SVD of L_* , $||U_*||_{2,\infty} \leq \sqrt{\frac{\mu r}{m}}$ and Lemme 1.

Proof of Theorem 5. First, by Lemma 7, we have

$$\|M - S_t - X_t \Sigma_t Y_t^{\mathrm{T}}\| \ge \sigma_{r*} \max\{\sqrt{1 - \theta_{x,t}^2} \theta_{y,t}, \sqrt{1 - \theta_{y,t}^2} \theta_{x,t}\} \sqrt{1 - \theta_{x,t}^2} \sqrt{1 - \theta_{y,t}^2} - \|S_t - S_*\|$$

Then using (41), $\theta_{x,t} \leq \frac{1}{\sqrt{2}}$ and $\theta_{y,t} \leq \frac{1}{\sqrt{2}}$, we get

$$||M - S_t - X_t \Sigma_t Y_t^{\mathrm{T}}|| \ge \frac{\sigma_{r*}}{2\sqrt{2}} \theta_{y,t} - 2c||L_*|| \sqrt{\frac{\mu r}{m}} \theta_{y,t}.$$
 (46)

Second, by calculations, we have

$$\|M - S_{t} - \widehat{X}_{t+1} \widetilde{Y}_{t+1}^{\mathrm{T}}\| \leq \|(I - \widehat{X}_{t+1} \widehat{X}_{t+1}^{\mathrm{T}})(M - S_{t})\| + \|\widehat{X}_{t+1} \widehat{X}_{t+1}^{\mathrm{T}}(M - S_{t}) - \widehat{X}_{t+1} \widetilde{Y}_{t+1}^{\mathrm{T}}\|$$

$$\leq \|(I - \widehat{X}_{t+1} \widehat{X}_{t+1}^{\mathrm{T}}) L_{*}\| + \|S_{t} - S_{*}\| + \|\widehat{X}_{t+1}^{\mathrm{T}}(M - S_{t}) - \widetilde{Y}_{t+1}^{\mathrm{T}}\|$$

$$\leq \|L_{*}\|\theta_{x,t+1} + 2c\|L_{*}\|\zeta\sqrt{\frac{\mu r}{m}}\theta_{x,t+1} + \frac{C}{\sqrt{m}}\|L_{*}\|\theta_{x,t+1}$$

$$\leq (1 + 2c\zeta\sqrt{\frac{\mu r}{m}} + \frac{C}{\sqrt{m}})\phi\|L_{*}\|\theta_{y,t}, \tag{48}$$

where the first two terms of (47) use Lemma 1 and (41), respectively, and the last term can obtained similar to (40), with the help of Lemma 14.

Then it follows that

$$||M - S_{t+1} - X_{t+1} \Sigma_{t+1} Y_{t+1}^{\mathrm{T}}|| \le ||M - S_t - X_{t+1} \Sigma_{t+1} Y_{t+1}^{\mathrm{T}}||$$
(49a)

$$\leq \left(1 + 2c\sqrt{\frac{\mu r}{m}} + \frac{C}{\sqrt{m}}\right)\phi \|L_*\|\theta_{y,t} \tag{49b}$$

$$\leq \frac{(1 + 2c\zeta\sqrt{\frac{\mu r}{m}} + \frac{C}{\sqrt{m}})\phi \|L_*\|}{\frac{\sigma_{r*}}{2\sqrt{2}} - 2c\zeta\|L_*\|\sqrt{\frac{\mu r}{m}}} \|M - S_t - X_t\Sigma_tY_t^{\mathrm{T}}\|
= \psi \|M - S_t - X_t\Sigma_tY_t^{\mathrm{T}}\|,$$
(49c)

where (49a) uses Lemma 6, (49b) uses (48), (49c) uses (46). The proof is completed.

References

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. III. $SIAM\ J.\ Numer.$ $Anal.,\ 7(1):1-46,\ 1970.$

Prateek Jain and Praneeth Netrapalli. Fast exact matrix completion with finite samples. In *Proceedings of The 28th Conference on Learning Theory (COLT)*, pages 1007–1034, Paris, France, 2015.

Gilbert W Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.

Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends® in Machine Learning, 8(1-2):1–230, 2015. ISSN 1935-8237. doi: 10.1561/2200000048. URL http://dx.doi.org/10.1561/2200000048.