Supplementary Materials

1 Preliminary lemmas

The following lemma gives some fundamental results for sin ©(U, V'), which can be easily verified via definition.
Lemma 1. Let [U, U] and [V, V¢| be two orthogonal matrices with U,V € R"**. Then

Isin ©U, V)llwi = UV llui = U Velus-

Here || - || denotes any unitarily invariant norm, including the spectral norm and Frobenius norm. In particular,
for the spectral norm, it holds ||sin ©(U, V)| = |[UUT = VVT||; for the Frobenius norm, it holds ||sin ©(U, V)| p =
SIUUT = VVT|p.

The following lemma is the well-known Weyl theorem, which gives the perturbation bound for eigenvalues of
Hermitian matrix.

Lemma 2. (Stewart and Sun, 1990, p.203) For two Hermitian matrices A, A€ C>n et Ay < -+ < A,
M <o <\, be eigenvalues of A, A, respectively. Then

N =N <IA-A|, for1<j<n.

The following lemma is used to establish the perturbation bound for the invariant subspace of a Hermitian matrix,
which is due to Davis and Kahan.

Lemma 3. (Davis and Kahan, 1970, Theorem 5.1) Let H and M be two Hermitian matrices, and let S be a
matriz of a compatible size as determined by the Sylvester equation

HY - YM =S.
If either all eigenvalues of H are contained in a closed interval that contains no eigenvalue of M or vice versa,
then the Sylvester equation has a unique solution Y, and moreover

1Y s < 315 s

=6

where 6 = min |A — w| over all eigenvalues w of M and all eigenvalues \ of H.

For a rectangular matrix A € R™*" (without loss of generality, assume m > n), let the SVD of A be
A =UxVTY where U = [Uy |Us |Us] = [u1,. .. uk | Wity ey Up | Upsty. oy tm] € RV = [Vi | Vo | V3] =
diag(zlv 22) 0y (n—r)
O(m—r)xr O(m—r)x(n—r) ’
¥, = diag(oy,...,0k), X2 = diag(ogt1,...,0,) With 01 > -+ > o, > 0, k < r = rank(A4). Then the spectral

[U1, .y Uk | Vktly e vy Up | Ups1, - .o, U] € R™™™ are orthogonal matrices, and ¥ =

decomposition of f?T 61 can be given by
0 A . T
AT 0 =X dlag(zh 227 7215 7227 On—T‘7 Om—T‘)X ) (1)

LU U 0 V2Us is an orthogonal matrix
V2IVV V2V 0 : |

With the help of (1) and Lemmas 2 and 3, we are able to prove Lemma 4, which established an error bound for
singular vectors.

where X =

Lemma 4. Given A € R™*™ (m > n), let the SVD of A be given as above. Let &j, Uz, U5 be respectively the

Rmxk

appmxzmate singular values, right and left smgular vectors of A satisfying that U= [t1,...,0K] € and

V= [01,...,0:] € R™k are both orthonormal , S=UTAV = diag(61,...,0k) with 61 > -+ > 6 > 0. Let

E=AV-UY, F=ATU-VS%. (2)



If
(L — UUTA(L, = VVT)| <63, max{||E|,[|F||} < ok — o1,
then

UiS1 VT — USVT o
1

max{@u7 @v} < n, ||A|| < (||U1||2,oo@v + ||V1||2,oo@u) + (1 + 3||U1||2,oo||vl |2,oo)@u@v7
where ©, = ||sin@©(Uy,0)|, ©, = |[sin®(V1, V)|, n = s—pmellZL A
Proof. Let
[0 A 1o -0
H{AT 0:|a Xlﬂ[vl V1:|7
s 1|0 -U 1 [U2 ~Uy 0 \/iUg]
Xi=— |2 Y, Xy= — .
V2|V Vv V2 Ve Voo V213 0
By calculations, we have
10X = X1 X i = || diag(UaUT = OUT ViV = VI (3)
By simple calculations, we have
S o e a1 AV-US AV -US 1 [E E]a
HX, - X, diag(S, -5) = — | 2772 b 2R 4
1 1 1ag( ) \/§ ATU_VE _ATU+VZ \/i |:F —F:| ( a)
HX, — X, diag(Se, —%2,0,0) =0, (4b)
where (4a) uses (2), (4b) uses the SVD of A. Then it follows from (4a) that
17l = ez 7y = [ 1 || = D dins(, )l = max{ . 1. 6
V2 Ik —I
Pre-multiplying (4a) by XJ and using (4b), we have
X R =XJHX, — XJ X, diag(S, %) = diag(S2, —%2,0,0) X5 X1 — X7 X, diag(S, —5). (6)

To apply Lemma 3 to (6), we need to estimate the gap between the eigenvalues of diag(i, —f]) and those of
diag(Xs, —¥5,0,0). Using (4a) and UTAV = ¥, we have

(H*R)?rlrf)?lRT))?l :H)?l 7R:)?1 diag(iafi)a (7)

1

which implies that +6; are eigenvalues of H — RX f- X 1RT, and the corresponding eigenvectors are 7 {iﬁj } ,

;
for j =1,...,k. Next, we declare that 61, ..., are the k largest eigenvalues of H — R)/flT — flRT. This is
because

«T(H — RXT — X,R")x

Amax T

XTz=0 r-x
<|(I = X1 XT)(H - RXT — XiR™)(I - X, X7)||
=|(I - X, X)H(I - X, X7
1. —0TT 0 0 A
B 0 L, —VVT| [AT 0
=L, — UUTA(I, — VVT)|| < 6y.

I, —U0T 0
0 I,-VVT




Therefore, by Lemma 2, we have
lo; — 6;] < |RXT + X,RY, forj=1,...,k (8)
Together with (5), we get

0y = &3] < |RXT + KuRT | = max |\ (B K] | 5 )] = mac |y ([ 5] (R X))

T

=mgX|Aj([ | = [IR]| = max{|[E], [ F'[|}. 9)

RTRO})

Here we uses the property that for any two matrix A € R™*" B € R™"*™  the nonzero eigenvalues of AB and
BA are the same.

Now by the assumption that max{||E||, || F||} < ok — ok+1, we have
Ok — Ok41 =0k — Ofq1 + 0 — Ok > Ok — O41 — max{||E||7 ||FH} > 0, (10)

therefore, the eigenvalues of diag(Xo, —¥9,0,0) lie in [—0k+1, 0k+1], which has no eigenvalues of diag(i, —EA]) We
are able to apply Lemma 3 to (6), which yields

||XERHu1

XTX, |y < .
1% Xl < e e (B TLTE T}

(11)

Using (3), Lemma 1, (10) and (11), we get

. 5 N XIR||
max{©,,0,} = [|sinO(X1, X1)|| = | XTI X1| < I 12
{ } H ( 1 1)” || 2 1” — Ok — Ol — maX{”E” ||F||} — 77 ( )
Let

U =UTy = [Uy,Us, Us] {} V=VI, = V1,15, V4] [] (13)

Iy
where I'y; € RFXF Ty € RO—F)XE T 0 e ROn=m)xk T e REXE T o e RU—FIXEk T o e ROV-1XE and [ ]

FuS

Ty
[I‘u;] are both orthonormal. By (12), we have

Toys

Iz ]l = O omin(Tu) = vVI-05 [[[r2]ll =0v omn(Tun) = V1= 67, (14)

Substituting (13) into UTAV = £ and using the SVD of A, we have

T,
S =T, r%, k] diag (31, L2, 0(m—r)x (n— T)){ } =TI STy + T, (15)

Then it follows that

121 = Ta STH | =[(B1 = TarTE 51) 4 (CunTE 81 = Ton T STy TF) — Ton Tl Sl o T ||
<[IT = Car T IS4l 4 ITaa D5 1 = Toa Ty 1Z1] 4 [ Tu [ To2 [ Szl
S(@i +@12)+®u®v)”21”~ (16)



Finally, using (14), (15), (16) and ||[Te1]| < 1, [[To1]| < 1, ]| < [|A]l, we have
U2 VT = UV | ipax = max e (U131 V] = USVT)e|
= max|e] (U191 V)" UL ETTVT)ey|
< max |ef (U1 S0V — UL STV e |+ 1102, Us] [122] S [12]7 Ve, Vil
+max (|6 U, Us] [F22] STV e |+ e U0 S [F2] [Va, Vol "oy )
< max Bllei Ulllef Vil A1©.00 + [ A]©400 + llef VillllAllOu + llef Un | All©.)

<A (U 2,000 + [Vill2,0000) + (1 + 3] U1

[[2,00)©uO0) ,

completing the proof. O

Lemma 5. (Tropp, 2015, Corollary 6.1.2) Let Sy, ..., Sy, be independent random matrices with common dimension
d1 X da, and assume that each matriz has uniformly bounded deviation from its mean:

ISk —E(Sp)|| < L, foreachk=1,....n
Let Z =3"}_, Sk, v(Z) denote the matriz covariance statistic of the sum:

v(Z) = max{|[E[(Z — E(2))(Z - E(2))"]|I, |E[(Z - E(2))"(Z - E(Z)]lI}

n n

= max{[[E[> _(Sk — E(Sk))(Sk — E(Sk)"]Il, IEDD (Sk — E(Sk)™ (Sk — E(Sk))]}-

k=1 k=1
Then for all t > 0,

—t2/2
P{IZ - B(Z)|| > t} < (dy + d) - exp ().
(2= E(@)| > 1) < (@ + ) - exn (575507
Lemma 6. For any linear homogeneous function F : RF — R™*"  qassume that the linear system of equations
F(z) = C either has a unique solution or has no solution at all. Then it holds

argmin,, ||F(z) — C|| = argmin, ||F(z) — C||p.

Proof. For any A, B € R™*"_define (A, B) = trace(ATB). It is easy to see that (-,-) is an inner product over
R™*", Denote the range space of F(-) by F, and its orthogonal complement space by F+. Write C = Cg + C
such that Cps € F, and C € F*. Then the solutions to min ||F(z) — C|| and min ||F(z) — C||r are nothing but
the solutions to F(x) = CLs. Since CLg € F, F(z) = CLg has at least a solution. By the assumption, the solution

should be unique. The proof is completed. O]
Lemma 7. Let L, € R™*" with m > n, let the SVD of L, be L, = U*E*V*T, where U, € R™*", V, € R"*"
are orthonormal, 3, = diag(o1x,...,004) With 014 > -+ > 0pe > 0. Let G € R™*™ be a perturbation to L.,

X e R™*", Y € R™™" have full column rank. Denote 0, = | sin ©(U,, X)||, 6, = ||sin©®(V1,Y)|. Then
- T
min L =G — XY || > o max{/1 = 020,, /1 — 020, }\/1 — 02, /1 — 02 — ||G].

Proof Let U, Vi be such that U = [U*,U* ), V= [Vi, Vi are orthogonal. Let X = U.Cp + U, oSy,
Y=V, Cy + Vi Sy, where the columns of X, Y form the orthonormal basis for R(X) and R(Y), respectively,
cro, + STS = IT, C(TC + STS( = I,. By Lemma 1, we know that ||.S;|| = 6., ||Sy|| = 6,.

Noticing that

2
min | L, — XYT|? = min |UTL,V — UTXDYTV|? =
XY D

1 §-[5] e
2

B -Elesr Y]

)




we have

2

)

. T2 |81 0] |0y or
I)I{l}}I/IHL*—XY I zmaX{HCw[Cw,Sz] { ][ Sy 0 0

0 0]|S,

5,(C,, 8T [21 O}

> (i, (CIS, 2. A IS Pl (1€ 57 [ |S7])
> max{(1 - 62)07, (1 — 02)02}(0,4\/1 — 62, /1 — 62)°
Combining it with the fact that ||L. — G — XYT|| > ||L, — XYT|| — ||G|| for any X, Y, we get the conclusion. [

Lemma 8. Let L., G be the same as in Lemma 7. Let X = (L. — Q)Y , where Y € R"*" is orthonormal. Denote
0, = [|sin©OU,, X)|, 0, = || sinO(Vi, V). If [|G|| < 0psy/1 — 02, then

IG

> -0 — = .
O'T(X) = Ur*ﬂ HGH’ 9@ o UTM_ ||GH

Proof. By Lemma 2 and Lemma 1, we have

0,(X) = 0,((Ly — G)Y) > 0,(L.Y) — [GY || = 0,(S.VTY) ~ |G]| > 07 0in(VIY) — 1€
= 002 (VIVLVEY) = |G = oroly (I — V(I = V.VE)Y) — |G|

= 0\ /1— [T = V.VDY |2 — 6] = 0y /1 — 62 — G| > 0. a7

Therefore, X has full column rank. Denote G, = (XTX)_%7 X = XG,. Then X and X = AY can be rewritten
as X = AYG,. Using Lemma 1 and (17), we have

S Gl Gl
10211 = |ULX|| = |UL(Li = Q)Y Gol| < |GY Go|| < |G Gall < < :
R ’ ' T e®) . e el
The proof is completed. O

Lemma 9. Let U, X € R™*" both have orthonormal columns. It holds || X ||2,00 < [|U||2,00 + || sin©(U, X)]|.

Proof. Let U, be such that [U, U.] is an orthogonal matrix. We can write X = UC,+U..S,, where CXC,+ SIS, =
I.. By Lemma 1, we have || sin ©(U, X)| = |UTX| = ||S,||. Then for any 1 < i < m, we have

lei X|| = llef UCs + ef UcSe|l < [lef Ul + [|Sal,
the conclusion follows. O

Lemma 10. (Jain and Netrapalli, 2015, Lemmas 8,10) Let A € R™*™ with m > n. Suppose §) is obtained by
sampling each entry of A with probability p € [=,0.5]. Then w.p. >1—1/m!0tlee,

m’

1 61/ am
|=To(A) — Al| < 1A max.
D VP

2 Proof for Main Theorems

2.1 Proof of Theorem 1

Proof of Theorem 1. First, it holds ||(I — U.UNM(I — V.V)|| = |[(I — U.UX)S.(I — V.V.Y)|. Then by
assumption, we have (I — U.UN)M(I — V.VD)|| < 0.



Second, we have

[Ell = [MVi — UZ|| = [|LiVi = ULy + S Vil = [|S: VA,
IF| = IM U, = V.5, = [ILYU. = VaZs + S]UL| = ISTU]I.
It follows
max{|| E||, | F|[} = max{||S.Vil, IS{ Uull} < 0 — 00p1

Then applying Lemma 4 gives the conclusion. O

2.2 Proof of Theorem 2

Throughout the rest of this section, we follow the notations in Algorithm 1. Besides that, we will also adopt the
following notations. Denote

r = rank(L,), Ky = ko(Ly), p =p(l— o), Q; = Q/supp(S:), Gy = S; — S.. (18)
The SVDs of L, is given by
L, = [U’MU*,C] diag(Z*,O)[V*,‘/,k7c}T, (19)

where [U,,U. ] and [Vi,V, ] are orthogonal matrices U, € R™*" and V. € R"*", ¥, = diag(o1, ..., 00) with
014 > -+ > 004 > 0. Further denote

Op1 = | sinOUs, X4, 0y = | sin©(V, Y3)]|. (20)

Lemma 11. [|S; — Si||max < 2|Ho (XYY — Ly)||max fort =0,1,....

Proof. Denote @, = supp(Ss), ®; = supp(St), it is obvious that S; — S, is supported on ®; U ®, and &, UP, C .
Now we claim that
”HQ(St )”max < QHHQ(XtEtYT *)”max-

To show the claim, it suffices to consider the following two cases.

Case (1) For any (i,j) € @y, it holds (S¢) (i j) = (L« + Ss — X;2:Y;") (i 7). Then it follows that

1(Se = S = I(Le — XSV ) | < Mo (X SY," — L) [ max-

Case (2) FOI' any (’L,]) S (b* \@t, lt hOldS (St)(%]) = O If |(St 7S*)(’L,j)| = |(S*)(1J)| > QHHQ(XtEt)ftT *L*)”maxa
then
|(L* + S* - XtEtY;T)(i,jﬂ > HHQ(L* - thty;:T)”max-

Noticing that S, only changes s entries of Ilg(L. — X;3,Y;"), we know that the (i, j) entry of |Tlg(Ls + Ss —
X; 3, Y,V is larger than the (s+1)st largest entry of [Ig (L. +S, —X;X;Y,7)|. This contradicts with (i, ) ¢ ®;. O

Lemma 12. Assume (A1l). Denote rl, = W Let Sy be obtained as in Algorithm 1. It holds
20p
[1So = Sull <24/ == pr || La |-

S

Proof. First, for any i, j, we have L;; = e U.X.V,Te;. Using (A1), we have

|Lil < llei UslllIS.lllle

FHL ll

and hence

[ L[ max <

FHL el (21)



By Lemma 11, we have

2ur
150 = S«llmax < 2[[Ma (L) [[max < L] (22)
NG
Therefore, using (21), (22) and (A2), we have
IS0 = Sullr < V25[1S0 = Sullmax < 2v25| M (Ls) lmax < 2V28[| L lmax < 2v/20ppr || L]l (23)

By the definition of r., it follows that

S0 — Skl r 20p

The proof is completed. ]

Proof of Theorem 2. By (A3), Lemma 10 and (21), w.p. > 1 — 1/m!%*°g it holds

|, (2 - 1. < OYom

Y o, (L N [ Ls[lmax < &pr[| L. (24)
Using Lemma 12 and (24), we have w.p. > 1 — 1/77110'*'10g0‘7
1 1 1
H};HQO(M —50) = L[| < IIZ;HQO (L) = L + ];IISO = Sl < (€ + v)pr|| Lall. (25)

Let the SVD of X{'L.Y; be X{L.Y; = PiQT, where P, () are orthogonal matrices, Y = diag(&1,...,6.).
Denote U = X1 P, V = Y1Q, and let

E=LV-Us, F=LTU-Vx. (26)
Then it follows that

1 1
[£0 = XTLY | = KT Moy (M = 80) = LY € |5 Tlay (M = o) - L. (27)

Using (25) and (27), by calculations, we get

||| = |L.V — US| = |[L.Y: — X, PEQ"|| = | LYy — X1 XT L.Y1|
<|ILuYy — XS]] + | X1 (51 — X LY

1
= | L.Y1 - ?HSZO(M = So)Yil| + [|1Z1 — X{ L.Yi |
1
< 2H17Hszo(M —80) = La|l < 2(6 +pr||Lufl, wop. >1—1/m'0Foe, (28)

Similarly, we get

IF| < 2(6 +Mprl|Lo]l, wp. =1 —1/mi0Fee, (29)

Next, we only need to show max{||E|,||F||} < oy and ||[(Iy, — UUT)Ly(I, — VVT)|| < &,. Once these two
inequalities hold, we may apply Lemma 4.

For the first inequality, using (28), (29) and the assumption (£ + v)ukr < %, we get

max{||E|l, | FIl} < 2(¢ + Murl|Lsl| < 0, wp. 21— 1/mi0Flo8e, (30)



For the second inequality, using (23) and (24), we have

|20 (M = $o) = Ll < |- TIa(L) = L+ 5. = Soll < (€ +prl L. (31)
Then using Lemma 2, (25),(27) and (31), we have

16— 0ra| <1G7 = Aol + [0 = ore] <IIXT LaYr = 31| + ||$HQO(M = 50) = L[ < 2(§ + y)pr || La]l-
It follows that
Gr 2 O = 2(§ +7)pr || La]l- (32)
Then using the assumption (£ +v)usr < &, (25) and (32), we have
H@wiﬁﬁhw—?ww=mm—Xdﬂm~§EMM—&MQ—mﬁw

1 N
<|| L — ;HQO(M =Sl < (€ +Npr||Lil| < ors = 2(6 +7)pr|| Lall < 5p

Now using (28), (29), the assumption (£ + v)uxr < % and Lemma 4, we have

2
S s e, (330)

IZe = TSV max/ 1Ll < (102,005, + [Villz,000z,1) + (L + BT ll2,00 | Vill2,00)02,160.1- (33b)

max{0,1,0,,1} = max{||sin®(U., U)|, || sin OV, V)||} <

Using the assumption (£ + y)usr < & %, by (33a), we have max{6, 1,6, 1} < 4/ % On the other hand,

assumption (A1) implies that
r r
1Ullzo0 < /55, IValloo < /55 (34)
Then it follows from Lemma 9 that

. r ir r
1X1ll200 < U o + | sin ©(X, U < 4 /25 44 B < JELL, (359)

/
2.00 + ||sin©(Y1, Vi) < 4 [ET + mr < \/W (35D)
n m n

Using the assumption (£ + y)urr < 34/ %, (25), (27), (33b), (34) and (35), by calculations, we have

Y1]]2,00 < (Vi

1L = X021 Yy s/ | Ll <L = UZV [/ 1L | + [[UEVT = X120 Y7" ([ /| Ll
:”L* - UZVTHmaX/HL*H + ||X1(X£FL*Y1 - Zl)YlT||1maux/||L*”
L = USV T mase/ [ Ll + [ X1 [l2,00 |1 X7 L Y1 = S [V l|2,00 /]| Ll

S”L* - fjivTHmaX/HL*H + ||X1||2’00||Y1||2,00(§ + '7)/“"“7
SIUsll2,000y,1 + [IVill2,0002,1) + (1 + 3[[Ull2,00 [ Vi l|2,00 ) 0,101

1 [pir
X o0 Y o0 o -
+ | X1 ll2,00 Y1 ]2, s\
< (,/“rey,l + /B + ei,leyJ) + O3,
m n

which completes the proof. O



2.3 Proof of Theorem 3

Proof of Theorem 3. First, we give an upper bound for sup y cgmx- ||, (R)o, (XY;T)T||/||X]|. Let {5;;} be
an independent family of BERNOULLI(p') random variables, X = [z1,...,2,,] € R"™*™ be arbitrary nonzero
matrix with | X| = 1, and Y,¥ = [y1,...,¥s]. Denote E;; = eie?7 R = [riy], Wy = Zj’k 5¢jrijEij(51kw;£ylEgl,
Z = Zi’l Z;,. By calculations, we have

E(W;;) = p” Z i Eijyn 21 B, = p'* Z TijEijijﬂUzEjl = PIQR(i,:)YtUUlEil =0,
gk J

Wil < v/prnmax|rijz] yil < /1w |Rl|max
IED  WaWEI = ED O 6ijrij EssduafwER) (D 6ijrij Eijruraioy By) | = 0,

il il gk 3’k

IELY  WiWa]| =o.

il

By Lemma 5, we have P{||W|| >t} < (m + n) exp ( - #ﬁ). Let t = 2(log(m + n) + 5)\/1/'rp|| R||max,
then w.p. > 0.99, it holds

2
IWIl < 3 (log(m +n) +5) v/ /rp/|| Rl|max- (36)

Second, It is easy to see that Xop = (M — S;)Y;. By calculations, we have
min [T, (XY;") = Tlo, (M — $)|? (37)
= i [T, (Xope + AX)YT) — Tha, (M — SOV, + (0 — $)(1 — vi") |
= min |llo, (AXY,") o, (R)|” (39)

Then we declare that (38) is minimized when AX = )?Opt — Xopt- This is because (37) is minimized when
X = Xopt and X = X + AX. Thus, we have

Mg, (B)Ig, (XY,

~ sup mxr
[ Xopt — Xops|| = AX || < 2R 5

(39)

o
Substituting (36) into (39), we get the conclusion. O
2.4 Proof of Theorem 4

2
Lemma 13. Denote rs = inf, %, C= /2 If |Ly — Xe SV lmax < cil|Lill\/EE for some positive

parameter cg, then

1St — Sill < 2¢4|L4]IC, Vit — x| < 2¢i]| L€

Proof. Using Lemma 11, by simple calculations, we have

Sy — S, 2s 2s 2sur
1, - 8.]| < 'f”F < 215 Sullmes < 2/ 2oL = X B e < 261 Lully 220 = 20, .

mrs
Then by Lemma 2, we know that
Vit = gl UM = Sp) = La|l = [[Se = Si |l < 2¢]| LaI€.

The proof is completed. O



Proof of Theorem 4. First, denote X;,1 = (M — S;)Y;, then we know that X;,; is the solution to minx ||M —

S, — XY,T||. Also note that X, on line 8 of Algorithm 1 is the solution to miny ||[Ig, (M — S; — XY;T)||. Then
by Theorem 3, we have

€001 = Kt < Cusll (M = SO = Vi) lmaxs wp. = 0.99.
Then it follows that from Lemma 1, Lemma 11 and Lemma 13 that

X1 = Xeall < Cs(ILa (I = Y2, [lmax + 1S = S2)(T = Vi)l mas)
r r
< Crs (Ll 2200+ 1S, = Sellze) < Cus(ILally /20,0 + /200015, = Sullme)
< Cus(ULly 20,0+ 20/2pn| L — XSV, ) < —= L6y, (40)
=~ m Y, t max/ — \/m Y,
Second, using Lemma 13 and 4cx( < 1, we have

1S, — S.|| < 2¢8,,.

V105 (41)

\f

Then by Lemma 8, we know that

1S = Sa

[ sin ©(Xe41, Ui < UT*M— 15— 5*||. (42)
Using (42), the assumption ||L. — X;5,Y; [max < ¢l|Ls| 0y,04/E, Lemma 13 and 6, < %, we get
Isin ©(Xp1,UL)| < = QC”QLC ””Lceﬁ’ ctayt < 21/§C§§§z’t < 4/3ewcl,,. (43)
Therefore, using Lemma 1, (40) and (43), we have
162, 41] = 1US Xega || = HUEC)EHR;%HH <UL X Ry qll + HU*T,C()?tH — Xi1)R, 14l
< IRy 4l sin ©(Xogr, U)X e[| + 1 X = Xill)
< O-T(%m)@ﬁc“”xt“ L]0y (44)
Now using Lemma 2, (40), 6, ; < % and (41), we have
[ Xl = [1(M - St)YtH LY N+ 118 = Sell < Lall + V2€l| LG,
0r(Xt+1) 2 0p(Xppr) = \ﬁHL w6y, > o ((M = 51)Y:) — ;IIL | = or(LuYy) =[S0 = Sl = \/g—mL*l
> oy [1 =05 — V2| LI ¢ ~ EHL*H > f/ri —V2¢|| LI ~ ﬁHL*Il-
Substituting them into (44), we get the conclusion. ]

2.5 Proof of Theorem 5

Lemma 14. Follow the notations and assumptions in Lemma 1. Then

P [w'r, [ur [u'r
||L>t< - Xt+1Rx,t+1YrtTHmaX = ((1 + C’LS Mn ) /’IJ?/’L (1 + CLS V 2Qpn> %2CC> ”L*”ey,t



Proof. Direct calculations give rise to

”L Xt+1YT||max < ”L - (M St)Y;fYT”max + H(M St)YtYT it+lnT||max

~ /fr
< 1L = (M = SOYY, s + (M = $0)Y; = K[/ 5 (45a)
e
< 1L = (M = S)Y2Y; lhmax + Crs \| Z 1 = S = YY)l (45D)

,T /,r
S (1 + CLS \/ %)HL*(I - Y'tY;T)Hmax + (1 + CVLS V 2@?”)\/{”&& - S*”max
r r
( (14 Crsy /= ), /% + (1 + Crsy/2opn)y/ %QCC) L1160, .+ (45¢)

where (45a) uses [[Yi]|l2,00 < /&7, (45b) uses Theorem 3, (45¢) uses the SVD of Ly, [|Uil2,00 < /B2 and

Lemme 1.

Proof of Theorem 5. First, by Lemma 7, we have

1M = 8, — X, B YT > oy max{\/l —62,0,,, \/1 - ag,toz,t}\ﬁ - egyt\/1 — 62, — || — S.]|

Then using (41), 6, < % and 8, + < %, we get

Orx T
1M = 80 = X2 2 7500 = 26l Lall /5O (46)

Second, by calculations, we have
1M = 8 = Xoa Vi I < 1= Xea X5 ) (M = S| + 1 X X5y (M = 8y) — X1 Y14 |

<N = Kea X5 0) Ll + IISt Sell + IIXt+1(M* St) = Yl

S Lal[Oz,41 + 26/ L€y [ =0, p1 + \FIIL [0zt (47)

1mx/ MLWM (48)

where the first two terms of (47) use Lemma 1 and (41), respectively, and the last term can obtained similar to
(40), with the help of Lemma 14.

Then it follows that

[M = Sip1 — X1 S Vil S |M = S, — Xt+12t+1YtTi-1H (49a)

1 +2c\/> —=)BIL. 6,0 (49D)

(1+2¢¢ ’““+ 7 Ol L

M — S — X% Y," 49c¢
7o || L \/‘T’ M= = Xy (49
= ZZJHM - S — XY,
where (49a) uses Lemma 6, (49b) uses (48), (49¢) uses (46). The proof is completed. O
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