
Supplemental material: Conditional Linear Regression

Diego Calderon Brendan Juba Sirui Li Zongyi Li Lisa Ruan

1 Soft Regression and Outlier Removal

Our algorithm works primarily on terms: we consider the terms {tj}mj=1 to be atomic sets of data,
whose weights |tj | are the number of points (or probability mass) satisfying the terms. The ideal
condition {x : c∗(x) = 1} is denoted by Igood; we also use Igood to denote the collection of terms
of the DNF c∗: {ti : ti is a term of c∗}, so the number of terms in Igood is t. From the perspective
of Charikar et al. (2017), we treat Igood as our “good data,” with the other points being arbitrary
bad data. The algorithm computes regression parameters wj for each term tj , and clusters these
parameters. The parameters are iteratively recomputed in a coordinate system centered on each of
the clusters; since the quality of the approximation we obtain scales with the radius of the parameter
space we consider, this centering improves the quality of the estimates we obtain. Eventually, our
algorithm is going to suggest a list of candidate parameters ŵ, with one of them approximating w∗.
Then, using the residuals of each candidate ŵ as labels, we learn a corresponding ĉ and evaluate its
quality in order to select a good pair to output. Towards realizing this strategy, we need to compute
approximations to the regression parameters that are not too impacted by the presence of terms
outside the desired DNF.

1.1 Preprocessing

In this section, we show how to convert the data into a suitable form: later, we will assume the
terms are disjoint and that we have an adequate number of examples to estimate the loss on each
term. We will ensure these conditions by introducing duplicate points when they are shared, and by
deleting terms that are satisfied by too few examples.

1.1.1 Reduction to Disjoint Terms by Duplicating Points

Given N data points and m terms t1, . . . , tm, if we view terms as sets, our analysis will require these
terms to be disjoint. A simple method is to duplicate the points for each term they are contained
in. For example, if the ith point x(i) = (x,y, z)(i) is contained in terms ta and tb, then we create
two points (x,y, z)(a,i) and (x,y, z)(b,i), each with the same attributes (x,y, z) as the original point
x(i). After duplication, the terms are disjoint, and there will be at most Nm points. We denote
the resulting number of points by N ′. The size of Igood, changing from |

⋃
Igood

ti| to
∑

Igood
|ti|, may

also blow up with a factor ranging from 1 to t. Note that the proportion of good points Ngood/N
decreases by at most a factor of 1/m since N ′good/N

′ ≥ Ngood/mN . This double counting process
may skew the empirical distribution of Igood by up to a factor of t. Consequently, it may result in
up to a t ≤ nk-factor blow-up in the error, and this is ultimately the source of the increase in loss

1

suffered by our algorithm in the main theorem. For convenience, we will use the same notation N ,
Igood, and µ for both before and after duplication when there is no confusion.

1.1.2 Reduction to Adequately Sampled Terms by Deleting Small Terms

The approach of Charikar et al. (2017) can only guarantee that we obtain satisfactory estimates
of the parameters for sufficiently large subsets of the data. Intuitively, this is not a significant
limitation as if a term has very small size, it will not contribute much to our empirical estimates.
Indeed, with high probability, the small terms (terms with size < βµN for β ≤ γ/t) only comprise a
γ fraction of Igood. Based on this motivation, if a term has size less than βµN , then we just delete it
at the beginning. Especially for a t-term DNF, not many terms could be small, so it is safe to ignore
these small terms. As before, we will continue to abuse notation, using t and m for the number of
terms when there is no confusion.

1.2 Loss Functions

In this section we define our loss functions and analyze their properties.
Given N data points and m disjoint sets (terms) t1, . . . , tm with size (weight) |t1|, . . . , |tm|, we

can define a loss function for each point in the space of parameters. For each ith point, define
f (i) : H → R by

f (i)(w) = (z(i) − 〈w,y(i)〉)2

Similarly, we define a loss function for each of the terms tj , f1, . . . , fm : H → R, as the average loss
over these data points {x(i) = (x(i),y(i), z(i))} in the term tj (beware we abuse the notation to let
x(i) denote the ith point).

fj(w) =
1

|tj |
∑

x(i)∈tj

f (i)(w)

=
1

|tj |
∑

x(i)∈tj

(z(i) − 〈w,y(i)〉)2

=
(∗)

1

|tj |
‖z− Yw>‖22

=
1

|tj |
(z− Yw>)>(z− Yw>)

=
1

|tj |

(
z>z− z>Yw> − zY >w + wY >Yw>

)
=

1

|tj |
[1,w]

[
z>z −z>Y
−Y >z Y >Y

]
[1,w]>

Where at (∗), we write the formula in vectors and matrices. We treat z as a |tj | × 1 column vector,
with each coordinate being the z for the corresponding point in the term tj . Similarly, Y is a |tj | × d
matrix, with each row containing a point and w is 1×d row vector. One advantage of our formulation
is that the loss function for each term can be eventually written as fj(w) = [1,w]A[1,w]>, where A
is a (d+ 1)× (d+ 1) matrix. We can pre-compute this quadratic loss matrix A so that the running
time of the main algorithm is independent of the number of data points, and is thus a function only
of the number of terms and dimension for our regression problem.

2

Note that these loss functions are stochastic, depending on the sample from the distribution
(x,y, z) ∼ D. That is, the true loss for a fixed term tj is:

E[fj(w)] = Ex(i) [(z(i) − 〈w,y(i)〉)2|tj].

Similarly, for Igood, we define the loss function

fIgood(w) =
1

|Igood|
∑

x(i)∈Igood

f (i)(w).

Let f̄ denote the expected loss function for points averaged over Igood,

f̄(w) = E[fIgood].

Then the optimal w∗ is defined as
w∗ := arg min

w
f̄(w).

Our ultimate goal is to find ŵ that minimizes f̄(ŵ), but the difficulty is that f̄ is unknown (since
Igood is unknown). To overcome this barrier, instead of directly minimizing f̄(ŵ), we try to find a
parameter ŵ such that f̄(ŵ)− f̄(w∗) is small. Once we get a close approximation ŵ, we can use
the covering algorithm of Juba et al. (2018) to find a good corresponding condition ĉ.

In summary, we reformulate our problem in terms of these new loss functions as follows:

Definition 1.1 (Restatement of conditional linear regression problem) Given D a distri-
bution over points {x(i) := (x(i),y(i), z(i))}N(i)=1, and {tj}mj=1 predefined disjoint subsets (terms),

let Igood be the (unknown) target collection corresponding to c∗ =
⋃
tj∈c∗ tj with probability mass

Pr[x ∈ Igood] ≥ µ, and f̄ be the regression loss over Igood. If there exists a linear regression fit w∗

such that:
ED[f̄(w∗)] ≤ ε.

Then we want to find a ŵ that approximates w∗:

ED[f̄(ŵ)] ≤ γ + ε.

1.3 Main Optimization Algorithm

Figure 1: Algorithm 1
1: The original data space with the terms. 2: Delete the small terms and duplicate points. 3: Compute the
best regression parameter ŵi for each term. 4: Meanwhile iteratively downweight these terms whose ŵi have
large error on their neighbor terms.

3

The main algorithm is an alternating-minimization-style algorithm: given a soft choice of which
terms are outliers, we let each term choose a local set of regression parameters that are collectively
regularized by the trace of their enclosing ellipsoid. Then, given these local regression parameters,
we update our scoring of outliers by examining which terms find it difficult to assemble a coalition
of sufficiently many “neighboring” terms whose parameters are, on average, close to the given
term. We repeat the two until we obtain a sufficiently small enclosing ellipsoid for the collection of
regression parameters.

1.3.1 Semidefinite Programming for Soft Regression

Following Charikar et al. (2017), we now present Algorithm 1 for approximating the regression
parameters. We assign “local” regression parameters wi for each term ti, and use a semi-definite
program (SDP) to minimize the total loss

∑
|ti|fi(wi) with regularization to force these parameters

to be close to each other. Following each iteration, we use Algorithm 2 to remove outliers, by
decreasing the weight factors ci for those terms without enough neighbors. The process is illustrated
in Figure 1. Intuitively, if there exists a good linear regression fit w∗ on Igood, then for each term
ti ∈ Igood, fi(w∗) should be small. Therefore, we can find a small ellipse Y (or EY) centered at o
bounding all parameters for the terms in Igood if the center o is close to w∗. The SDP will find such
an ellipse bounding the parameters while minimizing the weighted total loss.

Algorithm 1: Soft regression algorithm

Input: terms t1:m, center o.
Output: parameters ŵ1:m and a matrix Ŷ

Initialize c1:m ← (1, . . . , 1), λ←
√

8µNtS
r

repeat
Let ŵ1:m, Ŷ be the solution to SDP:

minimize
w1,...,wm,Y

m∑
i=1

ci|ti|fi(wi) + λtr(Y)

subject to (wi − o)(wi − o)> � Y for all i = 1, . . . ,m.

(1)

if tr(Ŷ) > 6r2

µ then

c← UpdateWeights(c, ŵ1:m, Ŷ)
end if

until tr(Ŷ) ≤ 6r2

µ

Return ŵ1:m, Ŷ

Formally, in the SDP 1 (in Algorithm 1), w are 1 × d vectors and Y is a d × d-dimensional
matrix (recall d is the dimension for y and w). We bound the parameters wi with the ellipse Y by

imposing the semidefinite constraint wiwi
> � Y , which is equivalent to letting

[
Y wi

wi
> 1

]
� 0,

saying that wi lies within the ellipse centered at 0 defined by Y . Similarly, when the center is o,
the constraints are (wi − o)(wi − o)> � Y . The regularization tr(Y) of the SDP penalizes the size
of the ellipse, making the various parameter copies wi lie close to each other.

4

1.3.2 Removing Outliers

The terms not in Igood may have large loss for the optimal parameters w∗, and therefore make the
total loss in SDP 1 large. To remove these bad terms, we assign a weight factor ci ∈ (0, 1) for each
term ti and down weight these terms with large loss, as shown in Algorithm 2.

Algorithm 2: Algorithm for updating outlier weights

Input: c, ŵ1:m, Ŷ .
Output: c′.
for i = 1 to m do

Let w̃i be the solution to

minimize
w̃i,ai1,...,aim

fi(w̃i)

subject to w̃i =
m∑
j

aijŵj ,
m∑
j

aij = 1

0 ≤ aij ≤
2

µN
|tj |, ∀j

(2)

zi ← fi(w̃i)− fi(ŵi)
end for
zmax ← max{ zi

∣∣ ci 6= 0}
c′i ← ci.

zmax−zi
zmax

for i = 1, . . . , n
Return c′

In Algorithm 2, we solve an SDP for each term to find its best µN neighbor points and compute
the “average” parameter w̃i over the neighborhood. w̃i is a linear combination of its neighbors’
parameters: w̃i =

∑m
j aijŵj , minimizing the term’s loss fi(w̃i). Intuitively, if a term is a good

term, i.e. ti ∈ Igood, then its parameter ŵi should be close to the average of parameters of all terms

in Igood, wi ≈
∑

Igood

|tj |
|Igood|wj . In the SDP for ti, we define coefficients aij to play the role of

|tj |
|Igood| .

These coefficients {aij} are required to sum to 1, i.e.
∑m

j aij = 1, and each should not be larger

than
|tj |
|Igood| ∼ 2

|tj |
µN . At a high level, the SDP computes the best neighbors for ti by assigning {aij},

so that the average parameter w̃i over the neighbors minimizes fi. If a term is bad, it is hard to
find such good neighbors, so if the loss fi(w̃i) is much larger than the original loss, then we consider
the term to be an outlier, and down-weight its weight factor ci.

1.4 A Bound on the Loss That Is Linear in the Radius

Similarly to Charikar et al. (2017), we obtain a theorem saying the algorithm will return meaningful
outputs on Igood. The main change is that we use terms instead of points. In other words, we
generalize their arguments from unit-weight points to sets with different weights. And based on a
spectral norm analysis, we show the bound will shrink linearly with the radius as long as we have
enough data.

First, to estimate the losses by their inputs, we introduce the gradient ∇f . By the convexity
of f , we have (f(w)− f(w∗)) ≤ 〈∇f(w),w −w∗〉. Note that ‖w −w∗‖ is bounded by 2r, where

5

r := max ‖w‖2. We will need to bound the gradient as well.
To bound the loss functions, we use the spectral norm of gradients:

S := max
w∈H

1√
t
‖
[
∇fj(w)−∇f̄(w)

]
j∈Igood

‖op

Where ‖ · ‖op is the spectral norm (operator 2-norm) of the matrix, whose rows are gradients of
loss functions in Igood: (∇fi(w)−∇f̄(w))i∈Igood . S measures the difference between the gradient of
loss functions of terms in Igood: ∇fi(w) and gradient of average loss on Igood: ∇f̄(w). At a high
level, this bound tells us how bad these loss functions could be. We note that since the gradient is a
linear operator, this quantity is invariant to regularization of the loss functions.

As shown by Charikar et al. (2017), if ∇fi − ∇f̄ is a σ∇f sub-gaussian distribution, then
S = O(σ∇f), generally a constant. Although a constant bound O(σ∇f) is good for their purposes
– mean estimation – it is too weak for linear regression. In the sequel we will show S is going to
shrink as the radius of parameters r decreases.

For linear regression, fj(w) := 1
|tj |
∑

x(i)∈tj f
(i)(w), and ∇fj(w) = 1

|tj |
∑

x(i)∈tj ∇f
(i)(w), where

for each point ∇f (i)(w) = 2(w>y(i) − z(i))y(i). If we assume z(i) = w∗>y(i) + ε(i), and the residual
ε(i) (a subgaussian, e.g., from N (0, σ2

ε)) is independent of y(i), then

∇f (i)(w) = 2(w> −w∗>)y(i)y(i)> + ε(i)y(i)

∇fj(w) =
1

|tj |

2(w> −w∗>)
∑

x(i)∈tj

y(i)y(i)> +
∑

x(i)∈tj

ε(i)y(i)


Similarly, we can write the target function as:

∇f̄(w) = 2(w> −w∗>)E[yy>]

So the difference of the gradients is actually:

(∇fj(w)−∇f̄(w)) = 2(w> −w∗>)(
∑

x(i)∈tj

y(i)y(i)>

|tj |
− E[yy>]) +

∑
x(i)∈tj

ε(i)y(i)

|tj |

The first term is going to shrink as (w>−w∗>) decreases. (If we draw enough data, 1
|tj |
∑

tj
y(i)y(i)> →

E[y(i)y(i)>|tj], so we’ll be able to regard the other factor as a fixed “scaling.”) The second term
approaches zero as we draw more data, 1

|tj |
∑

tj
ε(i)y(i) → 0. So given that we have drawn enough

data, we will be able to bound each row of S by the radius r := maxw ‖w‖2 and similarly for the
whole matrix.

More concretely, if we define S0 := ‖
[

1
|tj |
∑

tj
y(i)y(i)>−E[yy>]

]
Igood
‖op, then we find S = O(rS0).

Note, S0 is fixed given the data, and thus remains constant across iterations. Furthermore, S0

concentrates around ‖
[
E[y(i)y(i)>|tj]− E[yy>]

]
Igood
‖op and can thus be bounded. Therefore, the

bound on S we can guarantee will decrease when we take more points. We know 1
|tj |
∑

ti
ε(i) can be

bounded with a simple sub-gaussian tail bound : Pr[1
|tj |
∑
ε ≥ τ] ≤ exp[− 2τ2

σ2
ε /|tj |

]. Plugging in τ ← r,

and fixing δ, we find that as long as the number of examples |tj | ≥ σ2
ε log(1/δ)/2r2, then

∑
tj
ε(i) ≤ r

with probability 1− δ. Taking a union bound over δ ← δ/t, it suffices to take |tj | ≥ σ2
ε log(m/δ)/2r2,

and thus N = O(σ2
ε log(m/δ)/βµr2)). In summary, we obtain

6

Lemma 1.2 For N = O(σ2
ε log(m/δ)/βµr2)) example points, with probability 1−δ the spectral norm

of the gradients S is bounded by a linear function of the radius r := maxw ‖w‖2, i.e., S = O(rS0).

1.5 Analysis of Main Optimization Algorithms 1 and 2

Let ŵ1:m be the outputs from Algorithm 1. We define the weighted average parameter of terms
from Igood as ŵavg := (

∑
i∈Igood ci|ti|ŵi)/(

∑
i∈Igood ci|ti|). In this section, we aim to prove a bound

on f̄(ŵavg)− f̄(w∗) by controlling the optimization error |fi(ŵi)− fi(w∗)| and the statistical error
|f̄(ŵavg)− fi(ŵ)|. Then we prove Algorithm 2 will not decrease the weight of the good terms too
much.

Theorem 1.3 says that Algorithm 1 can find a small ellipse EY bounding its output, and the
expected loss over ŵavg is close to the expected loss of w∗.

Theorem 1.3 (Weighted Version of Theorem 4.1, Charikar et al. (2017)) Let ŵ1:m, Ŷ be
the output of Algorithm 1. Then, f̄(ŵavg) − f̄(w∗) ≤ 18 tSr√µ . Furthermore, ŵavg ∈ EŶ and

tr(Ŷ) ≤ 6r2

µ .

Lemma 1.4 is a basic inequality used multiple times in the analysis. It bounds the loss via S.
Since the algorithm is using terms instead of points, we are suffering an additional factor-t blow-up
of the error compared to the original bound, which is carried through the lemmas in this section.

Lemma 1.4 For any w and any w1:n satisfying wiwi
> � Y for all i, we have∣∣∣ ∑

i∈Igood

ci|ti|〈∇fi(w)−∇f̄(w),wi〉
∣∣∣ ≤ µNtS√tr(Y). (3)

Proof of Lemma 1.4 Let F be the matrix whose ith row is
(
∇fi(w0) −∇f̄(w0)

)
, and let W

be the matrix whose ith row is wi. We consider only the rows i ∈ Igood, so the dimension of each
matrix is t× d. We have∣∣∣ ∑

i∈Igood

ci|ti|〈∇fi(w0)−∇f̄(w0)〉
∣∣∣ = tr(F>diag(|ti|ci)W)

≤ ‖diag(|ti|)diag(ci)F‖op‖W‖∗
by Hőlder’s inequality. We can bound each part:

‖diag(ti)‖op ≤ max
ti∈Igood

|ti| ≤ Ngood ≤ µN

‖diag(c)‖op ≤ 1 since c ∈ [0, 1]

‖F‖op ≤
√
tS, by the definition of S

‖W‖∗ ≤
√
ttr(Y), by Lemma 3.1 of Charikar et al. (2017)

Combining these, we see that ‖diag(|ti|c)F‖op‖W‖∗ is bounded by µtNS
√

tr(Y).

Lemma 1.5 bounds the difference between fi(ŵi) and fi(w
∗), based on the optimality of our

solution to SDP 1 in Algorithm 1. Its proof follows identically to Lemma 4.2 of Charikar et al.
(2017).

7

Lemma 1.5 (c.f. Lemma 4.2 of Charikar et al. (2017)) The solution ŵ1:m to the SDP in
Algorithm 1 satisfies: ∑

i∈Igood

ci|ti|(fi(ŵi)− fi(w∗)) ≤ λ‖w∗‖22. (4)

Lemma 1.6 bounds the difference between fi(ŵavg) and fi(ŵi). Its proof likewise identically
follows Lemma 4.3 of Charikar et al. (2017):

Lemma 1.6 (c.f. Lemma 4.3 of Charikar et al. (2017)) Let ŵavg := (
∑

i∈Igood ci|ti|ŵi)/(
∑

i∈Igood ci|ti|).
The solution ŵ1:m, Ŷ to Algorithm 1 satisfies∑

i∈Igood

ci|ti|
(
fi(ŵavg)− fi(ŵi)

)
≤ µNtS

(√
tr(Ŷ) + r

)
,

∑
i∈Igood

ci|ti|
(
f̄i(ŵavg)− f̄(w∗)

)
≤

∑
i∈Igood

ci|ti|
(
fi(ŵavg)− fi(w∗)

)
+ 2µNtrS.

We next consider an analogue of Lemma 4.4 of Charikar et al. (2017). To deal with the different
weights of terms, our Algorithm 2 considers the neighbors with their weights, and therefore uses
different definitions of a and W (from those of Charikar et al. (2017)) in the analysis. Lemma 1.7
bounds tr(Y) and the difference between fi(w̃i) and fi(ŵi).

Lemma 1.7 For w̃i as obtained in Algorithm 2, Ỹ := 2
µN ŴŴ>, and W := [

√
|t1|w1, . . . ,

√
|tm|wm].

we have
w̃iw̃

>
i � Ỹ

for all i, and also

tr(Ỹ) ≤ 2r2

µ

In addition:

tr(Ŷ) ≤ 2r2

µ
+

1

λ

(m∑
ci|ti|

(
fi(w̃i)− fi(ŵi)

))
Proof of Lemma 1.7 Let w̃i =

∑m
j=1 aijŵj as defined in Algorithm 2. First, we want to show

w̃iw̃
>
i � Ỹ :

w̃iw̃
>
i =

(n∑
j=1

aijŵj

)(n∑
j=1

aijŵj

)>
�

n∑
j=1

aijŵjŵ
>
j

�
n∑
j=1

2

µN
|tj |ŵjŵ

>
j

=
2

µN

n∑
j=1

|tj |ŵjŵ
>
j

= Ỹ

8

and

tr(Ỹ) =
2

µN
tr(ŴŴ>)

=
2

µN
tr(diag([|ti|]))‖w‖

≤ 2

µN

m∑
i=1

|ti|r2

≤ 2r2

µ
.

For the third claim, since (ŵ1:m, Ŷ) is the optimal solution of the SDP in Algorithm 1 and (w̃1:m, Ỹ)
is a feasible solution of that, we have

m∑
i=1

ci|ti|fi(ŵi) + λtr(Ŷ) ≤
m∑
i=1

ci|ti|fi(w̃i) + λtr(Ỹ)

This gives us

tr(Ŷ) ≤ 2r2

µ
+

1

λ

(m∑
i=1

ci|ti|
(
fi(w̃i)− fi(ŵi)

))
.

Then, analogous to Corollary 4.4 of Charikar et al. (2017), we show ŵavg can be viewed as a
feasible solution to SDP in Algorithm 2, so we can bound (fi(w̃i)− fi(ŵ)) by (fi(ŵavg)− fi(ŵ)).

Corollary 1.8 If
∑

i∈Igood ci|ti| ≥
µN
2 , then∑

i∈Igood

ci|ti|
(
fi(w̃i)− fi(ŵi)

)
≤ µNt

(√
tr(Ŷ) + r

)
Proof of Corollary 1.8: First, we show that ŵavg is a feasible solution for the semidefinite program
for w̃ in Algorithm 2.

By taking aij =
cj |tj |∑

j′∈Igood
cj′ |tj′ |

for j ∈ Igood and 0 otherwise, we get aij ≤ 2|tj |
µN since

∑
j′∈Igood cj′ |tj′ | ≥

µN
2 . We see

ŵavg =

∑
j∈Igood cj |tj |ŵj∑
j′∈Igood cj′ |tj′ |

=

N∑
j=1

aijŵj

Then by optimality, ∑
i∈Igood

ci|ti|(fi(w̃i)− fi(ŵ)) ≤
∑

i∈Igood

ci|ti|(fi(ŵavg)− fi(ŵ))

which is bounded by µNtS
(√

tr(Ŷ) + r
)

by Lemma 1.6.

Lemma 1.9 shows
∑

Igood
ci|ti| is large enough. In other words, Algorithm 2 will not down weight

good terms too much. Its proof follows identically to Lemma 4.5 of Charikar et al. (2017).

9

Lemma 1.9 (c.f. Lemma 4.5 of Charikar et al. (2017)) Suppose that 1
N

m∑
i=1

ci|ti|(fi(w̃i)−fi(ŵi)) ≥
2
µN

∑
i∈Igood ci|ti|(fi(w̃i)− fi(ŵi)) Then, the update step in Algorithm 2 satisfies

1

µN

∑
i∈Igood

|ti|(ci − c′i) ≤
1

2N

m∑
i=1

|ti|(ci − c′i) (5)

Moreover, the above supposition holds if λ =
√

8µNtS
r and tr(Ŷ) > 6r2

2µ .

Finally, we prove Theorem 1.3, which bounds the difference in the empirical loss of ŵavg and w∗.
Proof of Theorem 1.3: First, show the the weights of Igood will never be too small. By Lemma

1.9, the invariant
∑

i∈Igood ci|tj | ≥
µN
2 + µ

2

∑
i=1 ci|ti| holds throughout the algorithm. Therefore we

get
∑

i∈Igood ci|tj | ≥
µN
2 . In particular, Algorithm 1 will terminate, since Algorithm 2 zeros out at

least one outlier ci each time, and this can happen at most m− t times before
∑

i∈Igood ci|ti| would

drop below µN
2 , which we showed impossible.

Now, let (ŵ1:m, Ŷ) be the value returned by Algorithm 1. By Lemma 1.6 we then have∑
i∈Igood

ci|ti|(f̄(ŵavg)− f̄(w∗)) ≤
∑

i∈Igood

ci|ti|(f̄(ŵavg)− f̄(w∗)) + 2µNtSr

≤
∑

i∈Igood

ci|ti|(f̄(ŵi)− f̄(w∗)) + 3µNtSr +
√

6µNtSr.

By Lemma 1.5, we have
∑

i∈Igood ci|ti|(fi(ŵi − fi(w∗)) ≤ λr2 and, by the assumption we have

tr(Ŷ) ≤ 6r2

µ . Plugging in λ =
√

8µNtS
r , we get∑

i∈Igood

ci|ti|(f̄(ŵavg)− f̄(w∗)) ≤ λr2 + 3µNtSr +
√

6µNtSr

= 3µNtSr + (
√

6 +
√

8)
√
µNtSr

≤ 9
√
µNtSr

Since
∑

i∈Igood ci|ti| ≥
µN
2 , dividing through by

∑
i∈Igood ci|ti| yields f̄(ŵavg)− f̄(w∗) ≤ 18 tSr√µ .

2 List-regression Algorithm

We finally introduce the main algorithm to cluster the terms. Again following Charikar et al. (2017),
we initially use Algorithm 1 to assign a parameter ŵi for each term. In each iteration, we use
Padded Decompositions to cluster the terms by their parameters, and then reuse Algorithm 1 on
each cluster. After each iteration, we can decrease the radius of the ellipse containing Igood by half.
Eventually, the algorithm will be able to constrain the parameters for all of the good terms in a
very small ellipse, as illustrated in Figure 2. The algorithm will then output a list of candidate
parameters, with one of them approximating w∗.

10

Figure 2: Algorithm 4
1: Run Algorithm 1. Get a ŵi for each term. 2: Cluster the terms by their parameter ŵi. 3: Iteratively
re-run Algorithm 1 on each cluster and re-cluster the terms, so that the ŵi of Igood gradually get closer. 4:
Finally terminate by picking a “good enough” cluster.

2.1 Padded Decomposition

Padded Decomposition is a randomized clustering technique developed by Fakcharoenphol et al.
(2003). Given points {w1, . . . ,wm} in a metric space, a padded decomposition with parameters
(ρ, τ, δ) is a partitioning of the points P := {Pi} satisfying the following:

1. Each cluster P has diameter ρ,
2. For each point wi and all wj such that ‖wi −wj‖ < τ , wj will lie in the same cluster P as

wi with probability 1− δ.
Fakcharoenphol et al. give a simple random clustering algorithm to produce padded decompositions,
that uniformly samples balls with radius less than ρ from the space W = ŵ1:m. Intuitively, if the
radius of Igood, τ << ρ, then we high probability, the ball with radius ρ will contain all of Igood.

Algorithm 3: Padded Decomposition

Input: ŵ1:m, ρ, τ .
Output: Partition P = {T}.
Initialize: let P = ∅, W = ŵ1:m. Sample k ∼ Uniform(2, ρ).
while W 6= ∅ do

Sample i ∼ Uniform(1,m).
Let T ← Ball(ŵi, kτ) ∩W.
Update: P = P ∪ {T}. W ←W\T .

end while
Return: partition P.

Lemma 2.1 (Padded Decomposition) If all the elements of I have pairwise distance d(ŵi, ŵj) ≤
τ , and ρ = 1

δ τ log(1
µ). then for the output partition P of Algorithm 3, with probability least 1− δ, I

will be contained in a single cluster T ∈ P.

The proof of this variant can be found in Appendix A of Charikar et al. (2017).

11

In Algorithm 4, we will generate multiple padded decompositions in each iteration, to ensure
that with high probability most of the padded decompositions preserve all of Igood in a single cluster.
At the end of each iteration, we will update ŵi by aggregating the padded decompositions.

Given a target radius rfinal, we will check if the current radius r < rfinal. If so, the algorithm
will greedily find a list of candidate parameters u1, ...,us, where the length of the list s is at most
2
µ . We can show that one of u1, ...,us must be close to w∗. Finally, we will use a greedy covering
algorithm following Juba et al. (2018) to find conditions on which the linear rules u1, ...,us have low
loss, and return the pair (ŵ, ĉ) with at least a µ fraction of points and the smallest regression loss.

Algorithm 4: List-regression algorithm

Input: m terms, target radius rfinal.
Output: candidate solutions {u1, ...,us} and ŵ1:m.
Initialize r(1) ← r,

ŵ
(1)
1:m ← Algorithm 1 with origin 0 and radius r (all i = 1, . . . ,m are “assigned” an output).

for ` = 1, 2, . . . do

W ← {ŵ(`)
i | ŵ

(`)
i is assigned}

if r(`) < 1
2rfinal then

Greedily find a maximal set of points u1, ...,us s.t.
I: |B(uj ; 2rfinal) ∩W| ≥ (1− β)µN, ∀j.
II: ‖uj − uj′‖2 > 4rfinal, ∀j 6= j′.

Return U = {u1, ...,us}, ŵ(`)
1:m.

end if
for h = 1 to 112 log(`(`+1)

δ) do
w̄1:m(h)← unassigned
Let Ph be a (ρ, 2r(`), 7

8)-padded decomposition of W with ρ = O(r(`)log(2
µ)).

for T ∈ Ph do
Let B(u, ρ) be a ball containing T . Run Algorithm 1 on H ∩B(u, ρ), with radius r = ρ
and origin shifted to u.
for each ŵi ∈ T assign w̄i(h) as the outputs of Algorithm 1.

end for
end for
for i = 1 to m do

Find a h0 such that ‖w̄i(h0)− w̄i(h)‖2 ≤ 1
3r

(`) for at least 1
2 of the h’s.

ŵ
(`+1)
i ← w̄i(h0) (or “unassigned” if no such h0 exists)

end for
r(`+1) ← 1

2r
(`)

end for

2.2 Analysis of List-regression, Algorithm 4

The analysis will require a “local” spectral norm bound that gives a tighter bound for any β fraction
of points. This analysis largely follows the same outline as Charikar et al. (2017), but differs in
some key details. By the local spectral bound, in each iteration, we get good estimates of w for any
sufficiently large subset. A key observation is that in contrast to Charikar et al. (2017), we do not

12

“lose” points from our clusters across iterations since our terms are all large enough that they are
preserved. This enables a potentially arbitrarily-close approximation of w∗ given enough data.

2.2.1 Local Spectral Norm Bound

For β < 1, we define a local spectral norm bound Sβ on arbitrary subsets T in Igood, such that T
takes up at least a β fraction of Igood (NT ≥ βN). Denote the number of points in T by NT and
the number of terms by mT . We define

Sβ := max
w∈H,

max
T⊂Igood
NT≥βN

1
√
mT
‖[∇fj(w)−∇f̄(w)]j∈T ‖op

Similar to the analysis of S, Sβ = O(rSβ0), where recall, Sβ0 := maxT :NT≥βN

∥∥∥[1
|tj |
∑

i∈tj y(i)y(i)>−

E[yy>
]
j∈T

∥∥∥
op

is bounded by a constant. We denote the value of Sβ in the `th iteration by S
(`)
β ,

where S
(`)
β = O(r(`)Sβ0).

With the local spectral norm bound for the gradients, we can obtain the local version of Lemma
1.6

Lemma 2.2 (c.f. Lemma 5.2 of Charikar et al. (2017)) Let the weights bi ∈ [0, 1] satisfy∑
i∈Igood bi|ti| ≥ βµN , and define ŵb

avg :=
∑

i∈Igood bi|ti|ŵi/
∑

i∈Igood bi|ti|. Then the output of

Algorithm 1, ŵ1:m, Ŷ satisfies∑
i∈Igood

bi|ti|
(
fi(ŵ

b
avg)− fi(ŵi)

)
≤ bi|ti|〈∇fi(ŵb

avg), ŵ
b
avg − ŵi〉 ≤

(∑
i∈Igood

bi|ti|
)
tSβ

(√
tr(Ŷ) + r

)
Moreover, for any w,w′ ∈ H, we have∣∣∣ ∑

i∈Igood

bi|ti|
(
f̄(w)− f̄(w′)

)
−
∑

i∈Igood

bi|ti|
(
fi(w)− fi(w′)

)∣∣∣ ≤ 2
(∑
i∈Igood

bi|ti|
)
trSβ.

The proof is similar to Lemma 1.6.

2.2.2 Proof of the Main Theorem

We can now state and prove our main theorem for list regression. As noted at the outset, we will
need to assume that the distribution over Igood is sufficiently similar relative to the degree of (strong)
convexity of the loss.

Theorem 2.3 Let any rfinal and δ, β ≤ 1
2 be given. Suppose that the loss functions fi are κ-strongly

convex and Sβ0 ≤ O(
κ
√
µ

t log(1/µ)) for all i ∈ Igood. For N = O(σ2
ε log(m/δ)/βµr2

final)) example points,

let U , ŵ1:m be the output of Algorithm 4. Then with probability at least 1− δ, U has size at most⌊
1

(1−β)µ

⌋
, and minu∈U ‖u−w∗‖2 ≤ O(rfinal). Moreover, ‖ŵi −w∗‖2 ≤ O(rfinal) for every term

i ∈ Igood.

Towards proving Theorem 2.3, our main step is the following bound on the quality of a single
iteration of Algorithm 4:

13

Theorem 2.4 For some absolute constant C, the output ŵ1:m of Algorithm 1 during Algorithm 4
satisfies

‖ŵi −w∗‖22 ≤ C ·
r(`)tS

(`)
β

κ
√
µ

for all terms i ∈ Igood.

The key to establishing Theorem 2.4 will be to use the bound on the statistical error from Lemma
2.2 and the strong convexity of fi.

Lemma 2.5 For any bi ∈ [0, 1] satisfying
∑

i∈Igood bi|ti| ≥ βµN , we have∑
i∈Igood bi|ti|‖ŵi − ŵavg‖22∑

i∈Igood bi|ti|
≤ 2

κ
(

√
tr(Ŷ) + r)tSβ (6)

Proof of Lemma 2.5 Recall that Lemma 2.2 says that for any bi ∈ [0, 1] satisfying
∑

i∈Igood bi|ti| ≥
βµN , we have ∑

i∈Igood

bi|ti|〈∇fi(ŵb
avg), ŵ

b
avg − ŵi〉 ≤

(∑
i∈Igood

bi|ti|
)
tSβ

(√
tr(Ŷ) + r

)
By strong convexity of fi, we have

0 ≤
∑

i∈Igood

bi|ti|
(
fi(ŵ

b
avg)− fi(ŵi)

)
≤

∑
i∈Igood

bi|ti|
(
〈∇fi(ŵb

avg), ŵ
b
avg − ŵi〉 −

κ

2
‖ŵi − ŵb

avg‖22
)

≤

(∑
i∈Igood

bi|ti|

)
tSβ

(√
tr(Ŷ) + r

)
− κ

2

∑
i∈Igood

bi|ti|‖ŵi − ŵb
avg‖22.

By applying Lemma 2.5 to b′i = 1
2

(
bi +

∑
j bj |tj |∑
j cj |tj |

ci

)
, we obtain Lemma 2.6, which gives bounds in

terms of ŵavg rather than ŵb
avg:

Lemma 2.6 For any bi ∈ [0, 1] satisfying βµN ≤
∑

i∈Igood bi|ti| ≤
∑

i∈Igood ci|ti|, we have∑
i∈Igood bi|ti|‖ŵi − ŵavg‖22∑

i∈Igood bi|ti|
≤ 10

κ
(

√
tr(Ŷ) + r)tSβ (7)

Proof of Lemma 2.6 For convenience, let us define: B =
∑

i∈Igood bi|ti|, C =
∑

i∈Igood ci|ti|,

b′i = 1
2

(
bi +

∑
j bj |tj |∑
j cj |tj |

ci

)
= 1

2bi + 1
2
B
C ci. Notice that

∑
Igood

b′i|ti| = B and ŵb′
avg = 1

2ŵb
avg + 1

2ŵavg.

14

We invoke Lemma 2.5 twice, on b and b′ respectively:

1

B

∑
i∈Igood

b′i|ti|‖ŵi −
1

2
ŵb
avg −

1

2
ŵavg‖ =

1

B

∑
i∈Igood

b′i|ti|‖
1

2
ŵi −

1

2
ŵb′
avg‖ ≤

2

κ
(

√
tr(Ŷ) + r)tSβ

1

B

∑
i∈Igood

bi|ti|‖
1

2
ŵi −

1

2
ŵb
avg‖ ≤

1

κ
(

√
tr(Ŷ) + r)tSβ.

Since for any i, b′i ≤ 1
2bi

1

B

∑
i∈Igood

bi|ti|‖ŵi −
1

2
ŵb
avg −

1

2
ŵavg‖ ≤

2

B

∑
i∈Igood

b′i|ti|‖ŵi −
1

2
ŵb
avg −

1

2
ŵavg‖ ≤

4

κ
(

√
tr(Ŷ) + r)tSβ

Combining the two inequalities

1

B

∑
i∈Igood

b′i|ti|‖ŵi − ŵb
avg‖ ≤

1

B

∑
i∈Igood

b′i|ti|2
(
‖ŵi −

1

2
ŵb
avg −

1

2
ŵavg‖+ ‖ − 1

2
ŵi +

1

2
ŵb
avg‖

)
≤ 2
(4

κ
(

√
tr(Ŷ) + r)tSβ +

1

κ
(

√
tr(Ŷ) + r)tSβ

)
=

10

κ
(

√
tr(Ŷ) + r)tSβ

Corollary 2.7 In particular, no set of terms comprising more than a βµ fraction of the data (or

probability weight) can have ‖ŵi − ŵavg‖22 > 10
κ (

√
tr(Ŷ) + r)tSβ.

Proof Consider terms t1, . . . , tq with Pr[t1 ∨ · · · ∨ tq] > βµ. Assume for contradiction that for

all of these terms, ‖ŵi − ŵavg‖22 > 10
κ (

√
tr(Ŷ) + r)tSβ. We can assign bi for each ti such that∑

bi = βµ. Then ∑
i∈Igood bi|ti|‖ŵi − ŵavg‖22∑

i∈Igood bi|ti|
≥
∑

i∈Igood bi|ti|∑
i∈Igood bi|ti|

‖ŵi − ŵavg‖22

>
10

κ
(

√
tr(Ŷ) + r)tSβ

which contradicts Lemma 2.6.

Key Observation As we deleted all terms of size smaller than βµN , all the remaining terms
have at least βµ probability-weight (or βµN empirical size). Therefore, every term will satisfy

‖ŵi − ŵavg‖22 ≤
10

κ
(

√
tr(Ŷ) + r)tSβ.

We can subsequently obtain Theorem 2.4 by thus invoking Corollary 2.7:

15

Proof of Theorem 2.4: By Corollary 2.7, we have ‖ŵi − ŵavg‖22 ≤ 10
κ (

√
tr(Ŷ) + r)tSβ for all

i ∈ Igood. tr(Ŷ) ≤ O(r
2

µ), so ‖ŵi− ŵavg‖22 ≤ 10
κ (r√

µ +r)tSβ = O(
rtSβ
κ
√
µ). In addition, by Theorem 1.3,

f̄(ŵavg)− f̄(w∗) ≤ O(
rtSβ√
µ). By the strong convexity of f̄ , ‖ŵavg −w∗‖22 ≤ O(

rtSβ√
µ). We combine

the bounds to obtain ‖ŵi −w∗‖22 ≤ 2(‖ŵi − ŵavg‖22 + ‖ŵavg −w∗‖22) ≤ O
(
rtSβ√
µ

)
Finally, using Theorem 2.4, we show the radius r(`) (used in the `th iteration) can be decreased

by half at each iteration.

Lemma 2.8 In Algorithm 4, denote the set of parameters of good points of `th iteration by I
(`)
good :=

{ŵ(`)
i : i ∈ Igood}. If ‖ŵ(`)

i −w∗‖2 ≤ r(`) and Sβ0 ≤ C ′ · κ
√
µ

t log(2/µ) for some constant C ′, then with

probability (1− δ
`(`+1)) over the randomly chosen padded decompositions, ‖ŵ(`+1)

i −w∗‖2 ≤ 1
2r

(`).

Proof We call a padded decomposition partition Ph good if all of the terms of I
(`)
good lie in a single

cluster of Ph. Denote the set of padded decompositions where Ph is good by H.
In the algorithm, we draw q = 112 log `(`+1)

δ random padded decompositions with parame-

ters (ρ, 2r(`), 1
8), where ρ = O(r(`) log 2

µ), so that (i) each cluster P of Ph has diameter at most

O(r(`) log 2
µ), and (ii) for each padded decomposition and a parameter vector, all other parameter

vectors within 2r(`) will lie in the same cluster with probability 7/8.

Since we assume ‖ŵ(`)
i −w∗‖2 ≤ r(`), with probability 7

8 , all of I
(`)
good will lie in a single cluster,

i.e. this padded decomposition Ph is good. Then, by a Chernoff Bound, the total number of good
padded decompositions will be larger than 3

4q with probability 1− δ
`(`+1) .

For a good padded decomposition (P is the cluster containing the terms of I
(`)
good), w∗ is within

distance r(`) of P . Therefore, if P ⊂ B(u, ρ), then w∗ ∈ B(u, ρ+ r(`)). As we run Algorithm 1 on
B(u, ρ+ r(`)), Theorem 2.4 will give us:

‖w̄i(h)−w∗‖22 ≤ C ·
trSβ
κ
√
µ

‖w̄i(h)−w∗‖2 ≤ O
(√√√√ t(ρ+ r(`))S

(`)
β

κ
√
µ

)

= O
(√√√√ tr(`) log 2

µ S
(`)
β

κ
√
µ

)
where w̄i(h) is the output ŵi of Algorithm 1.

We want to show ‖w̄i(h)−w∗‖2 ≤ 1
6r

(`). Recall that S
(`)
β ≤ O(Sβ0r

(`)), so it suffices to have

r(`) ·

√
t log 2

µ Sβ0

κ
√
µ

≤ O(r(`)),

i.e., Sβ0 ≤ O
(
κ
√
µ

t log 2
µ

)
, which is true by hypothesis (for some suitable C ′).

16

Since ‖w̄i(h) −w∗‖2 ≤ 1
6r

(`) for any two good iterations h and h′, and each iteration is only

bad with probability ≤ 1
4 , we can pick h0 such that ‖w̄i(h0)− w̄i(h)‖2 ≤ 1

3r
(`) is true for half of the

iterations. For any good h,

‖w̄i(h0)−w∗‖2 ≤ ‖w̄i(h0)− w̄i(h)‖2 + ‖w̄i(h)−w∗‖2

≤ 1

3
r(`) +

1

6
r(`)

≤ 1

2
r(`)

That is, ŵ
(`+1)
i := w̄i(h0) is within 1

2r
(`) of w∗.

Proof of Theorem 2.3: Lemma 2.8 shows that on the `th iteration, w∗ lies in a ball of radius

r(`) around each ŵ
(`)
i for i ∈ Igood, where r(`) decreases by half on each iteration. In the final

iteration, when r(`) reaches the target accuracy radius rfinal, the algorithm greedily finds disjoint
balls B(uj ; 2rfinal) on the parameter space W, such that the corresponding terms for the covered
parameters contain at least (1− β)µN points, i.e for each ball B,∑

ŵi∈B
|ti| ≤ (1− β)µN

Since for all i ∈ Igood, ‖ŵ −w∗‖ < rfinal, we now argue that all of the terms in Igood will lie in one
ball. Indeed, if no term of Igood is contained in any ball, then any term of Igood gives a candidate
for the greedy algorithm to add to the list. Therefore, at least one of the good terms ŵi, i ∈ Igood
must be contained in some ball. Then for this ball B(u, rfinal),

‖u−w∗‖ ≤ ‖u− ŵi‖+ ‖ŵi −w∗‖
≤ 2rfinal + rfinal

= O(rfinal)

Since each ball contains at least (1− β)µ points, there can be at most
⌊

1
(1−β)µ

⌋
such balls, which

completes the proof.

3 Obtaining a k-DNF Condition

Once we get outputs {u1, ...,us} from Algorithm 4, we switch from the parameter space {w} back
to the Boolean data space {x}, to search for corresponding clusters c for each candidate parameter
ui. If we find a pair (u, c) such that c contains enough points and the loss fc(u) is small, we return
this pair as the final solution.

Suppose u is one of the candidates such that ‖u−w∗‖ < O(rfinal) =: γ, then |f̄(u)− f̄(w∗)| ≤
γL = O(γ), for some Lipschitz constant L (since f is just a regression loss on a bounded space, it is
Lipschitz continuous). Recalling f̄ is nonnegative, if f̄(w∗) ≤ ε, then f̄(u) ≤ γ + ε.

3.1 Bounding the Double-Counting Effect

We now address the effect of our double-counting of points. Recall that we introduced a copy of
a point for each term it satisfied. Observe that on Igood, which contains t terms, this is at most t
copies. We thus obtain

17

Lemma 3.1 Let u be such that ‖u−w∗‖ < γ. Then |f̄(u)| ≤ t(γ + ε) (for the true distribution,
without duplicated points).

Proof Assume w∗true is the true optimal linear fit: ignoring the common 1/|Igood| scaling,

w∗true := argmin
w

f̄(w) = argmin
w

∑
i∈Igood

f (i)(w)

and w∗ is the optimal linear fit for the double counted data: letting a(i) ∈ [1, t] denote the number
of copies of each point after duplication and again ignoring the

∑
i∈Igood a

(i) scaling factor,

w∗ := argmin
w

∑
i∈Igood

a(i)f (i)(w).

Now, for any w, observe that
∑

i∈Igood f
(i)(w) ≤

∑
i∈Igood a

(i)f (i)(w) and∑
i∈Igood

a(i)f (i)(w) ≤ (max
i∈Igood

a(i))
∑

i∈Igood

f (i)(w) ≤ t
∑

i∈Igood

f (i)(w).

Therefore,

|Igood|f̄(w∗) ≤ |Igood|
∑

i∈Igood

a(i)f (i)(w∗) ≤ |Igood|t
∑

i∈Igood

a(i)f (i)(w∗true) ≤ t|Igood|f̄(w∗true)

Therefore, if |f̄(w∗true)| ≤ γ + ε, then |f̄(w∗)| ≤ t(γ + ε)

3.2 Greedy Set-Cover

We have obtained a parameter vector u such that the loss for each term fi(u) is close to fi(w
∗).

We can now use a greedy set-cover algorithm to find the corresponding clusters c, following the
approach of Juba et al. (2018). At a high level, given regression parameters u, we compute the
loss f(u) for each point, and then use the covering algorithm to find a collection of terms that
cover enough points while minimizing the loss. Specifically, the algorithm greedily chooses terms tj
satisfying

∑
i∈tj f

(i)(u) ≤ (1 + γ)µεN to maximize the number of additional examples (x,y, z)(i)

with tj(x
(i)) = 1 that did not satisfy a previously chosen term. It continues choosing terms this

way until at least (1− γ/2)µN examples satisfy the collection of chosen terms. In other words, it
associates with tj the set of examples such that tj(x

(i)) = 1, and considers the collection of such sets
corresponding to terms tj with empirical loss |tj |fj(u) ≤ (1 + γ)µεN . It then follows the standard
greedy algorithm for unweighted partial set cover on this instance.

Lemma 3.2 Given a set of points {x(i)}Ni=1 with weights f (i)(u) and terms {tj}mj=1, if there exists
an optimal k-DNF c∗ that is satisfied by a µ-fraction of the points with total loss ε, then, the weighted
greedy set cover algorithm can find a k-DNF ĉ, that is satisfied by a (1− γ)µ-fraction of the points
with total loss O(t log(µN)ε)

18

Proof Observe that since the loss is non-negative, each term tj of c∗ must satisfy

E[f(u)|tj] Pr[tj(x) = 1] ≤ E[f(u)|c] Pr[c(x) = 1] ≤ µ(ε+ γ)

by Lemma 3.1. So, for N = O(σ
2L2

µεγ2
log m

δ) examples, a union bound over the terms gives that

(i) every term of c has empirical loss at most (1 + γ)µεN and conversely, (ii) every term t′ with
empirical loss (1 + γ)µεN has E[f(u)|t′] Pr[t′(x)] ≤ O(µε). Furthermore it follows from an analysis
by Haussler 1988 that given N = O(t

µγ2
log m

δ) examples, (iii) any t-term formula (out of the m

possible terms) that empirically satisfies at least (1 − γ/2)µN examples must be satisfied with
probability at least (1− γ)µ overall, and conversely, (iv) any formula that is true with probability
at least µ will empirically satisfy at least (1− γ/2)µN examples. The above will simultaneously
hold with probability 1− δ for suitable constants.

Now, by (i) the terms of c are available to the greedy algorithm, which can thus by (iv)
cover (1− γ)µN examples using at most t sets. Slav́ık 1997 has shown that the greedy algorithm
obtains a H((1− γ)µN)-approximation to the minimum size set cover, where H(`) denotes the `th
harmonic number, which is ≤ log(µN) + 1. Thus, the greedy algorithm finds a formula ĉ with at
most t(log(µN) + 1) terms. By (ii), since ĉ only contains terms with empirical loss (1 + γ)µεN ,
E[f(u)|ĉ] Pr[ĉ(x) = 1] ≤ O(t log(µN)µε). Furthermore, by (iii), Pr[ĉ(x) = 1] ≥ (1 − γ)µ, which
completes the proof.

3.3 Generalization Bound

Lemma 3.2 gives us the sample complexity needed for a specific realization. However, there is
still a gap between the data and true underlying distribution. In this section, we will bound the
generalization error of linear regression on each possible k-DNF, and then take a union bound to
achieve the main theorem. In short, the process will blow-up the complexity by d3, where d is the
dimension of the feature space.

We will use the Rademacher generalization bound for linear predictors. For a set a data, Lemma
3.3 bounds the expected loss Lp(·) and the empirical loss L̂p(·):

Lemma 3.3 (Bartlett & Mendelson (2002), Kakade et al. (2009)) For b > 0, p ≥ 1, ran-
dom variables (Y, Z) distributed over {y ∈ Rd : ‖y‖2 ≤ b} × [b, b], and any δ ∈ (0, 1), let Lp(w)
denote E[|〈w,Y〉 − Z|p], and for an an i.i.d. sample of size N let L̂p(w) be the empirical loss
1
N

∑N
j=1 |〈w,y(j)〉 − z(j)|p. We then have that with probability 1− δ for all w with ‖w‖2 ≤ b,

|Lp(w)− L̂p(w)| ≤ 2pbp+1

√
N

+ bp
√

2 ln(4/δ)

N
.

In our case, we only consider squared error; in other words, p = 2 for us. And notice, in our setting,
we are given a bound B on the magnitude of the entries, so b ≤

√
sB. Equivalently, we get

|Lp(w)− L̂p(w)| ≤ 4B3d
3
2

√
N

+ o(B2d).

Therefore, to bound the gap of the expected loss Lp(·) and the empirical loss L̂p(·), it suffices for
our sample complexity N to grow with B6d3.

19

The above lemma bounds the gap of a specific set. To achieve the bound on any t term k-DNF,
we can simply take a union bound on all k-DNFs. Since x has n Boolean attributes, there are
m =

(
n
k

)
possible terms, which is at most m = nk. And there are

(
m
t

)
t-term k-DNFs, i.e., nkt in

total, which means that if we replace δ with δ
nkt

, we will obtain 1− δ confidence after the union
bound. Overall we thus achieve a O(t log(µN)(γ+ε)) approximation as claimed in the main theorem

with N = O(B
6d3σ2L2t
µγ3

log(m
δ/mt))) = O(B

6d3σ2L2t2

µγ3
log(m/δ))) examples.

4 Synthetic Data Experiment

The synthetic data experiment is designed to demonstrate our algorithm’s ability to solve problems
that cannot be handled by the sparse regression algorithms. We choose a t-term 2-DNF at random
and uniformly generate Boolean attributes serving as x, where µN of them satisfy the chosen DNF
(good data). The y parts are all uniformly generated real attributes. We also generate a target
optimal linear rule w∗ with dimension equal to that of y. For the good data, we set their labels
z(i) = 〈y(i),w∗〉 + noise, where the noise is independently generated from zero-mean Gaussian
distribution. For the bad data, z(i) are independently generated from a uniform distribution, similar
to y. We use our algorithm to generate a list of candidate parameters and their corresponding DNF.
If there is one pair that is close to our planted w∗ and DNF, or other output with even lower error,
then we view the task as successful.

Specifically, we set the dim(x) = 7, dim(y) = 10, with N = 100000 points in total and µ = 0.5.
We generate w∗ uniformly from [−10, 10] and randomly choose a 4-term 2-DNF to define which
points are good data. For the bad data, y(i) ∈ [−1, 1], z(i) ∈ [−10, 10]. For good data, y(i) ∈ [−1, 1]
and z(i) = 〈y(i),w∗〉 + noise with variance 100. We set S = 0.1, γ = 0.1, r = 100 and rfinal = 1.
We ran 5 trials and each time our algorithm can find several pairs of regression parameters and
DNFs, with one of them to be the planted DNF. There are also other pairs of output with even
lower error, meaning the algorithm finds even better conditions than our planted ones. Note that
since the previous algorithms (Juba, 2017; Hainline et al., 2019) scale exponentially with d, such an
instance would be infeasible to solve.

References

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Charikar, M., Steinhardt, J., and Valiant, G. Learning from untrusted data. In Proc. 49th STOC,
pp. 47–60, 2017. Full version arXiv:1611.02315v2 [cs.LG].

Fakcharoenphol, J., Rao, S., and Talwar, K. A tight bound on approximating arbitrary metrics by
tree metrics. In Proc. 35th STOC, pp. 448–455, 2003.

Hainline, J., Juba, B., Le, H. S., and Woodruff, D. P. Conditional sparse `p regression with optimal
probability. In Proc. 22nd AISTATS, volume 89 of PMLR, pp. 369–382, 2019.

Haussler, D. Quantifying inductive bias: AI learning algorithms and Valiant’s learning framework.
Artificial Intelligence, 36:177–221, 1988.

Juba, B. Conditional sparse linear regression. In Proc. 8th ITCS, pp. 45:1–45:14, 2017.

20

Juba, B., Li, Z., and Miller, E. Learning abduction under partial observability. In Proc. 32nd AAAI,
pp. 1888–1896, 2018.

Kakade, S. M., Sridharan, K., and Tewari, A. On the complexity of linear prediction: Risk bounds,
margin bounds, and regularization. In Advances in Neural Information Processing Systems 21,
pp. 793–800, 2009.

Slav́ık, P. Improved performance of the greedy cover algorithm for partial cover. Information
Processing Letters, 64(5):251–254, 1997.

21

Table 1: Table of notation

Data & DNFs

x(i) ∈ {0, 1}n The Boolean attributes (for defining conditions)

n The dimension of x(i)

y(i) ∈ Rd The real attributes (factors for predictors)

d The dimension of y(i)

z(i) ∈ R The labels (dependent variable for regression)

N ∈ N The number of examples {(x,y, z)(i)}Ni=1

k The maximum number of literals in the terms
ti A term defined by Boolean attributes with at most k literals.
m ≤ nk The total number of terms
wi ∈ Rd The parameters of the linear predictor assigned to the term ti
c A DNF formula defined as or of terms

It is both a Boolean formula, and the subset of data satisfying that formula.
c∗ A target optimal DNF in the data set
Igood The subset of terms contained in c∗

w∗ ∈ Rd The parameters of the linear predictor assigned to the DNF c∗

t The number of terms in c∗

B Bound on ‖y‖2
r Bound on ‖w‖2
ε The error of the optimal DNF c∗

µ The fraction of points of the dataset in c∗

f The loss function f(w) = (〈w,y〉 − z)2

κ The convexity coefficient of f
L The Lipschitz coefficient of f
σ The standard error parameter of the subgaussian residuals (〈w∗,yi〉 − zi)
δ The probability threshold of failure
γ The coverage threshold, a portion of data we can lose.
β ≤ γ/t A portion of data we can lose after duplication.
S A spectral bound on the change in covariances of terms in Igood, maximized over w
S0 A intrinsic bound of S, independent of w
Sβ A local bound of S, maximized over subsets of terms of probability larger than β.
Sβ0 A local bound of S0, maximized over subsets of terms of probability larger than β.

Algorithm 1
r The radius of the parameter space
Y A positive semi-definite matrix defining an ellipsoid containing w
λ The regularization coefficient.
ci The weights (soft indicators) of each term ti.

Algorithm 2
` The iteration / time step.
rfinal An upper bound on the desired final radius, for termination
u The final output of the weight parameters
Ph A Padded Decomposition.
ρ The cluster radius of the Padded Decompositions.

22

	Soft Regression and Outlier Removal
	Preprocessing
	Reduction to Disjoint Terms by Duplicating Points
	Reduction to Adequately Sampled Terms by Deleting Small Terms

	Loss Functions
	Main Optimization Algorithm
	Semidefinite Programming for Soft Regression
	Removing Outliers

	A Bound on the Loss That Is Linear in the Radius
	Analysis of Main Optimization Algorithms 1 and 2

	List-regression Algorithm
	Padded Decomposition
	Analysis of List-regression, Algorithm 4
	Local Spectral Norm Bound
	Proof of the Main Theorem

	Obtaining a k-DNF Condition
	Bounding the Double-Counting Effect
	Greedy Set-Cover
	Generalization Bound

	Synthetic Data Experiment

