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Abstract

We consider a budget-constrained bandit
problem where each arm pull incurs a ran-
dom cost, and yields a random reward in re-
turn. The objective is to maximize the total
expected reward under a budget constraint
on the total cost. The model is general in the
sense that it allows correlated and potentially
heavy-tailed cost-reward pairs that can take
on negative values as required by many ap-
plications. We show that if moments of order
(2+γ) for some γ > 0 exist for all cost-reward
pairs, O(logB) regret is achievable for a bud-
get B > 0. In order to achieve tight regret
bounds, we propose algorithms that exploit
the correlation between the cost and reward
of each arm by extracting the common in-
formation via linear minimum mean-square
error estimation. We prove a regret lower
bound for this problem, and show that the
proposed algorithms achieve tight problem-
dependent regret bounds, which are optimal
up to a universal constant factor in the case
of jointly Gaussian cost and reward pairs.

1 Introduction

Multi-armed bandit problem (MAB) has been the
prominent model for the exploration-and-exploitation
dilemma since its introduction (Robbins, 1952; Lai and
Robbins, 1985; Berry and Fristedt, 1985). Due to the
universality of the dilemma, bandit algorithms have
found a broad area of applications from medical tri-
als and dynamic pricing to ad allocation. As a com-
mon feature of all MAB instances, each action depletes
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a cost from a limited budget, and a random reward
is obtained in return. In such a setting, the aim of
the decision maker is to balance the exploration and
exploitation at every step so as to maximize the cu-
mulative reward until depleting the budget. In the
classical MAB setting, each action is assumed to con-
sume a known deterministic amount of resource, i.e.,
one time-slot. However, in many problems of interest,
different tasks consume different and random amount
of resources, which can be unbounded and potentially
correlated with the reward. The applications of this
extended setting include routing in communications
and task scheduling in computing systems, where the
controller sequentially makes a selection among multi-
ple arms (alternative paths or task types) so as to max-
imize the total reward (i.e., throughput) within a given
time budget. In these applications, the cost (i.e., com-
pletion time) and reward of each arm pull can be po-
tentially correlated and heavy-tailed (Harchol-Balter,
2000; Jelenković and Tan, 2013).

In this paper, we investigate the unique dynamics of
this extended budget-constrained bandit setting with
general cost and reward distributions. Unlike the clas-
sical stochastic MAB problem, each action incurs a
random cost and yields a random reward in our model.
Under a budget constraint B, the objective of the con-
troller is to maximize the expected cumulative reward
until the total cost exceeds the budget. As we will see,
the correlation and variability of the cost-reward pairs
can have a substantial impact on the performance in
this bandit setting, which we incorporate in the design
of learning algorithms for near-optimal performance.
Many of our results are obtained for a very general
setting where the cost and reward can be correlated
and heavy-tailed, but sharper results are presented for
some interesting special cases.

1.1 Main Contributions

The main objective in this paper is to design efficient
algorithms that achieve provably tight regret bounds
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in an extended setting of correlated and potentially
heavy-tailed cost and reward. Our main contributions
are as follows:

1. Exploiting the correlation: One of the key
contributions in this work is to use a linear mini-
mum mean square (LMMSE) estimator to extract
and exploit the correlation between the cost and
reward of an arm (see Section 4.2). Furthermore,
we incorporate the effect of variability in cost-
reward pairs through variance. Consequently, we
achieve provably tight problem-dependent regret
bounds in an extended setting of unbounded cost
and reward.

2. Extension to unbounded cost and reward:
We develop novel design and analysis methods for
the setting of unbounded and potentially heavy-
tailed cost and reward pairs, and show that
O
(

log(B)
)

regret is achievable if moments of or-
der 2 + γ exist for some γ > 0 for all cost and
reward pairs (see Section 4.3).

3. Regret lower bounds: We establish a re-
gret lower bound for the budget-constrained ban-
dit problem (see Section 5). By using this re-
sult, we obtain explicit regret lower bounds for
jointly Gaussian cost-reward distributions. Con-
sequently, we prove that the algorithms we pro-
pose in this paper achieve tight regret bounds,
which are optimal up to a constant factor in the
case of jointly Gaussian cost and reward.

1.2 Related Work

The classical stochastic multi-armed bandit problem,
which is a specific case of the model we study in this
paper, has been extensively studied in the literature.
For detailed discussion on the basic model, we refer to
(Bubeck et al., 2012; Berry and Fristedt, 1985).

The budget-constrained MAB problem and its vari-
ants were investigated in a variety of papers. In (Tran-
Thanh et al., 2012) and (Combes et al., 2015), budget-
constrained multi-armed bandit problem is investi-
gated where each arm pull incurs an arm-dependent
and deterministic cost. In (Guha and Munagala,
2009), the budgeted-bandit problem with determinis-
tic costs is investigated from a Bayesian perspective,
and constant-factor approximation algorithms are pro-
posed. In (György et al., 2007), the continuous-time
extension of the MAB problem with side information is
investigated, which is an early example for the budget-
constrained bandit problem. In (Badanidiyuru et al.,
2013; Agrawal and Devanur, 2014), the bandit problem
under multiple budget constraints is examined, and
problem-independent regret bounds of order Õ(

√
B)

are obtained. Bandits with knapsacks have been ex-
tended to other bandit settings (Agrawal and Deva-
nur, 2016; Badanidiyuru et al., 2014; Sankararaman
and Slivkins, 2017; Ding et al., 2013). In (Xia et al.,
2015, 2016), the budget-constrained MAB problem is
explored in a similar setting to ours. In these works,
the cost and reward of each arm are supported in [0, 1],
and the correlation between them is not exploited. In
(Cayci et al., 2019), the authors consider a variation
of the budget-constrained bandit problem where the
controller has the option to interrupt an ongoing cycle
for a faster alternative. The interruption mechanism
brings significantly different dynamics to the problem
that is investigated in this paper.

Bandits with heavy-tailed reward distributions are
considered in (Liu and Zhao, 2011; Bubeck et al.,
2013). These papers are still in the scope of the clas-
sical MAB setting: the budget is consumed determin-
istically at rate 1 by each action, so the dynamics of
the random resource consumption with heterogeneous
statistics are not included in the model.

2 System Setup

In this paper, we consider a bandit problem with K
arms. The set of arms is denoted by K = {1, 2, . . . ,K}.
Each arm k ∈ K is described by a two-dimensional
random process {(Xn,k, Rn,k) : n ≥ 1} that is inde-
pendent from other arms. If arm k is chosen at n-th
epoch, it incurs a cost of Xn,k and yields a reward of
Rn,k, where both are learned via a bandit feedback
only after the decision is made. The controller has
a cost budget B > 0, and tries to maximize the ex-
pected cumulative reward it receives by sampling the
arms wisely under this budget constraint.

The pair (Xn,k, Rn,k) is assumed to be independent
and identically distributed over n, but the cost Xn,k

and reward Rn,k can be positively correlated. We al-
low Xn,k to take on negative values, but the drift is
assumed to be positive, i.e., there exists µ∗ > 0 such
that E[Xn,k] ≥ µ∗ > 0 for all k.

Let π be an algorithm that yields a sequence of arm
pulls {Iπn ∈ K : n ≥ 1}. Under π, the history until
epoch n is the following filtration:

Fπn = σ({(Xj,k, Rj,k) : Iπj = k, 1 ≤ j ≤ n}), (1)

where σ(X) denotes the sigma-field of a random vari-
able X. We call an algorithm π admissible if π is
non-anticipating, i.e., {Iπn = k} ∈ Fπn−1 for all k, n.
The set of all admissible policies is denoted as Π.

The total cost incurred in n epochs under an admissi-
ble policy π ∈ Π is a controlled random walk which is
defined as Sπn =

∑n
i=1Xi,Iπi

. The arm pulling process
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under an algorithm π continues until the budget B is
depleted. We assume that the reward corresponding
to the final epoch during which the budget is depleted
is gathered by the controller. Thus, the total number
of pulls under π is defined as follows:

Nπ(B) = inf
{
n : Sπn > B

}
. (2)

Note that the total number of pulls Nπ(B) is a stop-
ping time adapted to the filtration {(Fπt ) : t ≥ 0}.
With these definitions, the cumulative reward under a
policy π can be written as follows:

REWπ(B) =

Nπ(B)∑
i=1

Ri,Iπi . (3)

The objective in this paper is to design algorithms that
achieve maximum E[REWπ(B)], or equivalently mini-
mum regret, which is defined as follows:

Regπ(B) = E[REWπopt(B)]− E[REWπ(B)], (4)

where πopt(B) denotes the optimal policy:

πopt(B) ∈ arg max
π′∈Π

E[REWπ′(B)],

for any B > 0.

In the following section, we investigate the optimal
policy that maximizes the expected cumulative reward
when all arm distributions are known, and provide low-
complexity approximations that have desirable perfor-
mance characteristics.

3 Approximations of the Oracle

The optimization problem described in Section 2 is a
variant of the unbounded knapsack problem, and it
is known that similar stochastic control problems are
PSPACE-hard (Badanidiyuru et al., 2013; Papadim-
itriou and Tsitsiklis, 1999). In order to find a tractable
benchmark, we will consider approximation algorithms
with provably good performance in this section.

The main quantity of interest will be the reward rate,
which is defined as follows:

rk =
E[R1,k]

E[X1,k]
, k ∈ K. (5)

Intuitively, if arm k is chosen persistently until the
budget B > 0 is depleted, the cumulative reward be-
comes rkB + o(B) as B → ∞. The additive o(B)
term is O(1) if E[(X+

1,k)2] <∞ by Lorden’s inequality
(Asmussen, 2008). Hence, pulling the arm with the
highest reward rate is a logical choice.

In the following, we prove that the optimality gap is
O(1) under mild moment conditions, which covers the
case of heavy-tailed cost-reward pairs.

Definition 1 (Optimal Static Algorithm). Let k∗ be
the arm with the highest reward rate:

k∗ ∈ arg max
k∈K

rk.

The optimal static policy, denoted by π∗, pulls k∗ until
the budget is depleted: Iπ

∗

n = k∗ for all n ≤ Nπ∗(B).

The main result of this section is the following propo-
sition, which implies that π∗ is a plausible approxima-
tion algorithm for πopt(B) for all B > 0 under mild
moment conditions.

Assumption 1. There exists γ > 0 such that
E[(X+

1,k)2+γ ] <∞ for all k ∈ K.

Proposition 1 (Optimality Gap for π∗). Under As-
sumption 1, there exists a constant

G? = G?
(

min
k

E[X1,k],max
k

V ar(X1,k)
)
<∞,

independent of B such that the following holds:

max
π∈Π

E[REWπ(B)]− E[REWπ∗(B)] ≤ G?, (6)

for any B > 0. Consequently, π∗ is asymptotically
optimal as B →∞.

Proof. The proof of Proposition 1 is based on tools
from stochastic control, and is given in Appendix A.

Proposition 1 implies that the optimality gap of the
optimal static policy is a constant with respect to the
budget B, which depends on the first- and second-
order moments of the cost. This extends the result
presented in (Xia et al., 2016) for bounded and strictly
positive costs to unbounded costs with positive drift
that can take on negative values. Also, for small B
values, there can be dynamic policies that outperform
this simple static policy (Dean et al., 2004). However,
the optimality gap is still O(1) for these dynamic poli-
cies, therefore we consider π∗ for its simplicity and
efficiency.

Now that we have an accurate approximation for the
oracle, we propose the first and basic algorithms that
assume the knowledge of second-order moments.

4 Algorithms for Known
Second-Order Moments

In this section, we will assume that the second-order
moments of all cost-reward pairs are known by the de-
cision maker. First, in Section 4.2, we will consider the
case (Xn,k, Rn,k) are jointly Gaussian, and propose a
learning algorithm that achieves tight regret bound on
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Figure 1: If (θ̂1, θ̂2) is in the high-probability set

A(η, ε), then the maximum deviation of r̂ = θ̂2
θ̂1

from r

is λ(ε+rη)
θ1

, and it is achieved at the marked corner.

the order of O(log(B)) by using the correlation infor-
mation. Then, in Section 4.3, we will study the general
case where the cost and reward can be unbounded and
potentially heavy-tailed, and propose algorithms that
achieve the same regret bounds (up to a constant) as
the sub-Gaussian case.

The following proposition provides a basis for the al-
gorithm design and analysis throughout the paper.

4.1 Preliminaries: Rate Estimation

Let θ = (θ1, θ2) ∈ R2 be a pair of unknown constants
for which r = θ2

θ1
is to be estimated. The following

proposition yields a useful device to obtain concentra-
tion results for r from concentration results for θ1 and
θ2 for this estimation procedure.

Proposition 2 (Rate Estimation). Let θ̂1 and θ̂2 be
estimators for θ1 > 0, θ2 ≥ 0, respectively. If

η ∈
(
0,
θ1(λ− 1)

λ

)
, (7)

for some λ > 1, then we have the following result:

P
(
|r − θ̂2

θ̂1

| > λ(ε+ rη)

θ1

)
≤ P(|θ̂1 − θ1| > η)

+ P(|θ̂2 − θ2| > ε).

Therefore, if θ̂1 and θ̂2 both achieve exponential con-

vergence rate, then θ̂2
θ̂1

converges to r exponentially

fast. The intuition behind the proposition is illus-
trated in Figure 4.1.

Remark 1 (Stability of the rate estimator). The con-
dition η < θ1, i.e., sufficient concentration of the es-
timator around the true parameter θ1, is crucial for

Proposition 2. Note that if the variability of the mean
estimator is high and thus A(η, ε) intersects with the
y-axis, then the above bound is useless as r̂ can have
arbitrarily large deviations from r.

In the following, we propose algorithms under the as-
sumption that the second-order moments for each arm
k is known by the controller.

4.2 Sub-Gaussian Case: Algorithm UCB-B1

The main idea behind UCB-B1 is to use an upper con-
fidence bound for the reward rate rk. Let Tk(n) be
the number of pulls for arm k in the first n stages and

r̂k,n = max{0,Ên[Rk]}
max{b,Ên[Xk]}

where

Ên[Xk] =
1

Tk(n)

n∑
i=1

I{Ii = k}Xi,k,

Ên[Rk] =
1

Tk(n)

n∑
i=1

I{Ii = k}Ri,k,

and b ≤ E[X1,k]/2 for all k. Instead of estimating
E[X1,k] and E[R1,k] separately from the samples of
(Xn,k, Rn,k), the correlation between Xn,k and Rn,k
can be exploited to tighten the upper confidence bound
for rk. This is achieved by estimating Rn,k by a linear
estimator ωXn,k so as to minimize V ar(Rn,k−ωXn,k).
Let

V (X1,k, R1,k) = min
ω∈R

V ar(R1,k − ωX1,k). (8)

If V ar(Xn,k) > 0, we have:

ωk = arg min
ω∈R

V ar(R1,k − ωX1,k),

=
Cov(X1,k, R1,k)

V ar(X1,k)
,

(9)

by the orthogonality principle (Poor, 2013), and the
optimal value of the objective is given by:

V (X1,k, R1,k) = V ar(R1,k)− ω2
kV ar(X1,k).

If V ar(Xn,k) = 0, we have V (X1,k, R1,k) = V ar(R1,k).
This implies that ωk and V can be computed from
the second-order moments of (Xn,k, Rn,k), which are
assumed to be given in this section. For simplicity, we
assume ωk ≤ rk for all k throughout the paper.

For non-negative (MX ,MR, L) that will be specified
later, let

εBk,n =
2αMR log(n)

3Tk(n)
+

√
Lα

V (X1,k, R1,k) log(n)

Tk(n)
,

ηBk,n =
2αMX log(n)

3Tk(n)
+

√
Lα

V ar(X1,k) log(n)

Tk(n)
.
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Then, if Sπn < B, i.e., there is a remaining budget,
then the UCB-B1 Algorithm pulls an arm at stage n+1
according to:

In+1 ∈ arg max
k

{
r̂k,n + ĉB1k,n

}
,

where

ĉBk,n = 1.4
εBk,n + (r̂k,n − ωk)ηBk,n(

Ên[Xk])+

if the stability condition (7) holds for η = ηBk,n and

λ = 1.28, and ĉBk,n =∞ otherwise.

The regret performance of UCB-B1 is presented in the
following theorem.

Theorem 1 (Regret Upper Bound for UCB-B1). Let
∆k = r∗ − rk, λ = 1.28,

σ2
k = V (X1,k, R1,k) + (r∗ − ωk)2V ar(X1,k), (10)

for all k ∈ K and recall that µ∗ = min
k

E[X1,k].

1. Bounded Cost and Reward: If |X1,k| ≤ MX ,
|R1,k| ≤ MR a.s., α > 2 and L = 2, then the
regret under UCB-B1 is upper bounded as:

RegπB1(B) ≤ α
∑

k:∆k>0

log
(2B

µ∗

)
CB1
k +O(1),

for some constant ζ > 1 where Mk = MR+rkMX

and

CB1
k =

42σ2
k

∆kE[X1,k]
+ 42Mk + 21MX∆k,

for all k.

2. Jointly Gaussian Cost and Reward: Let
(Xn,k, Rn,k) be jointly Gaussian with known
second-order moments. Then, UCB-B1 with α > 2,
MX = MR = 0 and L = 1

2 yields the following re-
gret bound:

RegπB1(B) ≤ α
∑

k:∆k>0

log
(2B

µ∗

) 11σ2
k

∆kE[X1,k]
+O(1),

where σk is defined in (10).

Proof. The detailed proof, which will provide basis for
the analysis of other algorithms proposed in this work,
can be found in Appendix C. Note that the total re-
ward is a controlled and stopped random walk with
potentially unbounded support. Thus, the regret anal-
ysis requires new methods from the theory of martin-
gales and stopped random walks. As such, we follow a
proof strategy based on establishing a high-probability
upper bound for Nπ(B), which can be found in Ap-
pendix B.

4.3 Heavy-Tailed Case: Algorithm UCB-M1

In this subsection, we design a general algorithm that
achieves the regret in the sub-Gaussian case (up to
a constant) under the mild moment condition that
E[(X+

1,k)2+γ ] <∞ for all k.

The empirical mean estimator played a central role in
the design of the UCB-B1 Algorithm for sub-Gaussian
distributions, which is proved to achieve O(log(B)) re-
gret. However, if we consider heavy-tailed distribu-
tions, the empirical mean estimator fails to achieve
exponential convergence rate due to the frequent out-
liers (Bubeck et al., 2013). The median-based esti-
mators, introduced in (Nemirovsky and Yudin, 1983)
provide an elegant method to boost the convergence
speed in mean estimation. The idea of boosting the
confidence of weak independent estimators by taking
the median was extended to general point estimation
problems (beyond the mean estimation) in (Minsker
et al., 2015). In the following, we will use a varia-
tion of this method in the design of median-based rate
estimators.

Consider arm k ∈ K at stage n. For

m = b3.5α log(n)c+ 1,

we partition the observed samples {(Xi,k, Ri,k) : Ii =
k, 1 ≤ i ≤ n} into index sets G1, G2, . . . , Gm of size
bTk(n)/mc each. Then, for each j ∈ {1, 2, . . . ,m}, let

r̃k,Gj =
max{ÊGj [Rk],0}
max{ÊGj [Xk],b}

where b ≤ E[X1,k]/2, and

ÊGj [Xk] =
∑
i∈Gj

Xi,k

|Gj |
, ÊGj [Rk] =

∑
i∈Gj

Ri,k
|Gj |

.

The median-based rate estimator for arm k at stage n
is thus

rk,n = median
1≤j≤m

r̃k,Gj .

The deviations in the cost and reward are as follows:

εMk,n = 11

√
α
V (X1,k, R1,k) log(n)

Tk(n)
,

ηMk,n = 11

√
α
V ar(X1,k) log(n)

Tk(n)
.

Therefore, the decision at stage (n+ 1) under UCB-M1
is as follows:

In+1 ∈ arg max
k

{
rk,n + ĉMk,n

}
(11)

where

ĉMk,n =
2
√

2
(
εMk,n + (rk,n − ωk)ηMk,n(

median
1≤j≤m

ÊGj [Xk]
)+ ,
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if the condition (7) is satisfied for η = median
1≤j≤m

ÊGj [Xk]

and λ = 1.28.

For UCB-M1, we have the following regret upper bound.

Theorem 2 (Regret Upper Bound for UCB-M1). If the
following moment conditions hold:

• E[(X+
1,k)2+γ ] <∞, for all k,

• V ar(R1,k) <∞, for all k,

then the regret under UCB-M1 satisfies the following up-
per bound:

RegπM1(B) ≤ α
∑

k:∆k>0

log
(2B

µ∗

) Cσ2
k

∆kE[X1,k]
+O(1),

(12)
where σk is as defined in (10) and C > 0 is a constant.

Proof. The proof uses tools from the theory of mar-
tingales and stopped random walks, and can be found
in Appendix B and Appendix C.

Remark 2. We have the following observations from
Theorem 1 and 2:

• If V ar(X1,k) ↓ 0 and E[X1,k] = 1, the regret up-
per bounds match with the existing regret bounds
for the stochastic bandit problem.

• Note that for positively correlated Xn,k and Rn,k,
one can ignore the correlation and use an upper
confidence bound based on the separate estima-
tion of Xn,k and Rn,k. From Theorem 1, it can
be observed that this scheme leads to a loss of
O
(∑

k Cov(X1,k, R1,k)
)
. Moreover, as it will be

seen in the next section, this is nearly the best
way of exploiting the correlation in the case of
jointly Gaussian cost and reward pairs.

• The UCB-M1 Algorithm achieves the same regret
upper bound as the UCB-B1 Algorithm up to a
constant with much less moment assumptions:
while UCB-B1 requires sub-Gaussianity, UCB-M1 re-
quires only existence of moments of order (2 + γ)
for some γ > 0 for the costs, and second-order
moments for the rewards. However, the constant
that multiplies the O(logB) term is much higher
in UCB-M1 than UCB-B1, which can be viewed as
the cost of generality.

• If the cost is deterministic, i.e., V ar(X1,k) = 0,
then the regret is monotonically decreasing in ∆k

as O
(

logB
∆k

)
for each arm k. However, for ran-

dom costs, since r∗ = rk + ∆k, the regret bounds
have an additive term scaling linearly in ∆k as

O
(

log
(

2B
µ∗

)∑
k
V ar(X1,k)
E[X1,k] ∆k

)
, which might seem

strange at first since the separability of a sub-
optimal arm k increases with its corresponding
∆k. This is a unique phenomenon observed in
the case of stochastic costs: recall from Remark
1 that the rate estimator is unstable when the
confidence interval for the estimation of E[X1,k] is
large, and thus it incurs E[X1,k]∆k regret per pull
since rate estimation is unreliable. As it will be
seen in Corollary 1, the same term appears with
the same coefficient in the regret lower bound for
jointly Gaussian cost-reward pairs, which implies
that it is inevitable at least in that case.

5 Regret Lower Bound for Admissible
Policies

In this section, we will propose regret lower bounds
for the budget-constrained bandit problem based on
(Lai and Robbins, 1985). In the specific case of jointly
Gaussian cost-reward pairs, we can determine a lower
bound explicitly, which provides useful insight about
the impact of variability and correlation on the regret.

In order to establish a regret lower bound, assume
that the joint distribution of {(Xn,k, Rn,k) : n ≥ 1}
is parametrized by θk ∈ Θk for some parameter space
Θk, i.e., (Xn,k, Rn,k) ∼ Pθk . For any k ∈ K and

θ ∈ Θk, let rk(θ) =
Eθ[R1,k]
Eθ[X1,k] be the reward rate (i.e.,

reward per unit cost). Furthermore, for a given ban-

dit instance ~θ = (θ1, θ2, . . . , θK), let r∗ = max
k

rk(θk)

be the optimal reward rate, and ∆k = r∗ − rk(θk).
For admissible policies, we have the following regret
lower bound, which is an extension of Lai-Robbins
style regret lower bounds for the stochastic bandit
problem (Lai and Robbins, 1985; Burnetas and Kate-
hakis, 1996).

Theorem 3 (Regret Lower Bound). Suppose that
E[(X1,k)2+γ ] <∞ for some γ > 0 and V ar(R1,k) <∞
hold for all k. Assume that the following conditions are
satisfied by Pk,θ for any k:

1. If rk(θ1) > rk(θ2), then D(Pk,θ2 ||Pk,θ1) <∞,

2. (Denseness) rk(Θk) = {rk(θ) : θ ∈ Θk} is dense,

3. (Continuity) θ 7→ D(Pk,θk ||Pk,θ) is a continuous
mapping.

For a given bandit instance ~θ = (θ1, θ2, . . . , θK), if π ∈
Π is a policy such that E[Tπk (n)] = o(nα) for any α > 0
and k such that rk(θk) < r∗, then we have the following
lower bound:

lim inf
B→∞

Regπ(B)

log(B)
≥ 1

2

∑
k:∆k>0

E[X1,k]∆k

D?
k

, (13)
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where D?
k is the solution to the following optimization

problem:

D?
k = min

θ∈Θk
D(Pk,θk ||Pk,θ) subject to rk(θ) ≥ r∗.

Proof. The proof can be found in Appendix E.

The regret lower bound has an explicit form if the
cost and reward distributions of each arm is jointly
Gaussian with a known covariance matrix.

Corollary 1 (Jointly Gaussian Cost and Reward).
Let (Xn,k, Rn,k) be jointly Gaussian:

(Xn,k, Rn,k) ∼ N (µk,Σk),

for all k ∈ K where µk =
(
E[Xn,k],E[Rn,k]

)
and

Σk =

(
V ar(Xn,k) Cov(Xn,k, Rn,k)

Cov(Xn,k, Rn,k) V ar(Rn,k)

)
.

If Σk is known and µk is unknown by the controller
for all k ∈ K, we have the following regret lower bound
for the Gaussian case:

lim inf
B→∞

Regπ(B)

log(B)
≥

∑
k:∆k>0

σ2
k

E[X1,k]∆k
, (14)

where σ2
k is defined in (10).

Proof. For known Σk, we have D?
k =

(E[X1,k]∆k)2

2σ2
k

for

θk = µk and Θk = R2
+. Using this in Theorem 3 yields

the result.

Remark 3 (Optimality of UCB-B1 and UCB-M1). Com-
paring (2) and (12) with (14), we can deduce that
UCB-B1 and UCB-M1 achieve optimal regret up to a uni-
versal constant for the case of jointly Gaussian cost
and reward pairs with known covariance matrix.

6 Algorithms for Unknown
Second-Order Moments

In Section 4, we proposed algorithms under the as-
sumption that the second-order moments are known
for each arm k. However, in practice, these second-
order moments are unknown, and therefore to be esti-
mated from the samples collected via bandit feedback.
In this section, we will propose algorithms that use
these second-order moment estimates to achieve tight
regret bounds.

The general strategy in the development of the algo-
rithms in this section is to use empirical estimates for
the second-order moments that appear in UCB-B1 as a
surrogate.

6.1 Bounded and Uncorrelated Cost and
Reward: UCB-B2

For clarity, we first consider the case Xn,k and Rn,k
are uncorrelated for all k and Xn,k ∈ [0,MX ] and
Rn,k ∈ [0,MR] almost surely for known MX ,MR > 0.
In this case, we will propose an algorithm based on
a variant of the empirical Bernstein inequality, which
was introduced in (Audibert et al., 2009).

For any k, let the variance estimate V̂k,n(Xk) be de-
fined as follows:

V̂k,n(Xk) =
1

Tk(n)

n∑
i=1

I{Ii = k}
(
Xi,k − Ên[X1,k]

)2
,

where Ên[Xk] is the empirical mean of the observations
up to epoch n.

The bias terms in UCB-B2 are defined as follows:

εB2k,n =

√
2V̂k,n(Rk) log(nα)

Tk(n)
+

3MR log(nα)

Tk(n)
,

ηB2k,n =

√
2V̂k,n(Xk) log(nα)

Tk(n)
+

3MX log(nα)

Tk(n)
.

Let r̂k,n be the empirical reward rate estimator in Sec-
tion 4.2, and

ĉB2k,n = 1.4
εB2k,n + r̂k,nη

B2
k,n(

Ên[Xk]
)+ , (15)

if the condition (7) is satisfied with λ = 1.28 (ĉB2k,n =∞
otherwise). Then, at stage n+1, the following decision
is made under UCB-B2:

In+1 ∈ arg max
k

{
r̂k,n + ĉB2k,n

}
.

The lack of knowledge for the second-order statistics
loosen the upper confidence bound for the rate estima-
tor, which in turn increases the regret. In the follow-
ing, we provide the regret upper bounds for UCB-B2 to
gain insight about the impact of using variance esti-
mates on the performance of the algorithm.

Theorem 4 (Regret Upper Bound for UCB-B2). Let
σk and Mk be as defined in Theorem 1. Then, we have
the following upper bound for the regret under UCB-B2:

RegπB2(B) ≤ α
∑

k:∆k>0

log
(2B

µ∗

)
(CB1

k + δCk) +O(1),

(16)
where

δCk = 21
( M4

X∆kµk
V ar2(X1,k)

+
V ar(X1,k)∆k

µk

)
. (17)

for µk = E[X1,k].
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The proof of Theorem 4 involves the analysis of sample
variance estimates, and can be found in Appendix F.

Remark 4 (Impact of Unknown Variances). The ad-
ditional terms are caused by the stability of the rate
estimator: since we use a variance estimate in the up-
per confidence bound of Xn,k, the rate estimator suf-
fers from a longer period of instability, which increases
the regret coefficient proportional to ∆k.

6.2 Learning the Correlation: UCB-B2C

Finally we consider the case (Xn,k, Rn,k) are bounded
and correlated, but the second-order moments are un-
known. In the absence of correlation, our goal was
to estimate V ar(R1,k) and V ar(X1,k) from the sam-
ples of (Xn,k, Rn,k). When there is a correlation,
we have an optimization problem: we need to es-
tablish confidence bounds for the LMMSE estima-
tor ωk defined in (9) as well as the minimum vari-
ance V ar(R1,k − ωkX1,k) by using the samples of
(Xn,k, Rn,k) observed via bandit feedback. We take
a loss minimization approach in the statistical learn-
ing setting to estimate these quantities.

For any k ∈ K, let the empirical LMMSE estimator be
defined as follows:

ω̂k,n = arg min
ω′∈R

L̂k,n(ω)

where the empirical loss function is the following:

L̂k,n(ω) =

n∑
i=1

I{Ii = k}
Tk(n)

(
Ri−Ên[R]−ω

(
Xi−Ên[X]

))2

.

It can be shown that ω̂k,n → ωk if Tk(n) → ∞ as
n → ∞, and moreover the convergence rate is expo-
nential and tight concentration bounds for ω̂k,n and

L̂k,n(ω̂k,n) can be established. Let MZ = MR + ωMX

where ω > maxk ωk is a given parameter, and let

νk,n(ωk) =
1.36MXMZ

V ar(X1,k)

√
log nα

Tk(n)
, (18)

νk,n(Lk) = M2
Z

√
2 log nα

Tk(n)
. (19)

Then, it can be shown that −ω̂k,n + νk,n(ωk)

and L̂k,n(ω̂k,n) + νk,n(ωk) are high-probability upper
bounds for −ωk and minω V ar(R1,k−ωX1,k), respec-
tively, for large enough Tk(n).

The bias terms in UCB-B2C are defined as follows:

εB2Ck,n =

√
2L̂k,n(ω̂k,n) log(nα)

Tk(n)
+

3MZ log(nα)

Tk(n)
,

ηB2Ck,n =

√
2V̂k,n(Xk) log(nα)

Tk(n)
+

3MX log(nα)

Tk(n)
.

Then, at stage n + 1, the following decision is made
under UCB-B2C:

In+1 ∈ arg max
k

{
r̂k,n + ĉB2Ck,n

}
,

where

ĉB2Ck,n = 1.4
εB2Ck,n + (r̂k,n − ω̂k,n)+ηB2Ck,n(

Ên[Xk]
)+ ,

if the stability condition (7) is satisfied with λ = 1.28,
and ĉB2Ck,n =∞ otherwise.

In the following, we investigate the impact of us-
ing second-order moment estimates on the regret of
UCB-B2C. The proof can be found in Appendix G.

Theorem 5 (Regret Upper Bound for UCB-B2C). Let
CB1
k be defined as in Theorem 1. Then, we have the

following upper bound for the regret under UCB-B2:

RegπB2C(B) ≤ α
∑

k:∆k>0

log
(2B

µ∗

)
(CB1

k + δC ′k) +O(1),

where

δC ′k = δCk + 42
( MZMX√

V ar(X1,k)
+

M4
X∆kµk

V ar2(X1,k)

)
. (20)

for µk = E[X1,k] and δCk defined in (17).

Note that the regret of UCB-B2C converges to the regret
of UCB-B2, and they both approach to the performance
of the UCB-B1 Algorithm as ∆k ↓ 0.

7 Conclusions

In this paper, we considered a very general setting for
the budgeted bandit problem where each action incurs
a potentially correlated and heavy-tailed cost-reward
pair. We proved that positive expected cost and exis-
tence of moments of order 2 + γ for some γ > 0 suffice
for O(logB) regret for a given budget B > 0. For
known second-order moments, we proposed two algo-
rithms named UCB-B1 and UCB-M1 that exploit the cor-
relation between cost and reward by using an LMMSE
estimator. By proposing a regret lower bound, we
proved that UCB-B1 and UCB-M1 achieve order opti-
mality, and moreover they achieve optimal regret up
to a universal constant for the specific case of jointly
Gaussian cost and reward pairs, which underlines the
significance of second-order moments and correlation
in the regret performance. For the case of bounded
cost and reward with unknown second-order moments,
we proposed learning algorithms UCB-B2 and UCB-B2C

that estimate variances as well as LMMSE estimator
to approach the performance of UCB-B1. We investi-
gated the effect of using these estimates as surrogates
in the absence of second-order moments, and showed
that they approach the performance of UCB-B1 in cer-
tain cases.
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A Proof of Proposition 1

Proof. The proof consists of two parts.

1. In the first part, we find an upper bound for E[REWπopt(B)(B)]. In order to achieve this goal, we consider an
arbitrary admissible algorithm π ∈ Π. Since π is admissible, we have the following relationship:

E[Rn,Iπn |F
π
n−1] = rInE[Xn,Iπn

|Fπn−1]. (21)

Let Wπ
t = max

1≤i≤t
Sπi for any t > 0. Then, inspired by the proof of Wald’s equation (see Siegmund (2013);

Xia et al. (2015)), we have the following inequality for the expected cumulative reward under π:

E[REWπ(B)] = E
[ ∞∑
i=1

I{Wπ
i−1 ≤ B}Ri,Iπi

]
,

= E
[ ∞∑
i=1

E
[
Ri,Iπi |F

π
i−1

]
I{Wπ

i−1 ≤ B}
]
, (22)

= E
[ ∞∑
i=1

rIπi E
[
Xi,Iπi

|Fπi−1

]
I{Wπ

i−1 ≤ B}
]
, (23)

≤ r∗E
[Nπ(B)∑

i=1

Xi,Iπi

]
= r∗E

[
SπNπ(B)

]
, (24)

where (22) follows since π is admissible and Wπ
i−1 ∈ Fi−1, and (23) follows from the relation (21) and the

fact that rIi ≤ r∗ with probability 1.

Note that SπNπ(B) is a controlled random walk whose increments Xi,Iπi
are dependent. Therefore, classical

second-order moment results in renewal theory, such as Lorden’s inequality (Asmussen, 2008), are not directly
applicable to provide an upper bound for E[SπNπ(B)]. Instead, the following result for the first passage times

of submartingales yields a tight upper bound for E[SπNπ(B)].

Proposition 3 (Lalley and Lorden (1986)). Consider a stochastic process {(Un) : n ≥ 1} with E[Un] > 0
adapted to the filtration Fn. Let Sn =

∑n
i=1 Ui with S0 = 0 and N(a) = inf{n : Sn > a} be the first passage

time of the random walk.

Assume that there exists constants µ∗, µ
∗, σ2 > 0 such that

0 < µ∗ ≤ E[Un|Fn−1] ≤ µ∗ <∞,

and
V ar(Un|Fn−1) ≤ σ2 <∞,

with probability 1 for all n ≥ 1. If there exists γ > 0 such that E[(U+
n )2+γ ] <∞, then there exists a constant

G = G(µ∗, µ
∗, σ2) such that the following holds:

E[SN(a)]− a ≤ G,

for any a > 0.

Note that we have
0 < min

k∈[K]
E[X1,k] ≤ E[Xi,Iπi

|Fi−1] ≤ max
k∈[K]

E[X1,k] <∞,

and
V ar(Xi,Iπi

|Fi−1) ≤ max
k∈[K]

V ar(X1,k) <∞,

with probability 1 for all i ≥ 1. Thus, under Assumption 1, Proposition 3 implies that there exists a constant
G > 0 such that the following holds:

E[SπNπ(B)] ≤ B +G, (25)
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for all B > 0. Hence, (24) and (25) together imply the following upper bound:

E[REWπ(B)] ≤ r∗(B +G), (26)

for all B > 0 and any admissible policy π ∈ Π. Since the inequality (26) holds for any admissible π ∈ Π, we
have the following result:

E[REWπopt(B)(B)] ≤ r∗(B +G), ∀B > 0. (27)

2. In the second part of the proof, we will find a lower bound for E[REWπ∗(B)]. Since π∗ is a static policy and
Nπ∗(B) is a stopping time, Wald’s equation implies the following result Siegmund (2013):

E[REWπ∗(B)] = E
[
R1,k∗

]
E
[
Nπ∗(B)

]
. (28)

For random walks with positive drift, the following inequality holds for any B > 0 Asmussen (2008); Gut
(2009):

E[Nπ∗(B)] ≥ B

E[X1,k∗ ]
. (29)

(28) and (29) together imply the following:

E[REWπ∗(B)] ≥ r∗B, ∀B > 0. (30)

Inequalities in (27) and (30) together imply that the optimality gap is bounded by a constant G? = r∗G for all
B > 0.

Proposition 1 has a striking implication: the optimality gap is still bounded for unbounded and correlated cost
and reward pairs, and this result requires only a mild moment assumption that E[(X+

1,k)2+γ ], k ∈ [K] exists for
some γ > 0. Therefore, the simple policy π∗ serves as a plausible substitute for πopt(B), which is NP-hard, for
learning purposes.

B A Useful Upper Bound for Regret

The number of trials Nπ(B) under an admissible policy π is a random stopping time, which makes the regret
computations difficult. The following proposition, which extends the strategy in (Xia et al., 2016) to the case
of unbounded and potentially heavy-tailed cost-reward pairs that can take on negative values, provides a useful
tool for regret computations.

Proposition 4 (Regret Upper Bounds for Admissible Policies). Suppose that

max
k

E[|X1,k − E[X1,k]|p] = umax <∞,

for some p > 2. Let Tk(n) be the number of pulls for arm k in n trials, and µ∗ = mink E[X1,k]. The following
upper bound holds for any admissible policy π ∈ Π and B > µ∗/2:

Regπ(B) ≤
∑
k

E
[
Tk

(2B

µ∗

)]
∆kE[X1,k] +

(
2p2

p−1

)p
umax

(2B − µ∗)
p
2 µ

p
2
∗ (p2 − 1)

∑
k

∆kE[X1,k] +G?, (31)

where G? = G?(µ∗, σ
2
max) is a constant.

The proof of Proposition 4 relies on a variant of Chebyshev inequality for controlled random walks. Note that
2B/µ∗ is a high-probability upper bound for the total number of pulls Nπ(B), and ∆kE[X1,k] is the average
regret per pull for a suboptimal arm k. Proposition 4 implies that the expected regret after 2B/µ∗ pulls is O(1).

Proof of Proposition 4. Take an arbitrary admissible policy π ∈ Π. The regret can be decomposed as follows:

Regπ(B) = E[REWπopt(B)(B)]− E[REWπ∗(B)]︸ ︷︷ ︸
(a)

+E[REWπ∗(B)]− E[REWπ(B)]︸ ︷︷ ︸
(b)

. (32)
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Note that (a) in (31) is the optimality gap for π∗, which is upper bounded by a constant G? = r∗G by Proposition
1. In the following, we provide an upper bound for (b) in (31).

First, note that the cumulative reward under π∗ is upper bounded as follows:

E[REWπ∗(B)] = E[Nπ∗(B)] · E[R1,k∗ ],

≤ Br∗ + r∗
E[X2

1,k∗ ]

E[X1,k∗ ]
= Br∗ + c, (33)

where the first line follows from Wald’s equation and the second line is a consequence of Lorden’s inequality

Asmussen (2008). Since B ≤
∑Nπ(B)
i=1 Xi,Iπi

under π, we can further upper bound E[REWπ∗(B)] as follows:

E[REWπ∗(B)] ≤ E
[Nπ(B)∑

i=1

r∗Xi,Iπi

]
+ r∗

E[X2
1,k∗ ]

E[X1,k∗ ]
,

= E
[∑

k

∞∑
i=1

I{Wπ
i−1 ≤ B}I{Iπi = k}r∗E[Xi,k]

]
+ c. (34)

where
Wπ
n = max{Sπ1 , Sπ2 , . . . , Sπn}.

Similar to the proof of Proposition 1, we have the following equation for E[REWπ(B)]:

E[REWπ(B)] = E
[Nπ(B)∑

i=1

Ri,Iπi

]
,

= E
[∑

k

∞∑
i=1

I{Wπ
i−1 ≤ B}I{Iπi = k}rkE[Xi,k]

]
(35)

From (34) and (35), we have the following upper bound for (b) in (31):

E[REWπ∗(B)]− E[REWπ(B)] ≤ E
[∑

k

∞∑
i=1

I{Wπ
i−1 ≤ B}I{Iπi = k}∆kE[Xi,k]

]
+ c. (36)

For any integer n0 > 1, the RHS of (36) can be upper bounded as follows:

E[REWπ∗(B)]− E[REWπ(B)] ≤ E
[ n0∑
i=1

∑
k

I{Iπi = k}∆kE[Xi,k]
]

+ E
[ ∑
i>n0

I{Wπ
i−1 ≤ B}

∑
k

∆kE[Xi,k]
]

+ c,

=
∑
k

E[Tπk (n0)]∆kE[X1,k] (37)

+
(∑

k

∆kE[Xi,k]
) ∑
i>n0

P
(
Wπ
i−1 ≤ B

)
+ c.

The following martingale-based concentration inequality will be crucial in finding a tight upper bound for the
crossing probability of the controlled process Wπ

n in (37).

Lemma 1 (Chebyshev Inequality for Submartingales). Let {Zn : n ≥ 0} be a stochastic process adapted to the
filtration Fn such that there exists a pair (µ, u) satisfying

E[Zn|Fn−1] ≥ µ > 0,

E
[∣∣Zn − E[Zn|Fn−1]

∣∣p|Fn−1

]
≤ u <∞,

(38)
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almost surely for all n ≥ 1 for p > 2. Let Sn =
∑n
i=1 Zi and Wn = max

1≤i≤n
Si. For a given B > 0, let n0 = d 2B

µ e.
Then we have the following inequality:

P(Wn0+j ≤ B) ≤
(

2p2

p−1

)p
u

µp(n0 + j)p/2
. (39)

for all j ≥ 0.

Under an admissible policy π, the increments Xi,Iπi
of the controlled random walk Sπn satisfy E[Xi,Iπi

|Fi−1] ≥ µ∗
and E

[∣∣Xi,Iπi
− E[Xi,Iπi

|Fi−1]
∣∣p∣∣∣Fi−1

]
≤ umax almost surely for all i. Therefore, the conditions in (38) are

satisfied, and we have:

P(Wπ
n0+j ≤ B) ≤

(
2p2

p−1

)p
umax

(2B − µ∗)p/2µp/2∗ (n0 + j)p/2
. (40)

for n0 = 2B/µ∗, k ≥ 1 and j ≥ 0. Thus, for B > µ∗/2,

∑
i>n0

P(Wπ
i−1 ≤ B) =

∞∑
j=0

P(Wπ
n0+j ≤ B),

≤
(

2p2

p−1

)p
umax

(2B − µ∗)p/2µp/2∗ (p/2− 1)
. (41)

Substituting n0 = 2B
µ∗

and (41) into (37) completes the proof.

B.1 Proof of Lemma 1

Let Yi = Zi − E[Zi|Fi−1] and Mn =
∑
i=1 Yi, and note that Mn is a martingale. By the assumption (38),

µ ≤ E[Zi|Fi−1] holds almost surely for all i ≥ 1. Therefore, the following relation holds:{
Wn ≤ B

}
⊂
{
Sn ≤ B

}
⊂
{
Mn ≤ B − nµ

}
. (42)

Let n0 = 2B
µ . Then, for any j ≥ 0, we have the following inequality:

P(Wn0+j ≤ B) ≤ P(Mn0+j ≤ −
µ

2
(n0 + j)),

≤ P
(

max
1≤i≤n0+j

|Mi| >
µ

2
(n0 + j)

)
,

≤
2pE

[(
max

1≤i≤n0+j
|Mi|

)p]
µp(n0 + j)p

.

Then, by Lp maximum inequality for martingales (Theorem 4.4.4 in (Durrett, 2019)), we have:

E
[(

max
1≤i≤n0+j

|Mi|
)p] ≤ ( p

p− 1

)p
E[|Mn0+j |p]. (43)

For the martingale Mn with increments {Yn : n ≥ 1}, let Qn = Y 2
1 + Y 2

2 . . . + Y 2
n be the quadratic variation

process. It is interesting to note that Mn and
√
Qn increase at the same rate in terms of Lp-norm (Burkholder,

1973):

cpE[|Qn|
p
2 ] ≤ E[|Mn|p] ≤ CpE[|Qn|

p
2 ], (44)

where Cp ≤ pp and cp = 1/Cp. By Hölder’s inequality, we have the following result for all i > 0:

E[|Mn|p] ≤ Cpn
p
2−1E[

n∑
i=1

|Yi|p],
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for all n > 0. Given (38), the following holds:

E[|Yi|p] = E
[
E[|Yi|p

∣∣Fi−1]
]
, (45)

≤ u, (46)

for any i ≥ 1. Therefore, we have:

P(Wn0+j ≤ B) ≤
(

2p2

p−1

)p
u

µp(n0 + j)p/2
. (47)

C Proof of Theorem 1

Proof. The regret decomposition in Proposition 4 will be used for the proof. Note that we need to find the
expected number of pulls, E[Tk(n)], for each arm k with rk < r∗. The following proposition yields an upper
bound for E[Tk(n)] for any n > 0.

Lemma 2. Let ∆k = r∗ − rk be the reward rate discrepancy and

σ2
k =

{
V ar(R1,k)− ω2

kV ar(X1,k) + (r∗ − ωk)2V ar(X1,k), V ar(X1,k) 6= 0,

V ar(R1,k), V ar(X1,k) = 0,
(48)

for all k ∈ K, and recall that µ∗ = min
k

E[X1,k]. Then we have the following upper bounds for E[Tk(n)], the

expected number of pulls for arm k in n stages.

1. Bounded Cost and Reward: If ∆k > 0 and |X1,k| ≤ MX , |R1,k| ≤ MR a.s., then we have the following
upper bound under UCB-B1 with α > 2 and L = 2:

E[Tk(n)] ≤ 42 log(nα)
( σ2

k

∆2
k(E[X1,k])2

+
Mk

∆kE[X1,k]
+

MX

E[X1,k]

)
+ 12

α

α− 2
, (49)

where Mk = MR + rkMX .

2. Jointly Gaussian Cost and Reward: Let (Xn,k, Rn,k) be jointly Gaussian with covariance matrix Σk
for all k. Then, UCB-B1 with α > 2, MX = MR = 0 and L = 1

2 yields the following:

E[Tk(n)] ≤ 11 log(nα)
σ2
k

∆2
k(E[X1,k])2

+ 12
α

α− 2
. (50)

The proof then follows from substituting E[Tk(n)] in (49) (or (50) for the Gaussian case) into (31).

In the rest of this section, we prove Lemma 2.

C.1 Proof of Lemma 2

Consider a suboptimal arm k with ∆k > 0 and a given n > 0. For any t < n, let

ĉk,t =
λ

2− λ
εBk,n + (r̂k,n − ωk)ηBk,n(

Ên[Xk]
)+ ,

and

ck,t =
λ

E[X1,k]

(2Mk log(nα)

3Tk(t)
+

√
L log(nα)σ2

Tk(t)

)
, (51)

where σ2 =
√
V (X1,k, R1,k) + (rk − ωk)

√
V ar(X1,k) and λ = 1.28.

We have the following claim based on (Audibert et al., 2009).

Claim 1. Given n > 0, for any t < n, if It+1 = k holds, at least one of the following must be true:
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• E1 = {r̂k∗,t + ĉk∗,t ≤ r∗},

• E2 = {r̂k,t > rk + ĉk,t},

• E3 = {Tk(t) ≤ L
(

2λ2

2−λ

)2(
2σ2
k(

∆kE[X1,k]
)2 + Mr

∆kE[X1,k]

)
log(nα)},

• E4 = {Tk(t) ≤ L
(

λ
λ−1

)2( V ar(X1,k)(
E[X1,k]

)2 + MX

E[X1,k]

)
log(nα)},

Proof. For notational convenience, let s = Tk(t) and ` = log(nα). Suppose to the contrary that neither holds.
Then, we have:

Ec4 ⊂ {
2MX`

3s
+

√
LV ar(X1,k)`

s
≤ E[X1,k]

(λ− 1)

λ
}, (52)

which implies that the rate estimator is stable, thus the concentration inequality in Proposition 2 holds. In order
to see (52), let x = λ

λ−1 , µk = E[X1,k] and

u = Lx2
(V ar(X1,k)(

E[X1,k]
)2 +

MX

E[X1,k]

)
`. (53)

Then, for any s ≥ u, we have the following:

2MXµ
2
k

6x2
(
MXµk + V ar(X1,k)

+
1

x

√
V ar(X1,k)µ2

k

V ar(X1,k) +MXµk
≤ µk

x
,

since x > 1 and 1−β
3x +

√
β ≤ 1 for β =

V ar(X1,k)
V ar(X1,k)+MXµk

∈ [0, 1].

Second, for large t, we have the following relation:

Ec4 ∩ Ec3 ⊂ {ĉk,t ≤
∆k

2
}. (54)

with high probability. In order to prove (54), note that the following holds:

ck,t ≤ ĉk,t ≤
λ

2− λ
ck,t, (55)

with high probability under the event Ec4. Let

v = L
( 2λ2

2− λ

)2( 2σ2
k

∆2
kµ

2
k

+
Mr

∆kµk

)
`, (56)

and note that σ2 ≤ 2σ2
k by Cauchy-Schwarz inequality. Then, by (55), for any s ≥ v, we have:

ĉk,t ≤
∆k

2

( Mr∆kµk

12λ
(
2σ2

k +Mr∆kµk
) +

√
2σ2

k

2σ2
k +Mr∆kµk

)
,

≤ ∆k

2
,

where the last line holds since 1−β
12λ +

√
β ≤ 1 for λ > 1 and β =

2σ2
k

2σ2
k+Mr∆kµk

∈ [0, 1]. Since the concentration

inequality holds and Ec4 ∩ Ec3 ⊂ {ĉk,t ≤ ∆k/2}, we have:

4⋂
i=1

Eci ⊂
{
r̂k,t + ĉk,t ≤ r̂k∗,t + ĉk∗,t

}
,

which implies that It+1 = k∗ 6= k.
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In order to bound P(E1 ∪ E2), let Zn,k = Rn,k − ωkXn,k and

εk,t =
2MZ`

3s
+

√
L
V (X1,k, R1,k)`

s
,

ηk,t =
2MX`

3s
+

√
L
V ar(X1,k)`

s
,

where MZ = MR + ωkMZ . Then, the following inequality based on Proposition 2 will be used:

P(|r̂k,t − rk| > ck,t) = P
(∣∣∣ Êt[Zk]

Êt[Xk]
− E[Zk]

E[Xk]

∣∣∣ > ck,t
)
,

≤ P
(∣∣∣Êt[Zk]− E[Zk]

∣∣∣ > εk,t

)
+ P

(∣∣∣Êt[Xk]− E[Xk]
∣∣∣ > ηk,t

)
.

Note that for sub-Gaussian cost and reward pairs, MX = MR = 0 and L = 1/2 yields Hoeffding’s inequality.
For the specific case of bounded cost and reward pairs with bounds MX and MR, respectively, L = 2 leads to
Bernstein’s inequality. Using this concentration inequality with (55), we have the following:

|r̂k,t − rk| > ĉk,t,

with high probability. These, along with the union bound, imply the following:

P
(
E1 ∪ E2

)
≤ 12

tα−1
.

By using this result and Claim 1, we obtain the following inequality:

E[Tk(n)] ≤ u+ v +

∞∑
t=1

12

tα−1
,

where u and v are defined in (53) and (56), respectively. Choosing λ = 1.28 and substituting E[Tk(n)] into
Proposition 4 proves the result.

D Proof of Theorem 2

For any k, if Xn,k or Rn,k has heavy tails, then the empirical rate estimator is weak in the sense that the
convergence rate is polynomial rather than exponential (Bubeck et al., 2013). In the following, we propose a
median-based rate estimator, and prove that it is robust in the sense that an exponential convergence rate is
achieved even if the cost and reward are heavy-tailed. The correlation between X1,k and R1,k is exploited for
improved coefficients.

Proposition 5 (Median-based rate estimation). For any given δ ∈ (0, 1), let

m = d3.5 log(δ−1)e+ 1,

and G1, G2, . . . , Gm be a partition of [s] where |Gj | = b smc for each j. Define ÊGj [Xk] (and ÊGj [Rk]) be the

sample mean of Xn,k (and Rn,k) in partition Gj, and r̃j,k =
ÊGj [Rk]

ÊGj [Xk]
for each j. Given λ > 1, if

s ≥ 135
( λ

λ− 1

)2

V ar(X1,k) log(1.4δ−1), (57)

then the following inequality holds:

P
(∣∣rs,k − rk∣∣ > 22λ

E[X1,k]

√
σ2
k log(δ−1)

s

)
≤ 1.4δ,

where rs,k = median
1≤i≤m

r̃j,k and σk is defined in (10) .
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Proof. Given λ > 1, for any j ∈ [m] and p ∈ (0, 1
2 ), if√

4mV ar(X1,k)

sp
≤ E[X1,k](λ− 1)

λ
,

we have the following:

P(|r̃j,k − rk| >
λ

E[X1,k]

√
8mσ2

k

sp
) ≤ p,

by Chebyshev’s inequality and Proposition 2. Therefore, by Theorem 3.1 in (Minsker et al., 2015), we have:

P
(
|rs,k − rk| >

1− β√
1− 2β

λ

E[X1,k]

√
8mσ2

k

sp

)
≤ e−mψ(β;p),

for β ∈ (p, 1
2 ) and

ψ(β; p) = β log
(β
p

)
+ (1− β) log

(1− β
1− p

)
.

For a given δ ∈ (0, 1), the values m = b3.5 log(δ−1)c+ 1, β = 8/17 and p = 0.1 yield the result.

The proof of Theorem 2 is based on the regret decomposition in Appendix B and the following lemma.

Lemma 3. For any λ > 1 and α > 2, we have:

E[Tk(n)] ≤ log(nα)
( 484λ2σ2

k

∆2
k(E[X1,k])2

+
135( λ

λ−1 )2V ar(X1,k)

(E[X1,k])2

)
+ 48

α

α− 2
, (58)

for any k that satisfies rk < r∗.

Lemma 3 is proved in an identical way to Lemma 2 by using the concentration inequality proposed in Proposition
5.

E Proof of Theorem 3

Proof. The regret under any admissible policy can be lower bounded as follows:

Lemma 4. For any B > 0, let

φπ(B) =
∑
k

E[I{INπ(B) = k}]E[XNπ(B),k],

be the average cost in the last epoch under an admissible policy π, µ+ = max
k

E[X+
1,k] and µ∗ = min

k
E[X1,k].

Then, the regret under π is lower bounded as follows:

Regπ(B) ≥
∑
k

∆kE[X1,k]E[Tk(
⌈√

2B/µ∗
⌉
)]− µ+

µ∗
(1 +

1√
2B

)
∑
k

∆kE[X1,k]− φπ(B). (59)

Then, under the conditions stated in Theorem 3, the following result provides an asymptotic lower bound for
E[Tk(n)] for any k with rk < r∗.

Lemma 5. If π ∈ Π is a policy such that E[Tπk (n)] = o(nα) for any α > 0 and k such that rk(θk) < r∗, then we
have the following lower bound:

lim inf
n→∞

E[Tk(n)]

log(n)
≥ 1

D?
k

, (60)

where D?
k is the solution to the following optimization problem:

D?
k = min

θ∈Θk
D(Pk,θk ||Pk,θ) subject to rk(θ) ≥ r∗.

Lemma 5 can be proved by a straightforward adaptation of Theorem 1 in (Burnetas and Katehakis, 1996).

If the moment condition E[(X1,k)2+γ ] <∞ holds for all k, then the term φπ(B) = O(1) as B →∞ by Lorden’s
inequality (Asmussen, 2008). Therefore, using (59) and (60), we obtain the result.
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E.1 Proof of Lemma 4

Take any admissible policy π and B > 0. We have the following inequalities:

Regπ(B) = E[REWπopt(B)(B)]− E[REWπ(B)],

≥ E[REWπ∗(B)]− E[REWπ(B)],

since E[REWπopt(B)(B)] ≥ E[REWπ∗(B)] by definition. Then, by using a similar decomposition as (34), we have the
following:

Regπ(B) ≥ E[

∞∑
t=1

∑
k

∆kE[X1,k]I{Wt−1 ≤ B}I{It = k}]− r∗φπ(B), (61)

≥ E[

n0∑
t=1

∑
k

∆kE[X1,k]I{Wt−1 ≤ B}I{It = k}]− r∗φπ(B) (62)

for any n0 > 0, where Wπ
t = max

1≤i≤t
Sπi . Since I{Wπ

t−1 ≤ B} = 1− I{Wπ
t−1 > B}, we have:

Regπ(B) ≥
∑
k

E[Tk(n0)]∆kE[X1,k]− (
∑
k

∆kE[X1,k])

n0∑
t=1

P(Wπ
t−1 > B)− r∗φπ(B). (63)

We have the following result:

P(Wπ
t > B) ≤ P( max

1≤i≤t
(Sπi )+ > B),

≤ E[(Sπt )+]

B
,

≤
E[
∑t
i=1X

+
i,Ii

]

B
≤ tµ+

B
,

(64)

where the second inequality follows from Doob’s martingale inequality (Durrett, 2019), and the last inequality is
true since µ+ ≥ X+

i,Ii
with probability 1 for all i. Substituting (64) into (63), and setting n0 =

√
2B/µ∗ yields

the result.

F Proof of Theorem 4

In the design of UCB-B2, empirical variance estimates are used, which require a modified analysis compared to
UCB-B1.

Lemma 6. If ∆k > 0 and |X1,k| ≤MX , |R1,k| ≤MR a.s., then we have the following upper bound under UCB-B2
with α > s:

E[Tk(n)] ≤ 21 log(nα)
( M4

X

V ar2(X1,k)
+

2MX

E[X1,k]
+

3V ar(X1,k)

E2[X1,k]

)
+ 42 log(nα)

( σ2
k

∆2
k(E[X1,k])2

+
Mk

∆kE[X1,k]

)
+ 48

α

α− 2
, (65)

where σk = V ar(R1,k)− ω2
kV ar(X1,k) and Mk = MR + rkMX .

Proof. The proof follows along the same lines as Theorem 1 and the proof of Theorem 3 in (Audibert et al.,

2009). For any k, let the variance estimate V̂k,n(Xk) be defined as follows:

V̂k,n(Xk) =
1

Tk(n)

n∑
i=1

I{Ii = k}
(
Xi,k − Ên[X1,k]

)2
,
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where Ên[Xk] is the empirical mean of the observations up to epoch n. Also, let νk,n be defined for Xk ∈ [0,MX ]
as follows:

νk,n(Xk) = M2
X

(7 log(nα)

6Tk(n)
+

√
log(nα)

2Tk(n)

)
, α > 2.

Then, it can be shown by using Bernstein’s inequality that V̂k,n(Xk)+νk,n(Xk) is an upper bound for V ar(X1,k)
with high probability. Using this result, we obtain the sample size required for the stability of the rate estimator
by using identical steps as Theorem 1.

G Proof of Theorem 5

The proof of Theorem 4 follows the same steps as Theorem 5, with the difference that the correlation between
Xn,k and Rn,k are estimated in the latter. In order to observe the effect of using LMMSE estimates to exploit
correlation, we first present concentration bounds for ωk and min

ω
V ar(R1,k − ωX1,k).

G.1 Preliminaries

Throughout this subsection, we consider a generic iid stochastic process (Xn, Rn) with Xn ∈ [0,MX ] and
Rn ∈ [0,MR]. For this process, let ω∗ = arg minω L(ω) where

L(ω) = V ar(R1 − ωX1),

and ω̂s = arg minω L̂s(ω) where

L̂s(ω) =
1

s

s∑
i=1

(
Ri − Ês[R]− ω(Xi − Ês[X])

)2

.

Note that ω∗ = Cov(X1,R1)
V ar(X1) and ω̂s = Ĉovs(X,R)

V̂ ars(X)
where

Ĉovs(X,R) =
1

s

s∑
i=1

(Ri − Ês[R])(Xi − Ês[X]),

is the empirical covariance and V̂ ars(X) = Ĉovs(X,X). In the following, we propose concentration inequalities
for ω∗ and L(ω∗).

Proposition 6 (Concentration of LMMSE Estimator). Let MZ ≥ MR + ω∗MX and λ = 1 + 1
2
√

2
. Then, for

any δ ∈ (0, 1), if

s ≥ 63M4
X log(δ−1)

V ar2(X1)
, (66)

then the following inequalities hold simultaneously:

P(|ω∗ − ω̂s| >
λMZMX

V ar(X1)

√
log(δ−1)

s
) ≤ 12δ,

P(|L(ω∗)− L̂s(ω̂s)| > M2
Z

√
2 log(δ−1)

s
) ≤ 18δ.

Proof. For the first inequality, recall that ω∗ = Cov(X1,R1)
V ar(X1) and ω̂s is the ratio of empirical estimates for

Cov(X1, R1) and V ar(X1). Therefore, we can use Proposition 2 for the proof. Note that (66) is the stabil-
ity condition for the estimator ω̂s. Since s ≥ 1

2 log(δ−1), Hoeffding’s inequality yields the following result for the
empirical covariance:

P(|Ĉovs(X1, R1)− Cov(X1, R1)| > MXMR

√
log(δ−1)

s
) ≤ 6δ. (67)

Using this twice for Ĉovs(X1, R1) and V̂ ars(X1), we obtain the first inequality.
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For the second inequality, first we make the following decomposition:

|L̂s(ω̂s)− L(ω∗)| = |L̂s(ω∗)− L(ω∗)|+ |L̂s(ω̂s)− L̂s(ω∗)|. (68)

For the first term on the RHS of (68), we have the following result:

|L̂s(ω∗)− L(ω∗)| ≤M2
Z

√
log(δ−1)

s
,

by applying Hoeffding’s inequality for the variance (67) to the decomposition:

V ar(R1 − ωX1) = V ar(R1) + ω2V ar(X1)− 2Cov(X1, R1),

and its empirical counterpart. For the second term on the RHS of (68), note that the following identity holds
by the orthogonality principle:

L̂s(ω) = L̂s(ω̂s) + |ω − ω̂s|2V̂ ars(X1), (69)

for any ω ∈ R. Therefore, by union bound, we have the following result:

P
(
|Ls(ω∗)− L̂s(ω̂s)| > M2

Z

(√ log(δ−1)

s
+

3λ2M2
X log(δ−1)

2V ar(X1)s

))
≤ 18δ,

from the concentration result for |ω∗ − ω̂s| and (67) with M2
X

√
log(δ−1)

s ≤ V ar(X1)
2 by (66). Since s is assumed

to be sufficiently large by (66), we have:√
log(δ−1)

s
>

3λ2M2
X log(δ−1)

2V ar(X1)s
,

which concludes the proof.

G.2 Proof of Theorem 5

The proof follows a similar steps as the proof of Theorem 4 (see Appendix F). The main difference is the use of
LMMSE estimator as a surrogate for V (X1,k, R1,k). By using Proposition 6, one can show the following:

E[Tk(n)] ≤ 21 log(nα)
( 3M4

X

V ar2(X1,k)
+

2MX

E[X1,k]
+

3V ar(X1,k)

E2[X1,k]

)
+ 42 log(nα)

( σ2
k

∆2
k(E[X1,k])2

+
Mk +M

∆kE[X1,k]

)
+ 64

α

α− 2
,

where M = MXMZ√
V ar(X1,k)

, σk = V ar(R1,k)− ω2
kV ar(X1,k) and Mk = MR + rkMX .
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