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Abstract

Despite its well-known shortcomings, k-
means remains one of the most widely used
approaches to data clustering. Current re-
search continues to tackle its flaws while
attempting to preserve its simplicity. Re-
cently, the power k-means algorithm was pro-
posed to avoid poor local minima by an-
nealing through a family of smoother sur-
faces. However, the approach lacks statisti-
cal guarantees and fails in high dimensions
when many features are irrelevant. This
paper addresses these issues by introducing
entropy regularization to learn feature rel-
evance while annealing. We prove consis-
tency of the proposed approach and derive
a scalable majorization-minimization algo-
rithm that enjoys closed-form updates and
convergence guarantees. In particular, our
method retains the same computational com-
plexity of k-means and power k-means, but
yields significant improvements over both.
Its merits are thoroughly assessed on a suite
of real and synthetic data experiments.

1 Introduction

Clustering is a fundamental task in unsupervised
learning for partitioning data into groups based on
some similarity measure. Perhaps the most popu-
lar approach is k-means clustering (MacQueen, 1967):
given a dataset X = {x1, . . . ,xn} ⊂ Rp, X is to be
partitioned into k mutually exclusive classes so that
the variance within each cluster is minimized. The
problem can be cast as minimization of the objective

P (Θ) =

n∑
i=1

min
1≤j≤k

‖xi − θj‖2, (1)
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where Θ = {θ1,θ2, . . . ,θk} denotes the set of cluster
centroids, and ‖xi − θj‖2 is the usual squared Eu-
clidean distance metric.

Lloyd’s algorithm (Lloyd, 1982), which iterates be-
tween assigning points to their nearest centroid and
updating each centroid by averaging over its as-
signed points, is the most frequently used heuristic
to solve the preceding minimization problem. Such
greedy approaches, however, suffer from several well-
documented drawbacks. Because the task is NP-hard
(Aloise et al., 2009), Lloyd’s algorithm and its vari-
ants seek to approximately solve the problem and are
prone to stopping at poor local minima, especially as
the number of clusters k and dimension p grow. Many
new variants have since contributed to a vast literature
on the topic, including spectral clustering (Ng et al.,
2002), Bayesian (Lock and Dunson, 2013) and non-
parametric methods (Kulis and Jordan, 2012), sub-
space clustering (Vidal, 2011), sparse clustering (Wit-
ten and Tibshirani, 2010), and convex clustering (Chi
and Lange, 2015); a more comprehensive overview can
be found in Jain (2010).

None of these methods have managed to supplant k-
means clustering, which endures as the most widely
used approach among practitioners due to its sim-
plicity. Some work instead focuses on “drop-in” im-
provements of Lloyd’s algorithm. The most preva-
lent strategy is clever seeding: k-means++ (Arthur
and Vassilvitskii, 2007; Ostrovsky et al., 2012) is one
such effective wrapper method in theory and practice,
and proper initialization methods remain an active
area of research (Celebi et al., 2013; Bachem et al.,
2016). Geometric arguments have also been employed
to overcome sensitivity to initialization. Zhang et al.
(1999) proposed to replace the minimum function by
the harmonic mean function to yield a smoother ob-
jective function landscape but retain a similar algo-
rithm, though the strategy fails in all but very low di-
mensions. Xu and Lange (2019) generalized this idea
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by using a sequence of successively smoother objec-
tives via power means instead of the harmonic mean
function to obtain better approximating functions in
each iteration. The contribution of power k-means is
algorithmic in nature—it effectively avoids local min-
ima from an optimization perspective, and succeeds for
large p when the data points are well-separated. How-
ever, it does not address the statistical challenges in
high-dimensional settings and can perform as poorly
as standard k-means in such cases. A meaningful sim-
ilarity measure plays a key role in revealing clusters
(De Amorim and Mirkin, 2012; Chakraborty and Das,
2017), but pairwise Euclidean distances become de-
creasingly informative as the number of features grows
due to the curse of dimensionality.

On the other hand, there is a rich literature on clus-
tering in high dimensions, but standard approaches
such as subspace clustering are not scalable due to the
use of an affinity matrix pertaining to norm regular-
ization (Ji et al., 2014; Liu et al., 2012). For spec-
tral clustering, even the creation of such a matrix
quickly becomes intractable for modern, large-scale
problems (Zhang et al., 2019). Toward learning ef-
fective feature representations, weighted k-means clus-
tering (WK-means) (Huang et al., 2005), and sparse
k-means (Witten and Tibshirani, 2010) has become
a benchmark feature selection algorithm, where selec-
tion is achieved by imposing `1 and `2 constraints on
the feature weights. Further related developments can
be found in the works of Modha and Spangler (2003);
Li and Yu (2006); Huang et al. (2008); De Amorim
and Mirkin (2012); Jin and Wang (2016). These ap-
proaches typically lead to complex optimization prob-
lems in terms of transparency as well as computational
efficiency—for instance, sparse k-means requires solv-
ing constrained sub-problems via bisection to find the
necessary dual parameters λ∗ in evaluating the prox-
imal map of the `1 term. As they fail to retain the
simplicity of Lloyd’s algorithm for k-means, they lose
appeal to practitioners. Moreover, these works on fea-
ture weighting and selection do not benefit from recent
algorithmic developments mentioned above.

In this article, we propose a scalable clustering algo-
rithm for high dimensional settings that leverages re-
cent insights for avoiding poor local minima, performs
adaptive feature weighing, and preserves the low com-
plexity and transparency of k-means. Called Entropy
Weighted Power k-means (EWP), we extend the mer-
its of power k-means to the high-dimensional case by
introducing feature weights together with entropy in-
centive terms. Entropy regularization is not only ef-
fective both theoretically and empirically, but leads
to an elegant algorithm with closed-form solution up-
dates. The idea is to minimize along a continuum of

smooth surrogate functions that gradually approach
the k-means objective, while the feature space also
gradually adapts so that clustering is driven by in-
formative features. By transferring the task onto a se-
quence of better-behaved optimization landscapes, the
algorithm fares better against the curse of dimension-
ality and against adverse initialization of the cluster
centroids than existing methods. The following sum-
marizes our main contributions:

• We propose a clustering framework that auto-
matically learns a weighted feature representa-
tion while simultaneously avoiding local minima
through annealing.

• We develop a scalable Majorization-Minimization
(MM) algorithm to minimize the proposed objec-
tive function.

• We establish descent and convergence properties
of our method and prove the strong consistency
of the global solution.

• Through an extensive empirical study on real and
simulated data, we demonstrate the efficacy of our
algorithm, finding that it outperforms comparable
classical and state-of-the-art approaches.

The rest of the paper is organized as follows. After
reviewing some necessary background, Section 2.1 for-
mulates the Entropy Weighted Power k-means (EWP)
objective and provides high-level intuition. Next,
an MM algorithm to solve the resulting optimization
problem is derived in Section 2.2. Section 3 establishes
the theoretical properties of the EWP clustering. De-
tailed experiments on both real and simulated datasets
are presented in Section 4, followed by a discussion of
our contributions in Section 5.

Majorization-minimization The principle of MM
has become increasingly popular for large-scale opti-
mization in statistical learning (Mairal, 2015; Lange,
2016). Rather than minimizing an objective of interest
f directly, an MM algorithm successively minimizes a
sequence of simpler surrogate functions g(θ | θn) that
majorize the original objective f(θ) at the current es-
timate θm. Majorization requires two conditions: tan-
gency g(θm | θm) = f(θm) at the current iterate, and
domination g(θ | θm) ≥ f(θ) for all θ. The iterates of
the MM algorithm are defined by the rule

θm+1 := arg min
θ

g(θ | θm), (2)

which immediately implies the descent property

f(θm+1) ≤ g(θm+1 | θm) ≤ g(θm | θm) = f(θm).

That is, a decrease in g results in a decrease in f .
Note that g(θm+1 | θm) ≤ g(θm | θm) does not require
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(a) k-means
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(b) WK-means
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(c) Power k-means
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(d) Sparse k-means
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(e) EWP

Figure 1: Peer methods fail to cluster in 100 dimensions with 5 effective features on illustrative example, while
the proposed method achieves perfect separation. Solutions are visualized using t-SNE.

θm+1 to minimize g exactly, so that any descent step in
g suffices. The MM principle offers a general prescrip-
tion for transferring a difficult optimization task onto a
sequence of simpler problems (Lange et al., 2000), and
includes the well-known EM algorithm for maximum
likelihood estimation under missing data as a special
case (Becker et al., 1997).

Power k-means Zhang et al. (1999) attempt to re-
duce the sensitivity to initialization of k-means by min-
imizing the criterion

n∑
i=1

(1

k

k∑
j=1

‖xi − θj‖−2
)−1

:= f−1(Θ). (3)

Known as k-harmonic means, the method replaces the
min appearing in (1) by the harmonic average to yield
a smoother optimization landscape, an effective ap-
proach in low dimensions. Recently, power k-means
clustering extends this idea to work in higher dimen-
sions where (3) is no longer a good proxy for (1). In-
stead of considering only the closest centroid or the
harmonic average, the power mean between each point
and all k centroids provides a family of successively
smoother optimization landscapes. The power mean of

a vector y is defined Ms(y) =
(

1
k

∑k
i=1 y

s
i

)1/s
. Within

this class, s > 1 corresponds to the usual `s-norm of
y, s = 1 to the arithmetic mean, and s = −1 to the
harmonic mean. Power means enjoy several properties
that translate to algorithmic merits and are useful for
establishing theoretical guarantees. They are mono-
tonic, homogeneous, and differentiable with gradient

∂

∂yj
Ms(y) =

(1

k

k∑
i=1

ysi

) 1
s−1 1

k
ys−1j , (4)

and satisfy the limits

lim
s→−∞

Ms(y) = min{y1, . . . , yk} (5a)

lim
s→∞

Ms(y) = max{y1, . . . , yk}. (5b)

Further, the well-known power mean inequality
Ms(y) ≤Mt(y) for any s ≤ t holds (Steele, 2004). The

power k-means objective function for a given power s
is given by the formula

fs(Θ) =

n∑
i=1

Ms(‖xi − θ1‖2, . . . , ‖xi − θk‖2). (6)

The algorithm then seeks to minimize fs iteratively
while sending s → −∞. Doing so, the objective ap-
proaches f−∞(Θ) due to (5), coinciding with the orig-
inal k-means objective and retaining its interpretation
as minimizing within-cluster variance. The interme-
diate surfaces provide better optimization landscapes
that exhibit fewer poor local optima than (1). Each
minimization step is carried out via MM; see Xu and
Lange (2019) for details.

2 Entropy Weighted Power k-means

A Motivating Example We begin by considering
a synthetic dataset with k = 20 clusters, n = 1000
points, and p = 100. Of the 100 features, only
5 are relevant for distinguishing clusters, while the
others are sampled from a standard normal distribu-
tion (further details are described later in Simulation
2 of Section 4.1). We compare standard k-means,
WK-means, power k-means, and sparse k-means with
our proposed method; sparse k-means is tuned using
the gap statistic described in the original paper Wit-
ten and Tibshirani (2010) as implemented in the R

package sparcl. Figure 1 displays the solutions in
a t-distributed Stochastic Neighbourhood Embedding
(t-SNE) (Maaten and Hinton, 2008) for easy visualiza-
tion in two dimensions. It is evident that our EWP
algorithm, formulated below, yields perfect recovery
while the peer algorithms fail to do so. This trans-
parent example serves to illustrate the need for an ap-
proach that simultaneously avoids poor local solutions
while accommodating high dimensionality.

2.1 Problem Formulation

Let x1, . . . ,xn ∈ Rp denote the n data points, and
Θk×p = [θ1, . . . ,θk]> denote the matrix whose rows
contain the cluster centroids. We introduce a feature
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relevance vector w ∈ Rp where wl contains the weight
of the l-th feature, and require these weights to satisfy
the constraints

p∑
l=1

wl = 1; wl ≥ 0 for all l = 1, . . . , p. (C)

The EWP objective for a given s is now given by

fs(Θ,w) =

n∑
i=1

Ms(‖x− θ1‖2w, . . . , ‖x− θk‖2w)

+ λ

p∑
l=1

wl logwl, (7)

where the weighted norm ‖y‖2w =
∑p
l=1 wly

2
l now ap-

pears as arguments to the power mean Ms. The final
term is the negative entropy of w (Jing et al., 2007).
This entropy incentive is minimized when wl = 1/p
for all l = 1, . . . , p; in this case, equation (7) is equal
to the power k-means objective, which in turn equals
the k-means objective when s → −∞ (and coincides
with KHM for s = −1). EWP thus generalizes these
approaches, while newly allowing features to be adap-
tively weighed throughout the clustering algorithm.
Moreover, we will see in Section 2.2 that entropy in-
centives are an ideal choice of regularizer in that they
lead to closed form updates for w and θ within an
iterative algorithm.

Intuition and the curse of dimensionality
Power k-means combats the curse of dimensionality
by providing smoothed objective functions that remain
appropriate as dimension increases. Indeed, in prac-
tice the value of s at convergence of power k-means be-
comes lower as the dimension increases, explaining its
outperformance over k-harmonic means (Zhang et al.,
1999): f−1 deteriorates as a reasonable approxima-
tion of f−∞. However even if poor solutions are suc-
cessfully avoided from the algorithmic perspective, the
curse of dimensionality still affects the arguments to
the objective. Minimizing within-cluster variance be-
comes less meaningful as pairwise Euclidean distances
become uninformative in high dimensions (Aggarwal
et al., 2001). It is therefore desirable to reduce the
effective dimension in which distances are computed.

While the entropy incentive term does not zero out
variables, it weighs the dimensions according to how
useful they are in driving clustering. When the data
live in a high-dimensional space yet only a small num-
ber of features are relevant towards clustering, the
optimal solution to our objective (7) assigns non-
negligible weights to only those few relevant features,
while benefiting from annealing through the weighted
power mean surfaces.

2.2 Optimization

To optimize the EWP objective, we develop an MM al-
gorithm (Lange, 2016) for sequentially minimizing (7).
As shown in Xu and Lange (2019), Ms(y) is concave
if s < 1; in particular, it lies below its tangent plane.
This observation provides the following inequality: de-
noting ym the estimate of a variable y at iteration m,

Ms(y) ≤Ms(ym) +∇yMs(ym)>(y − ym) (8)

Substituting ‖xi − θj‖2w for yj and ‖xi − θmj‖2wm
for

ymj in equation (8) and summing over all i, we obtain

fs(Θ,w) ≤ fs(Θm,wm)−
n∑
i=1

k∑
j=1

φ
(m)
ij ‖xi − θmj‖

2
wm

− λ
p∑
l=1

(wm,l logwm,l − wl logwl) +

n∑
i=1

k∑
j=1

φ
(m)
ij ‖xi − θj‖

2
w.

Here the derivative expressions (4) provide the values
of the constants

φ
(m)
ij =

1
k‖xi − θm,j‖

2(s−1)
wm(

1
k

∑k
j=1 ‖xi − θm,j‖2swm

)(1− 1
s )
.

The right-hand side of the inequality above serves as a
surrogate function majorizing fs(Θ,w) at the current
estimate Θm. Minimizing this surrogate amounts to
minimizing the expression

n∑
i=1

k∑
j=1

φ
(m)
ij ‖xi − θj‖

2
w + λ

p∑
l=1

wl logwl (9)

subject to the constraints (C). This problem admits
closed form solutions (detailed in the Supplement):

θm+1,j =

∑n
i=1 φ

(m)
ij xi∑n

i=1 φ
(m)
ij

(10)

wm+1,l =

exp

{
−

∑n
i=1

∑k
j=1 φ

(m)
ij (xil−θjl)2

λ

}
∑p
t=1 exp

{
−

∑n
i=1

∑k
j=1 φ

(m)
ij (xit−θjt)2
λ

} .
(11)

The MM steps result in updates similar to that of the
Lloyd’s updates (Lloyd, 1982) in the sense that each
step alternates between updating φij ’s and updating
Θ and w. These updates are summarised in Algo-
rithm 1; though there are three steps rather than two,
the overall per-iteration complexity of this algorithm
is the same as that of k-means (and power k-means)
at O(nkp) (Lloyd, 1982). We require the tuning pa-
rameter λ > 0 to be specified, typically chosen via
cross-validation detailed in Section 4.1. It should be
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noted that the initial value s0 and the constant η do
not require careful tuning: we fix them at s0 = −1
and η = 1.05 across all real and simulated settings
considered in this paper.

Algorithm 1: Entropy Weighted Power k-means Al-
gorithm (EWP)

Data: X ∈ Rn×p, λ > 0, η > 1
Result: Θ
initialize s0 < 0 and Θ0
repeat:

φ
(m)
ij ←

1

k
‖xi − θm,j‖2(sm−1)

wm

(
1

k

k∑
j=1

‖xi − θm,j‖2smwm

)( 1
sm

−1)

θm+1,j ←
∑n
i=1 φ

(m)
ij xi∑n

i=1 φ
(m)
ij

wm+1,l ←
exp

{
−

∑n
i=1

∑k
j=1 φ

(m)
ij (xil−θjl)2

λ

}
∑p
t=1 exp

{
−

∑n
i=1

∑k
j=1 φ

(m)
ij (xit−θjt)2

λ

}
sm+1 ← ηsm

until convergence

3 Theoretical Properties

We note that all iterates θm in Algorithm 1 are defined
within the convex hull of the data, all weight updates
lie within [0, 1], and the procedure enjoys convergence
guarantees as an MM algorithm (Lange, 2016). Before
we state and prove the main result of this section on
strong consistency, we present results characterizing
the sequence of minimizers. Proven in the Supplement,
Theorems 1 and 2 show that the minimizers of surfaces
fs always lie in the convex hull of the data Ck, and
converge uniformly to the minimizer of f−∞.

Theorem 1. Let s ≤ 1 also let (Θn,s,wn,s) be mini-
mizer of fs(Θ,w). Then we have Θn,s ∈ Ck.

Theorem 2. For any decreasing sequence {sm}∞m=1

such that s1 ≤ 1 and sm → −∞, fsm(Θ,w) converges
uniformly to f−∞(Θ,w) on Ck × [0, 1]p.

Strong consistency is a fundamental requirement of
any “good” estimator in the statistical sense: as the
number of data points grows, one should be able to re-
cover true parameters with arbitrary precision Terada
(2014, 2015); Chakraborty and Das (2019). The proof
of our main result builds upon the core argument for k-
means consistency by Pollard (1981), and extends the
argument through novel arguments involving uniform
convergence of the family of annealing functions.

Let x1, . . . ,xn ∈ Rp be independently and identically
distributed from distribution P with support on a com-

pact set C ⊂ Rp. For notational convenience, we write
Ms(x,Θ,w) for Ms(‖x− θ1‖w, . . . , ‖x− θ1‖w). We
consider the following minimization problem

min
Θ,w

1

n

n∑
i=1

Ms(xi,Θ,w) + λ

p∑
l=1

wl logwl,

which is nothing but a scaled version of equation (7).
Intuitively, as n → ∞, 1

n

∑n
i=1Ms(xi,Θ,w) is very

close to
∫
Ms(x,Θ,w)dP almost surely by appealing

to the Strong Law of Large Numbers (SLLN). Together
with (5), as n→∞ and s→ −∞ we expect

1

n

n∑
i=1

Ms(xi,Θ,w) + λ

p∑
l=1

wl logwl (12)

to be in close proximity of∫
min
θ∈Θ
‖x− θ‖wdP + +λ

p∑
l=1

wl logwl, (13)

so that minimizers of (12) should be very close to the
minimizers of (13) under certain regularity conditions.

To formalize this intuition, let Θ∗, w∗ be minimizers
of

Φ(Θ,w) =

∫
min

1≤j≤k
‖x− θj‖2wdP + λ

p∑
l=1

wl logw,

and define Θn,s, wn,s as the minimizers of∫
Ms(x,Θ,w)dPn + λ

p∑
l=1

wl logwl,

where Pn is the empirical measure. We will show that
Θn,s

a.s.−−→ Θ∗ and wn,s
a.s.−−→ w∗ as n → ∞ and s →

−∞ under the following identifiability assumption:

A1 For any neighbourhood N of (Θ∗,w∗), there ex-
ists η > 0 such that if (Θ,w) 6∈ N implies that
Φ(Θ,w) > Φ(Θ∗,w∗) + η.

Theorem 3 establishes a uniform SLLN, which plays a
key role in the proof of the main result (Theorem 4).

Theorem 3. (SLLN) Fix s ≤ 1. Let G denote the
family of functions gΘ,w(x) = Ms(x,Θ,w). Then
supg∈G |

∫
gdPn −

∫
gdP | → 0 a.s. [P ].

Proof sketch: The main idea of the proof is to find
a finite function class Gε, for all ε > 0, such that for
all g ∈ G, there exists functions ḡ, ġ ∈ Gε such that
ġ ≤ g ≤ ḡ and

∫
(ḡ−ġ)dP < ε. This can be achieved by

appealing to the compactness (and hence total bound-
edness) of Ck × [0, 1]p. One might take

Gε = {φ(Ms(‖x− θ′1‖2w′ , . . . , ‖x− θ
′
k‖2w′)± ε/2)

: θ′1, . . . ,θ
′
k ∈ Cδ1 and w′ ∈Wδ2},
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where φ(x) = max{x, 0}. A rigorous proof of the the-
orem can be found in the Supplement.

We are now ready to establish the main consistency
result, stated and proven below.

Theorem 4. Under the condition A1, Θn,s
a.s.−−→ Θ∗

and wn,s
a.s.−−→ w∗ as n→∞ and s→ −∞.

Proof sketch: Note that it is enough to show that
(θn,s,wn,s) eventually lies in any neighbourhood of
(Θ∗,w∗). By assumption A1, it suffices to estab-
lish that Φ(θn,s,wn,s) ≤ Φ(Θ∗,w∗) + η, eventu-
ally. For notational convenience, we write α(w) =
λ
∑p
l=1 wl logwl. Now observe that Φ(Θn,s,wn,s) −

Φ(Θ∗,w∗) = ξ1 + ξ2 + ξ3, where,

ξ1 = Φ(Θn,s,wn,s)−
∫
Ms(x,Θn,s,wn,s)dP − λα(wn,s),

ξ2 =

∫
Ms(x,Θn,s,wn,s)dP −

∫
Ms(x,Θn,s,wn,s)dPn,

ξ3 =

∫
Ms(x,Θn,s,wn,s)dPn + λα(wn,s)− Φ(Θ∗,w∗).

We need to show that each of the ξi’s, i = 1, 2, 3, can be
made smaller than η/3 as n→∞ and s→ −∞. ξ1 can
be made smaller than η/3 by appealing to Theorem 2.
ξ2 can also be made smaller than η/3 by appealing to
Theorem 3. To show that ξ3 < η/3, we note that

ξ3 ≤
∫
Ms(x,Θ

∗,w∗)dPn −
∫

min
θ∈Θ∗

‖x− θ‖w∗dP

since it minimizes
∫
Ms(x,Θ,w)dPn + λα(w) glob-

ally. The first term can me made close to
to

∫
Ms(x,Θ

∗,w∗)dP as n → ∞, while the
term Ms(x,Θ

∗,w∗)dP becomes arbitrarily close to∫
minθ∈Θ∗ ‖x − θ‖w∗dP as s → −∞. Details of the

complete proof can be found in the Supplement.

4 Empirical Performance

We examine the performance of EWP on a variety
of simulated and real datasets compared to classical
and state-of-the-art peer algorithms. For evaluation
purposes, we use the Normalized Mutual Information
(NMI) (Vinh et al., 2010) and Adjusted Rand Index
(ARI) (Hubert and Arabie, 1985) between the ground-
truth partition and the partition obtained by each
algorithm. A value of 1 indicates perfect clustering
and a value of 0 indicates arbitrary labels. As our
algorithm is meant to perform as a drop-in replace-
ment to k-means, we focus comparisons to Lloyd’s
classic algorithm (Lloyd, 1982), WK-means (Huang
et al., 2005), Power k-means (Xu and Lange, 2019)
and sparse k-means (Witten and Tibshirani, 2010). It
should be noted that sparse k-means already entails

Codes: https://github.com/DebolinaPaul/EWP

Table 1: Average NMI values, Simulation 1.

d = 5 d = 10 d = 20 d = 50 d = 100
k-means 0.3913 0.3701 0.3674 0.3629 0.3517

WK-means 0.5144 0.50446 0.5050 0.5026 0.5029
Power k-means 0.3924 0.3873 0.3722 0.3967 0.3871
Sparse k-means 0.3679 0.3677 0.3668 0.3675 0.3637

EWP 0.9641 0.9217 0.9139 0.9465 0.9082

higher computational complexity, and we do not ex-
haustively consider alternate methods which require
orders of magnitude higher complexity. In all cases,
each algorithm is initiated with the same set of ran-
domly chosen centroids.

4.1 Synthetic Experiments

We now consider a suite of simulation studies to vali-
date the proposed EWP algorithm.

Simulation 1 The first experiment assesses perfor-
mance as the dimension and number of uninformative
features grows. We generate n = 1000 observations
with k = 100 clusters. Each observation has p = d+ 2
many features as d varies between 5 and 100. The first
two features reveal cluster structure, while the remain-
ing d variables are uninformative, generated indepen-
dently from a Unif(0, 2) distribution. True centroids
are spaced uniformly on a grid with θm = m−1

10 , and

xij ∼ 1
10

∑10
m=1N (θm, 0.15). Despite the simple data

generating setup, clustering is difficult due to the low
signal to noise ratio in this setting.

We report the average NMI values between the
ground-truth partition and the partition obtained by
each of the algorithms over 20 trials in Table 1. Details
and standard deviations appear in Table S1 of the Sup-
plement. The best performing algorithm in each col-
umn appears in bold, and the best solutions for d = 20
are plotted in Figure 2. The benefits using EWP are
visually stark, and Table 1 verifies in detail that EWP
outperforms the classical k-means algorithm, as well
as the state-of-the-art sparse-k-means and the power
k-means algorithms. The same trends are conveyed
under other evaluation metrics such as adjusted Rand
index (ARI); see the Supplement. The inability of k-
means as well as power k-means to properly learn the
feature weights results in poor performance of these
algorithms. On the other hand, although WK-means
and sparse k-means can select features successfully,
they fail from the optimization perspective when k is
large and there are many local minima to trap the al-
gorithm.

Simulation 2 We next examine the effect of k on
the performance, taking n = 100 · k and p = 100 while
k varies from 20 to 500. The matrix Θk×p, whose rows
contain the cluster centroids, is generated as follows.

1. Select 5 relevant features l1, . . . , l5 at random.

https://github.com/DebolinaPaul/EWP
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(a) k-means
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(c) Power k-means
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(d) Sparse k-means
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(e) EWP

Figure 2: Solutions obtained by the peer algorithms for an example dataset with k = 100 and d = 20 in
Simulation 1 (4.1). The obtained cluster centroids appear as black diamonds in the figure.

2. Simulate θj,lm ∼ Unif(0, 1) for all j = 1, . . . , k
and m = 1, . . . , 5.

3. Set θj,l = 0 for all l 6∈ {l1, . . . , l5} and all j.

After obtaining Θ, xil is simulated as follows:

xil ∼N (0, 1) if l 6∈ {l1, . . . , l5}

xil ∼
1

k

k∑
j=1

N (θj,l, 0.015) if l ∈ {l1, . . . , l5}.

We run each of the algorithms 20 times and report the
average NMI values between the ground-truth parti-
tion an the partition obtained by each of the algo-
rithms in Table 2; again, results in terms of ARI as
well as standard errors are tabulated in the Supple-
ment. Table 2 shows that k-means, WK-means, power
k-means, and sparse k-means lead to almost the same
result, while EWP outperforms the peer algorithms
for each k by narrowing down the number of features
while avoiding local minima.

Feature Selection We turn to examine the fea-
ture weighting properties of the EWP algorithm more
closely. We take n = 1000, p = 20 and follow the
same data generation procedure described in Simula-
tion 2. For simplicity, in the first step of the simula-
tion study, we select li = i for i = 1, . . . , 5. We record
the feature weights obtained by EWP and sparse k-
means over 100 replicate datasets. The box-plot for
these 100 optimal feature weights are shown in Fig-
ure 3 for both algorithms. The proposed method suc-
cessfully assigns almost all weight to relevant features

Table 2: NMI values for Simulation 2, showing the
effect of increasing number of clusters.

Algorithm k = 20 k = 100 k = 200 k = 500

k-means 0.0674 0.2502 0.3399 0.3559

WK-means 0.0587 0.2247 0.3584 0.3678

Power k-means 0.0681 0.2785 0.3578 0.3867

Sparse k-means 0.0679 0.2490 0.6705 0.3537

EWP 0.9987 0.9844 0.9756 0.9908
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(b) Sparse k-means

Figure 3: Boxplots show that EWP consistently iden-
tifies true features while sparse k-means fails to do so.

1 through 5, even though it does not make use of a
sparsity-inducing penalty. Meanwhile, feature weights
assigned by sparse k-means do not follow any clear
pattern related to informative features, even though
the ground truth is sparse in relevant features. The
analogous plot for WK-means appears as Figure S1 in
the Supplement, which shows even worse performance
than sparse k-means. The study clearly illustrates the
necessity of feature weighing together with annealing
for successful k-means clustering in high dimensions.

4.2 Case Study and Real Data

We now assess performance on real data, beginning
with a case study on Glioma. The GLIOMA dataset
consists of 50 datapoints and is divided into 4 classes
consisting of cancer glioblastomas (CG), noncancer
glioblastomas (NG), cancer oligodendrogliomas (CO)
and non-cancer oligodendrogliomas (NO). Each obser-
vation consists of 4434 features. The data were col-
lected in the study by (Nutt et al., 2003), and are also
available in (Li et al., 2018).

In our experimental studies, we compare the EWP al-
gorithm to the four peer algorithms considered in Sec-
tion 4.1. In order to visualize clustering solutions, we
embed the data into the plane via t-SNE (Maaten and
Hinton, 2008). The best partitioning obtained from
each algorithm is shown in Figure 4, which makes it
visually clear that clustering under EWP more closely
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(a) Ground Truth
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(b) k-means
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(c) WK-means
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(d) Power k-means
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(e) Sparse k-means
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(f) EWP

Figure 4: t-SNE plots for the GLIOMA dataset, color-
coded by the partitioning obtained at convergence by
each peer algorithm.

resembles the ground truth compared to competitors.
This is detailed by average NMI values as well as stan-

Table 3: Mean NMI and (standard deviation),
GLIOMA data

k-means WK-means Power Sparse EWP
0.490(0.040) 0.427(0.034) 0.499(0.020) 0.108(0.001) 0.594(0.001)

dard deviations in parentheses listed in Table 3. Anal-
ogous results in terms of ARI is reported in the sup-
plement.

Further real-data experiments To further vali-
date our method in various real data scenarios, we per-
form a series of experiments on 10 benchmark datasets
collected from the UCI machine learning repository
(Dua and Graff, 2017), Keel Repository (Alcalá-Fdez
et al., 2011) and ASU repository (Li et al., 2018). A
brief description of these datasets can be found in Ta-
ble S3 of the Supplement.

Average performances over 20 independent trials are
reported in Table 4 in terms of NMI, with the analo-
gous results in terms of ARI appearing in the Supple-

ment. The EWP algorithm outperforms by a large
margin across all instances when compared to the
other peer algorithms. To determine the statistical sig-
nificance of the results, we employ Wilcoxon’s signed-
rank test (Wasserman, 2006) at the 5% level of signifi-
cance. In Table 4, an entry marked with + (') differs
from the corresponding result of EWP with statistical
significance. Finally, we emphasize that our results
comprise a conservative comparison in that parame-
ters s0 = −1 and η = 1.05 are fixed across all settings.
While this demonstrates that careful tuning of these
parameters is not necessary for successful clustering,
performance can be further improved by doing so (Xu
and Lange, 2019).

Table 4: NMI values on Benchmark Real Data

Dataset k-means WK Power Sparse EWP

Newthyroid 0.403+ 0.262+ 0.407+ 0.102+ 0.581

Automobile 0.165+ 0.203+ 0.168+ 0.168+ 0.311

WarpAR10P 0.171+ 0.233+ 0.201+ 0.185+ 0.350

WarpPIE10P 0.240' 0.241' 0.180+ 0.179+ 0.276

Iris 0.758+ 0.788+ 0.742+ 0.814' 0.884

Wine 0.428+ 0.642+ 0.416+ 0.428+ 0.747

Mammographic 0.107+ 0.0194+ 0.115+ 0.110+ 0.405

WDBC 0.463+ 0.005+ 0.464+ 0.467+ 0.656

LIBRAS 0.553' 0.339+ 0.461+ 0.254+ 0.575

Wall Robot 4 0.168+ 0.184+ 0.171+ 0.186+ 0.234

5 Discussion

Despite decades of advancement on k-means cluster-
ing, Lloyd’s algorithm remains the most popular choice
in spite of its well-known drawbacks. Extensions and
variants that address these flaws fail to preserve its
simplicity, scalability, and ease of use. Many of these
methods still fall short at poor local optima or fail
when data are high-dimensional with low signal-to-
noise ratio, and few come with rigorous statistical
guarantees such as consistency.

The contributions in this paper seek to fill this method-
ological gap, with a novel formulation that draws good
intuition from classic and recent developments. With
the emphasis on simplicity as a chief priority, we derive
a method that can be seen as a drop-in replacement to
Lloyd’s classic k-means algorithm, reaping large im-
provements in practice even when there are a large
number of clusters or features in the data. By design-
ing the algorithm from the perspective of MM, our
method is robust as a descent algorithm and achieves
an ideal O(nkp) complexity. In contrast to some pop-
ular existing methods such as sparse k-means, the pro-
posed approach is provably consistent.

Extending the intuition to robust measures and other
divergences in place of the Euclidean distance are war-
ranted. Further, research toward finite-sample predic-
tion error bounds or convergence rates relating to the
annealing schedule will also be fruitful avenues for fu-
ture work.
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