Supplementary Material
 Learning Gaussian Graphical Models via Multiplicative Weights

(Anamay Chaturvedi and Jonathan Scarlett, AISTATS 2020)

All citations below are to the reference list in the main document.

A Comparison of Runtimes

Recall that p denotes the number of nodes, d denotes the maximal degree, κ denotes the minimum normalized edge strength, and m denotes the number of samples. The runtimes of some existing algorithms in the literature for Gaussian graphical model selection (see Section 1.1 for an overview) are outlined as follows:

- The only algorithms with assumption-free sample complexity bounds depending only on (p, d, κ) have a high runtime of $p^{O(d)}$, namely, $O\left(p^{2 d+1}\right)$ in Misra et al. 2017, and $O\left(p^{d+1}\right)$ in Kelner et al. 2019, Thm. 11].
- A greedy method in Kelner et al. 2019. Thm. 7] has runtime $O\left(\left(d \log \frac{1}{\kappa}\right)^{3} m p^{2}\right)$. The sample complexity for this algorithm is $O\left(\frac{d}{\kappa^{2}} \cdot \log \frac{1}{\kappa} \cdot \log n\right)$, but this result is restricted to attractive graphical models.
- To our knowledge, ℓ_{1}-based methods [Cai et al. 2011, 2016, d'Aspremont et al., 2008, Meinshausen et al. 2006, Ravikumar et al., 2011, Wang et al., 2016, Yuan and Lin, 2007 such as Graphical Lasso and CLIME do not have precise time complexities stated, perhaps because this depends strongly on the optimization algorithm used. We expect that a general-purpose solver would incur $O\left(p^{3}\right)$ time, and we note that Kelner et al. 2019, Table 2] indeed suggests that these approaches are slower.
- In practice, we expect BigQUIC Hsieh et al. 2013 to be one of the most competitive algorithms in terms of runtime, but no sample complexity bounds were given for this algorithm.
- Under the local separation condition and a walk-summability assumption, the algorithm of Anandkumar et al. 2012 yields a runtime of $O\left(p^{2+\eta}\right)$, where $\eta>0$ is an integer specifying the local separation condition.

Hence, we see that our runtime of $O\left(m p^{2}\right)$ is competitive among the existing works - it is faster than other algorithms for which sample complexity bounds have been established.

B Proof of Lemma 2 (Properties of Multivariate Gaussians)

We restate the lemma for ease of reference.
Lemma 2. Given a zero-mean multivariate Gaussian $X=\left(X_{1}, \ldots, X_{p}\right)$ with inverse covariance matrix $\Theta=$ $\left[\theta_{i j}\right]$, and given T independent samples $\left(X^{1}, \ldots, X^{T}\right)$ with the same distribution as X, we have the following:

1. For any $i \in[p]$, we have $X_{i}=\eta_{i}+\sum_{j \neq i}\left(-\frac{\theta_{i j}}{\theta_{i i}}\right) X_{j}$, where η_{i} is a Gaussian random variable with variance $\frac{1}{\theta_{i i}}$, independent of all X_{j} for $j \neq i$.
2. $\mathbb{E}\left[X_{i} \mid X_{\bar{i}}\right]=\sum_{j \neq i}\left(\frac{-\theta_{i j}}{\theta_{i i}}\right) X_{j}=w^{i} \cdot X_{\bar{i}}$, where $w^{i}=\left(\frac{-\theta_{i j}}{\theta_{i i}}\right)_{j \neq i} \in \mathbb{R}^{n} \quad($ with $n=p-1)$.
3. Let λ and $\nu_{\max }$ be defined as in (4) and (6), set $B:=\sqrt{2 \log \frac{2 p T}{\delta}}$, and define $\left(\tilde{x}^{t}, \tilde{y}^{t}\right):=\frac{1}{B \sqrt{\nu_{\max }(\lambda+1)}}\left(x^{t}, y^{t}\right)$, where $\left(x^{t}, y^{t}\right)=\left(X_{i}^{t}, X_{i}^{t}\right)$ for an arbitrary fixed coordinate i. Then, with probability at least $1-\delta, \tilde{y}^{t}$ and all entries of $\tilde{x}^{t}(t=1, \ldots, T)$ have absolute value at most $\frac{1}{\sqrt{\lambda+1}}$.

Proof. The first claim is standard in the literature (e.g., see Zhou et al., 2011, Eq. (4)]), and the second claim follows directly from the first.

For the third claim, let N be a Gaussian random variable with mean 0 and variance 1 . We make use of the standard (Chernoff) tail bound

$$
\begin{equation*}
\mathbb{P}(|N|>x) \leq 2 e^{-x^{2} / 2} \tag{41}
\end{equation*}
$$

By scaling the standard Gaussian distribution, recalling the definition of $\nu_{\max }$ in (6), and using $B=\sqrt{2 \log \frac{2 p T}{\delta}}$, it follows that

$$
\begin{align*}
\mathbb{P}\left(\left|x_{i}^{t}\right|>\sqrt{\nu_{\max }} B\right) & \leq \mathbb{P}\left(|N|>\sqrt{2 \log \frac{2 p T}{\delta}}\right) \tag{42}\\
& \leq 2 \exp \left(-\log \frac{2 p T}{\delta}\right) \tag{43}\\
& \leq \frac{\delta}{p T} \tag{44}
\end{align*}
$$

and hence

$$
\begin{equation*}
\mathbb{P}\left(\left|x_{i}^{t}\right|>\frac{1}{\sqrt{\lambda+1}}\right) \leq \frac{\delta}{p T} \tag{45}
\end{equation*}
$$

The same high probability bound holds similarly for \tilde{y}^{t}. By taking the union bound over these p events, and also over $t=1, \ldots, T$, we obtain the desired result.

C Establishing Lemma 4 (Martingale Concentration Bound)

Here we provide additional details on attaining Lemma 4 from a more general result in van de Geer, 1995. While the latter concerns continuous-time martingales, we first state some standard definitions for discrete-time martingales. Throughout the appendix, we distinguish between discrete time and continuous time by using notation such as M_{t}, \mathcal{F}_{t} for the former, and $\tilde{M}_{t}, \tilde{\mathcal{F}}_{t}$ for the latter.
Definition 10. Given a discrete-time martingale $\left\{M_{t}\right\}_{t=0,1, \ldots}$ with respect to a filtration $\left\{\mathcal{F}_{t}\right\}_{t=0,1, \ldots}$, we define the following:

1. The compensator of $\left\{M_{t}\right\}$ is defined to be

$$
\begin{equation*}
V_{t}=\sum_{j=1}^{t} \mathbb{E}\left[M_{j}-M_{j-1} \mid \mathcal{F}_{j-1}\right] \tag{46}
\end{equation*}
$$

2. A discrete-time process $\left\{W_{t}\right\}_{t=1,2, \ldots}$ defined on the same probability space as $\left\{M_{t}\right\}$ is said to be predictable if W_{t} is measurable with respect to \mathcal{F}_{t-1}.
3. We say that $\left\{M_{t}\right\}$ is locally square integrable if there exists a sequence of stopping times $\left\{\tau_{k}\right\}_{k=1}^{\infty}$ with $\tau_{k} \rightarrow \infty$ such that $\mathbb{E}\left[M_{\tau_{k}}^{2}\right]<\infty$ for all k.

In the continuous-time setup of van de Geer, 1995 Lemma 2.2], the preceding definitions are replaced by generalized notions, e.g., see Liptser and Shiryayev, 1989]. Note that the notion of a compensator in the continuous-time setting is much more technical, in contrast with the explicit formula (46) for discrete time.

The setup of van de Geer, 1995 is as follows: Let $\left\{\tilde{M}_{t}\right\}_{t \geq 0}$ be a locally square integrable continuous-time martingale with respect to to a filtration $\left\{\tilde{\mathcal{F}}_{t}\right\}_{t \geq 0}$ satisfying right-continuity $\left(\tilde{\mathcal{F}}_{t}=\cap_{s>t} \tilde{\mathcal{F}}_{s}\right)$ and completeness $\left(\mathcal{F}_{0}\right.$ includes all sets of null probability). For each $t>0$, the martingale jump is defined as $\Delta \tilde{M}_{t}=\tilde{M}_{t}-\tilde{M}_{t-}$, where t_{-}represents an infinitesimal time instant prior to t. For each integer $m \geq 2$, a higher-order variation process $\left\{\sum_{s \leq t}\left|\Delta \tilde{M}_{s}\right|^{m}\right\}$ is considered, and its compensator is denoted by $\tilde{V}_{m, t}$. Then, we have the following.

Lemma 11. van de Geer, 1995, Lemma 2.2] Under the preceding setup for continuous-time martingales, suppose that for all $t \geq 0$ and some $0<K<\infty$, it holds that

$$
\begin{equation*}
\tilde{V}_{m, t} \leq \frac{m!}{2} K^{m-2} \tilde{R}_{t}, \quad m=2,3, \ldots \tag{47}
\end{equation*}
$$

for some predictable process \tilde{R}_{t}. Then, for any $a, b>0$, we have

$$
\begin{equation*}
\mathbb{P}\left(\tilde{M}_{t} \geq a \text { and } \tilde{R}_{t} \leq b^{2} \text { for some } t\right) \leq \exp \left(-\frac{a^{2}}{2 a K+b^{2}}\right) \tag{48}
\end{equation*}
$$

While Lemma 11 is stated for continuous-time martingales, we obtain the discrete-time version in Lemma 4 by considering the choice $\tilde{M}_{t}=M_{\lfloor t\rfloor}$, where $\left\{M_{t}\right\}_{t=0,1, \ldots}$ is the discrete-time martingale. Due to the floor operation, the required right-continuity condition on the continuous-time martingale holds. Moreover, the definition of a compensator in 46) applied to the higher-order variation process with parameter m yields

$$
\begin{equation*}
V_{m, t}=\sum_{j=1}^{t} \mathbb{E}\left[\left|\Delta M_{j}\right|^{m} \mid \mathcal{F}_{j-1}\right] \tag{49}
\end{equation*}
$$

with $\Delta M_{t}=M_{t}-M_{t-1}$, in agreement with the statement of Lemma 4 . Finally, since we assumed that $\mathbb{E}\left[M_{t}^{2}\right]<\infty$ for all t in Lemma 4 , the locally square integrable condition follows by choosing the trivial sequence of stopping times, $\tau_{k}=k$.

D Proof of Lemma 5 (Concentration of $\sum_{j} Z^{j}$)

Lemma 5 is restated as follows.
Lemma 5. $\left|\sum_{j=1}^{T} Z^{j}\right|=O\left(\sqrt{T \log \frac{1}{\delta}}\right)$ with probability at least $1-\delta$.

Proof. Recall that $\mathbb{E}_{t-1}[\cdot]$ denotes expectation conditioned on the history up to index $t-1$. Using the notation of Lemma 4 , we let $M_{t}=\sum_{j \leq t} Z^{j}$, which yields $\Delta M_{t}=Z^{t}$. The definition of Z^{t} in ensures that $\mathbb{E}_{t-1}\left[Z^{t}\right]=0$, so that M_{t} is a martingale. In addition, we have

$$
\begin{equation*}
V_{m, t}=\sum_{j=1}^{t} \mathbb{E}_{j-1}\left[\left|\Delta M_{j}\right|^{m}\right]=\sum_{j=1}^{t} \mathbb{E}_{j-1}\left[\left|Z^{j}\right|^{m}\right] \tag{50}
\end{equation*}
$$

To use Lemma 4 , we need to bound $\sum_{j=1}^{t} \mathbb{E}_{j-1}\left[\left|Z^{j}\right|^{m}\right]$ for some appropriate choices of K and R_{t} in 12$]$. The conditional moments of $\left|Z^{j}\right|$ are the central conditional moments of Q^{j} :

$$
\begin{align*}
\mathbb{E}_{j-1}\left[\left|Z^{j}\right|^{m}\right] & =\mathbb{E}_{j-1}\left[\left|Q^{j}-\mathbb{E}_{j-1}\left[Q^{j}\right]\right|^{m}\right] \tag{51}\\
& \leq \mathbb{E}_{j-1}\left[2^{m}\left(\left|Q^{j}\right|^{m}+\left|\mathbb{E}_{j-1}\left[Q^{j}\right]\right|^{m}\right)\right] \tag{52}\\
& \leq 2^{m+1} \mathbb{E}_{j-1}\left[\left|Q^{j}\right|^{m}\right] \tag{53}
\end{align*}
$$

where (51) follows from the definition of Z^{j} in (15), (52) uses $|a-b| \leq 2 \max \{|a|,|b|\}$, and (53) follows from Jensen's inequality $\left(\left|\mathbb{E}\left[Q^{j}\right]\right|^{m} \leq \mathbb{E}\left[\left|Q^{j}\right|^{m}\right]\right)$. Furthermore, we have that

$$
\begin{align*}
\mathbb{E}_{j-1}\left[\left|Q^{j}\right|^{m}\right] & =\mathbb{E}_{j-1}\left[\left|\left(\lambda p^{j} \cdot \tilde{x}^{j}-\tilde{y}^{j}\right)\left(p^{j}-w / \lambda\right) \cdot \tilde{x}^{j}\right|^{m}\right] \tag{54}\\
& \leq \mathbb{E}_{j-1}\left[\left|\left(\lambda p^{j} \cdot \tilde{x}^{j}-\tilde{y}^{j}\right)\right|^{2 m}\right]^{1 / 2} \mathbb{E}_{j-1}\left[\left|\left(p^{j}-w / \lambda\right) \cdot \tilde{x}^{j}\right|^{2 m}\right]^{1 / 2} \tag{55}
\end{align*}
$$

where (54) uses the definition of Q^{j} in (14), and (55) follows from the Cauchy-Schwartz inequality. Both of the averages in 55 contain Gaussian random variables (with p^{j} fixed due to the conditioning); we proceed by
establishing an upper bound on the variances. Since $\left(\tilde{x}^{j}, \tilde{y}^{j}\right)=\frac{1}{B \sqrt{\nu_{\max }(\lambda+1)}}\left(x^{j}, y^{j}\right)$, the definition of $\nu_{\max }$ (see (6)) implies that each coordinate has a variance of at most $\left(\frac{1}{B \sqrt{\lambda+1}}\right)^{2}$. Then, using that $\sum_{i} p_{i}^{j}=1$, we have

$$
\begin{align*}
\operatorname{Var}\left(\lambda p^{j} \cdot \tilde{x}^{j}-\tilde{y}^{j}\right) & \leq(\lambda+1)^{2} \max _{z \in\left\{\tilde{x}_{1}^{j}, \ldots, \tilde{x}_{n}^{j} \tilde{y}^{j}\right\}} \operatorname{Var}(z) \tag{56}\\
& \leq \frac{\lambda+1}{B^{2}} \tag{57}
\end{align*}
$$

and similarly, using $\sum_{i} p_{i}^{j}=1$ and $\|w\|=\lambda$ (see Footnote 2),

$$
\begin{equation*}
\operatorname{Var}\left(\left(p^{j}-w / \lambda\right) \cdot \tilde{x}^{j}\right) \leq \frac{4}{(\lambda+1) B^{2}} \tag{58}
\end{equation*}
$$

Next, we use the standard fact that if N is a Gaussian random variable with mean 0 and variance σ, then

$$
\mathbb{E}\left[N^{p}\right]= \begin{cases}0 & \text { if } p \text { is odd } \tag{59}\\ \sigma^{p}(p-1)!! & \text { if } p \text { is even }\end{cases}
$$

It then follows from (53) and $5(57)-59$ that

$$
\begin{align*}
\mathbb{E}_{j-1}\left[\left|Z^{j}\right|^{m}\right] & \leq 2^{m+1} \mathbb{E}_{j-1}\left[\left|\left(\lambda p^{j} \cdot \tilde{x}^{j}-\tilde{y}^{j}\right)\right|^{2 m}\right]^{1 / 2} \mathbb{E}_{j-1}\left[\left|\left(p^{j}-w / \lambda\right) \cdot \tilde{x}^{j}\right|^{2 m}\right]^{1 / 2} \tag{60}\\
& \leq 2^{m+1}\left(\left(\frac{\lambda+1}{B^{2}}\right)^{2 m}(2 m-1)!!\left(\frac{4}{(\lambda+1) B^{2}}\right)^{2 m}(2 m-1)!!\right)^{1 / 2} \tag{61}\\
& =2^{m+1} \frac{4^{m}}{B^{4 m}}(2 m-1)!! \tag{62}\\
& =2^{m+1} \frac{4^{m}}{B^{4 m}}(1 \cdot 3 \cdot \ldots \cdot(2 m-1)) \tag{63}\\
& \leq 2^{m+1} \frac{4^{m}}{B^{4 m}}(2 \cdot 4 \cdot \ldots \cdot 2 m) \tag{64}\\
& =2 \cdot 4^{m} \frac{4^{m}}{B^{4 m}} m! \tag{65}\\
& =\frac{m!}{2}\left(\frac{16}{B^{4}}\right)^{m-2} \frac{2^{10}}{B^{8}} \tag{66}
\end{align*}
$$

and summing over $j=1, \ldots, t$ gives

$$
\begin{equation*}
\sum_{j=1}^{t} \mathbb{E}_{k-1}\left[\left|Z^{j}\right|^{m}\right] \leq \frac{m!}{2}\left(\frac{16}{B^{4}}\right)^{m-2} \frac{2^{10} t}{B^{8}} \tag{67}
\end{equation*}
$$

Hence, using the notation of Lemma 4 , it suffices to set $K=\frac{16}{B^{4}}$ and $R_{t}=\frac{2^{10} t}{B^{8}}$. Plugging everything in, we get

$$
\begin{equation*}
\mathbb{P}\left(\sum_{j=1}^{T} Z^{j}>a\right)<\exp \left(-\frac{a^{2}}{32 a \frac{1}{B^{4}}+2^{10} \frac{T}{B^{8}}}\right) . \tag{68}
\end{equation*}
$$

Let $a=2^{10} \sqrt{T \log \frac{1}{\delta}}$. Then, since $B=\sqrt{2 \log \frac{2 p T}{\delta}}$ is always greater then $\sqrt{\log \frac{1}{\delta}}$, we obtain

$$
\begin{equation*}
\mathbb{P}\left(\sum_{j=1}^{t} Z^{j}>2^{10} \sqrt{T \log \frac{1}{\delta}}\right) \leq \frac{\delta}{2} \tag{69}
\end{equation*}
$$

By replacing Z^{j} by $-Z^{j}$ above, we get a symmetric lower bound on $\sum_{j} Z^{j}$, as all the moments used above remain the same. Applying the union bound, we get that $\left|\sum_{j=1}^{T} Z^{j}\right|=O\left(\sqrt{T \log \frac{1}{\delta}}\right)$ with probability at least $1-\delta$.

E Proof of Lemma 7 (Concentration of Empirical Risk)

Lemma 7 is restated as follows.
Lemma 7. For $\gamma>0, \rho \in(0,1]$, and fixed $v \in \mathbb{R}^{n}$ satisfying $\|v\|_{1} \leq \lambda$, there is some $M=O\left((\lambda+1) \frac{\log (1 / \rho)}{\gamma}\right)$ such that

$$
\begin{equation*}
\mathbb{P}\left(\left|\frac{1}{M} \sum_{j=1}^{M}\left(\left(v \cdot a^{j}-b^{j}\right)^{2}-\Xi\right)-\varepsilon(v)\right| \geq \gamma\right) \leq \rho, \tag{32}
\end{equation*}
$$

where $\left\{\left(a^{j}, b^{j}\right)\right\}_{j=1}^{M}$ are the normalized samples defined in Algorithm 2, and $\Xi=\mathbb{E}\left[\operatorname{Var}\left[b^{j} \mid a^{j}\right]\right] . \square^{7}$
Proof. We first derive a simple equality:

$$
\begin{align*}
\mathbb{E}\left[\left(v \cdot a^{j}-b^{j}\right)^{2}\right] & =\mathbb{E}\left[\mathbb{E}\left[\left(v \cdot a^{j}-b^{j}\right)^{2} \mid a^{j}\right]\right] \tag{70}\\
& =\mathbb{E}\left[\left(\mathbb{E}\left[v \cdot a^{j}-b^{j} \mid a^{j}\right]\right)^{2}+\operatorname{Var}\left[b^{j} \mid a^{j}\right]\right] \tag{71}\\
& =\mathbb{E}\left[\left(v \cdot a^{j}-w \cdot a^{j}\right)^{2}\right]+\mathbb{E}\left[\operatorname{Var}\left[b^{j} \mid a^{j}\right]\right] \tag{72}\\
& =\varepsilon(v)+\Xi, \tag{73}
\end{align*}
$$

where (71) uses $\operatorname{Var}[Z]=\mathbb{E}\left[Z^{2}\right]-(\mathbb{E}[Z])^{2}$, 72$\}$ uses the second part of Lemma 2 and 73) uses the definitions of $\varepsilon(v)$ and Ξ.

In the following, we recall Bernstein's inequality.
Lemma 12. Boucheron et al. 2013, Corollary 2.11] Let Z_{1}, \ldots, Z_{n} be independent real-valued random variables, and assume that there exist positive numbers ϑ and c such that

$$
\begin{align*}
& \sum_{i=1}^{n} \mathbb{E}\left[\left(Z_{i}\right)_{+}^{2}\right] \leq \vartheta \tag{74}\\
& \sum_{i=1}^{n} \mathbb{E}\left[\left(Z_{i}\right)_{+}^{q}\right] \leq \frac{q!}{2} \vartheta \cdot c^{q-2}, \tag{75}
\end{align*}
$$

where $(x)_{+}=\max \{x, 0\}$. Letting $S=\sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left[Z_{i}\right]\right)$, we have for all $t>0$ that

$$
\begin{equation*}
\mathbb{P}(S \geq t) \leq \exp \left(-\frac{t^{2}}{2(\vartheta+c t)}\right) . \tag{76}
\end{equation*}
$$

We would like to use Bernstein's inequality to bound the deviation of

$$
\begin{equation*}
\frac{1}{M} \sum_{j=1}^{M}\left(\left(v \cdot a^{j}-b^{j}\right)^{2}-\Xi-\varepsilon(v)\right) \tag{77}
\end{equation*}
$$

from its mean value 0 . To do so, we need to find constants ϑ and c as described in the statement of Bernstein's inequality above.

Recall that $\nu_{\text {max }}$ upper bounds the variance of any marginal variable in each unnormalized sample, and that $\left(a^{j}, b^{j}\right)$ are samples normalized by $B \sqrt{\nu_{\max }(\lambda+1)}$ with $B=\sqrt{2 \log \frac{2 p T}{\delta}} \geq 1$. Hence, the entries of $\left(a^{i}, b^{i}\right)$ have variance at most $\frac{1}{\lambda+1}$, and since $\|v\|_{1} \leq \lambda$, this implies that $v \cdot a^{j}-b^{j}$ has variance at most $\lambda+1$.

Using the expression for the moments of a Gaussian distribution (see (59p), it follows that

$$
\begin{equation*}
\mathbb{E}\left[\left(v \cdot a^{j}-b^{j}\right)^{4}\right] \leq 8(\lambda+1)^{2}, \tag{78}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
\mathbb{E}\left[\left(v \cdot a^{j}-b^{j}\right)^{2 m}\right] & \leq(2 m-1)!!(\lambda+1)^{m} \tag{79}\\
& \leq 2^{m} m!(\lambda+1)^{m} \tag{80}\\
& =\frac{m!}{2}\left(8(\lambda+1)^{2}\right)(2(\lambda+1))^{m-2}, \tag{81}
\end{align*}
$$
\]

where (80) is established in the same way as 65). Since $\left(v \cdot a^{j}-b^{j}\right)^{2}$ is a non-negative random variable, the noncentral moments bound the central moments from above. Hence, it suffices to let $\vartheta=8(\lambda+1)^{2}$ and $c=2(\lambda+1)$, and we obtain from Bernstein's inequality that

$$
\begin{equation*}
\mathbb{P}\left(\left|\sum_{j=1}^{M}\left(\left(v \cdot a^{j}-b^{j}\right)^{2}-\Xi-\varepsilon(v)\right)\right| \geq \gamma M\right) \leq \exp \left(\frac{-\gamma^{2} M^{2}}{2\left(8(\lambda+1)^{2}+2(\lambda+1) \gamma M\right)}\right) \tag{82}
\end{equation*}
$$

To simplify the notation, we let M_{0} be such that $M=(\lambda+1) M_{0}$, which yields

$$
\begin{equation*}
\mathbb{P}\left(\left|\frac{1}{M} \sum_{j=1}^{M}\left(\left(v \cdot a^{j}-b^{j}\right)^{2}-\Xi-\varepsilon(v)\right)\right| \geq \gamma\right) \leq \exp \left(\frac{-\gamma^{2} M_{0}^{2}}{16+2 \gamma M_{0}}\right) . \tag{83}
\end{equation*}
$$

If $\gamma M_{0} \geq 1$, then the right hand side is less than or equal to $\exp \left(\frac{-\gamma M_{0}}{18}\right)$. Otherwise, if $\gamma M_{0}<1$, then the right hand side is less than $\exp \left(\frac{-\gamma^{2} M_{0}^{2}}{18}\right)$. It follows that to have a deviation of γ with probability at most ρ, it suffices to set $M_{0}=\frac{18 \log (1 / \rho)}{\gamma}$. Recalling that $M=(\lambda+1) M_{0}$, it follows that with $M=18(\lambda+1) \frac{\log (1 / \rho)}{\gamma}$, we attain the desired target probability ρ.

F Proof of Lemma 8 (Low Risk Implies an ℓ_{∞} Bound)

Lemma 8 is restated as follows, and refers to the setup described in Section 4 .
Lemma 8. Under the preceding setup, if we have $\varepsilon(v) \leq \epsilon$, then we also have $\|v-w\|_{\infty} \leq \sqrt{\epsilon \theta_{\max }}$, where $\theta_{\max }$ is a uniform upper bound on the diagonal entries of Θ.

Proof. Recall that $\varepsilon(v)=\mathbb{E}\left[\left((v-w) \cdot X_{\bar{i}}\right)^{2}\right]$, where $w=\left(\frac{-\theta_{i j}}{\theta_{i i}}\right)_{j \neq i}$ is the neighborhood weight vector of the node i under consideration, and $X_{\bar{i}}=\left(X_{j}\right)_{j \neq i}$. To motivate the proof, note from Lemma 2 that $X_{i}=\eta_{i}+$ $\sum_{j \neq i}\left(-\theta_{i j} / \theta_{i i}\right) X_{j}$, where η_{i} is an $\mathcal{N}\left(0, \frac{1}{\theta_{i i}}\right)$ random variable independent of $\left\{X_{j}\right\}_{j \neq i}$, from which it follows that $\operatorname{Var}\left(X_{i}\right) \geq \operatorname{Var}\left(\eta_{i}\right)=1 / \theta_{i i}$. In the following, we apply similar ideas to $(v-w) \cdot X_{\bar{i}}$.

Specifically, for an arbitrary index $i^{*} \neq i$, we can lower bound the expected risk $\varepsilon(v)$ as follows:

$$
\begin{align*}
& \mathbb{E}\left[\left((v-w) \cdot X_{\bar{i}}\right)^{2}\right] \\
& =\operatorname{Var}\left((v-w) \cdot X_{\bar{i}}\right) \tag{84}\\
& =\operatorname{Var}\left(\sum_{j \neq i}\left(v_{j}-w_{j}\right) X_{j}\right) \tag{85}\\
& =\operatorname{Var}\left(\left(v_{i^{*}}-w_{i^{*}}\right) X_{i^{*}}+\sum_{j \notin\left\{i, i^{*}\right\}}\left(v_{j}-w_{j}\right) X_{j}\right) \tag{86}\\
& =\operatorname{Var}\left(\left(v_{i^{*}}-w_{i^{*}}\right) \eta_{i^{*}}-\left(v_{i^{*}}-w_{i^{*}}\right) \frac{\theta_{i^{*} i}}{\theta_{i^{*} i^{*}}} X_{i}+\sum_{j \notin\left\{i, i^{*}\right\}}\left(\left(v_{j}-w_{j}\right)-\left(v_{i^{*}}-w_{i^{*}}\right) \frac{\theta_{i^{*} j}}{\theta_{i^{*} i^{*}}}\right) X_{j}\right) \tag{87}\\
& =\operatorname{Var}\left(\left(v_{i^{*}}-w_{i^{*}}\right) \eta_{i^{*}}\right)+\operatorname{Var}\left(-\left(v_{i^{*}}-w_{i^{*}}\right) \frac{\theta_{i^{*} i}}{\theta_{i^{*} i^{*}}} X_{i}+\sum_{j \notin\left\{i, i^{*}\right\}}\left(\left(v_{j}-w_{j}\right)-\left(v_{i^{*}}-w_{i^{*}}\right) \frac{\theta_{i^{*} j}}{\theta_{i^{*} i^{*}}}\right) X_{j}\right) \tag{88}\\
& \geq \operatorname{Var}\left(\left(v_{i^{*}}-w_{i^{*}}\right) \eta_{i^{*}}\right) \tag{89}\\
& =\left|v_{i^{*}}-w_{i^{*}}\right|^{2} \operatorname{Var}\left(\eta_{i^{*}}\right), \tag{90}
\end{align*}
$$

where (84) follows since $\mathbb{E}\left[X_{\bar{i}}\right]=0,(87)$ follows from the first part of Lemma 2 applied to node i^{*}, and (88) uses the independence of $\eta_{i^{*}}$ and $X_{i^{\bar{*}}}$. Since $\operatorname{Var}\left(\eta_{i^{*}}\right)=\frac{1}{\theta_{i^{*} i^{*}}}$ and $\varepsilon(v) \leq \epsilon$, this gives $\left|v_{i^{*}}-w_{i^{*}}\right| \leq \sqrt{\epsilon \theta_{i^{*} i^{*}}} \leq \sqrt{\epsilon \theta_{\max }}$. Then, since this holds for all $i^{*} \neq i$, we deduce that $\|v-w\|_{\infty} \leq \sqrt{\epsilon \theta_{\max }}$, as desired.

[^0]: ${ }^{7}$ This quantity is the same for all values of j.

