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Abstract

Graphical model selection in Markov ran-
dom fields is a fundamental problem in statis-
tics and machine learning. Two particularly
prominent models, the Ising model and Gaus-
sian model, have largely developed in par-
allel using different (though often related)
techniques, and several practical algorithms
with rigorous sample complexity bounds have
been established for each. In this paper,
we adapt a recently proposed algorithm of
Klivans and Meka (FOCS, 2017), based on
the method of multiplicative weight updates,
from the Ising model to the Gaussian model,
via non-trivial modifications to both the algo-
rithm and its analysis. The algorithm enjoys
a sample complexity bound that is qualita-
tively similar to others in the literature, has
a low runtime O(mp2) in the case of m sam-
ples and p nodes, and can trivially be imple-
mented in an online manner.

1 Introduction

Graphical models are a widely-used tool for providing
compact representations of the conditional indepen-
dence relations between random variables, and arise
in areas such as image processing [Geman and Ge-
man, 1984], statistical physics [Glauber, 1963], com-
putational biology [Durbin et al., 1998], natural lan-
guage processing [Manning and Schütze, 1999], and
social network analysis [Wasserman and Faust, 1994].
The problem of graphical model selection consists of
recovering the graph structure given a number of in-
dependent samples from the underlying distribution.
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Two particularly prominent models considered for this
problem are (generalized) Ising models and Gaussian
models, and our focus is on the latter.

In the Gaussian setting, the support of the sparse in-
verse covariance matrix directly corresponds to the
graph under which the Markov property holds [Wain-
wright and Jordan, 2008]: Each node in the graph cor-
responds to a variable, and any two variables are inde-
pendent conditioned on a separating subset of nodes.

In this paper, we present an algorithm for Gaussian
graphical model selection that builds on the multiplica-
tive weights approach recently proposed for (discrete-
valued) Ising models [Klivans and Meka, 2017]. This
extension comes with new challenges due to the con-
tinuous and unbounded nature of the problem, pro-
hibiting the use of several parts of the analysis in [Kli-
vans and Meka, 2017] (as discussed more throughout
the paper). Under suitable assumptions on the (in-
verse) covariance matrix, we provide formal recovery
guarantees of a similar form to other algorithms in the
literature; see Section 1.2 and Theorem 9.

1.1 Related Work

Learning Gaussian graphical models. The prob-
lem of learning Gaussian graphical models (and the re-
lated problem of inverse covariance matrix estimation)
has been studied using a variety of techniques and as-
sumptions; our overview is necessarily brief, with a
focus on those most relevant to the present paper.

Information-theoretic considerations lead to the fol-
lowing algorithm-independent lower bound on the
number of samples m [Wang et al., 2010]:

m = Ω

(
max

{
log p

κ2
,

d log p

log(1 + κd)

})
, (1)

where p is the number of nodes, d the maximal degree
of the graph, and κ the minimum normalized edge
strength (see (3) below). Ideally, algorithmic upper
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bounds would also depend only on (p, d, κ) with no fur-
ther assumptions, though as we describe below, this is
rarely the case thus far (including in our own results).

Early algorithms such as SGS and PC [Kalisch and
Bühlmann, 2007, Spirtes et al., 2000, van de Geer
et al., 2013] adopted conditional independence testing
methods, and made assumptions such as strong faith-
fulness. A popular line of works studied the Graphi-
cal Lasso and related `1-based methods [d’Aspremont
et al., 2008, Hsieh et al., 2013, Meinshausen et al.,
2006, Ravikumar et al., 2011, Yuan and Lin, 2007,
Zhou et al., 2011], typically attaining low sample
complexities (e.g., (d2 + κ−2) log p [Ravikumar et al.,
2011]), but only under somewhat strong coherence-
based assumptions. More recently, sample complexity
bounds were given under walk-summability assump-
tions [Anandkumar et al., 2012, Kelner et al., 2019]
and eigenvalue (e.g., condition number) assumptions
[Cai et al., 2011, 2016, Wang et al., 2016]. Another line
of works has adopted a Bayesian approach to learning
Gaussian graphical models [Leppä-Aho et al., 2017,
Mohammadi and Wit, 2015], but to our knowledge,
these have not come with sample complexity bounds.

Misra et al. [Misra et al., 2017] provide an algorithm
that succeeds with m = O

(
d log p
κ2

)
without further as-

sumptions, thus coming fairly close to the lower bound
(1). However, this is yet to be done efficiently, as the
time complexity of pO(d) in [Misra et al., 2017] (see also
[Kelner et al., 2019, Thm. 11]) is prohibitively large un-
less d is small. Very recently, efficient algorithms were
proposed for handling general graphs under the ad-
ditional assumption of attractivity (i.e., only having
non-positive off-diagonal terms in the inverse covari-
ance matrix) [Kelner et al., 2019].

Learning (generalized) Ising models. Since our
focus is on Gaussian models, we only briefly describe
the related literature on Ising models, other than a
particular algorithm that we directly build upon.

Early works on Ising models relied on assumptions that
prohibit long-range correlations [Anandkumar et al.,
2012, Bento and Montanari, 2009, Bresler et al., 2008,
Jalali et al., 2011, Ravikumar et al., 2010], and this
hurdle was overcome in a series of works pioneered by
Bresler et al. [Bresler, 2015, Bresler et al., 2014, Hamil-
ton et al., 2017]. Recent developments have brought
the sample complexity upper bounds increasingly close
to the information-theoretic lower bounds [Santhanam
and Wainwright, 2012], using techniques such as inter-
action screening [Vuffray et al., 2016], multiplicative
weights [Klivans and Meka, 2017], and sparse logistic
regression [Wu et al., 2019].

The present paper is particularly motivated by [Kli-
vans and Meka, 2017], in which an algorithm was de-
veloped for learning (generalized) Ising models based
on the method of multiplicative weights. More specif-
ically, the algorithm constructs the underlying graph
with a nearly optimal sample complexity and a low
time complexity by using a weighted majority voting
scheme to learn neighborhoods variable-by-variable,
and updating the weights using Freund and Schapire’s
classic Hedge algorithm [Freund and Schapire, 1997].
The proof of correctness uses the regret bound for the
Hedge algorithm, as well as showing that approximat-
ing the distribution well according to a certain predic-
tion metric ensures accurately learning the associated
weight vector (and hence the neighborhood).

1.2 Contributions

In this paper, we adapt the approach of [Klivans and
Meka, 2017] to Gaussian graphical models, and show
that the resulting algorithm efficiently learns the graph
structure with rigorous bounds on the number of sam-
ples required, and a low runtime of O(mp2) when there
are m samples and p nodes. As we highlight through-
out the paper, each step of our analysis requires non-
trivial modifications compared to [Klivans and Meka,
2017] to account for the continuous and unbounded
nature of the Gaussian distribution.

While we do not claim that our sample complexity
bound improves on the state-of-the-art, it exhibits sim-
ilar assumptions and dependencies to existing works
that adopt condition-number-type assumptions (e.g.,
ACLIME [Cai et al., 2016]; see the discussion follow-
ing Theorem 9). In addition, as highlighted in [Klivans
and Meka, 2017], the multiplicative weights approach
enjoys the property of directly applying in the online
setting (i.e., samples arrive one-by-one and must be
processed, but not stored, before the next sample).

In Appendix A, we discuss the runtimes of a variety of
the algorithms mentioned in Section 1.1, highlighting
the fact that our O(mp2) runtime is very attractive.

2 Problem Statement

Given a Gaussian random vector X ∈ Rp taking val-
ues in Rp with zero mean,1 covariance matrix Σ ∈
Rp×p, and inverse covariance matrix Θ ∈ Rp×p; Θ =
[θij ]i,j∈[p] (where [p] = {1, . . . , p}), we are interested
in recovering the graph G = (V,E) (with V = [p])

1Our techniques can also handle the non-zero mean set-
ting, but we find the zero-mean case to more concisely con-
vey all of the relevant concepts.
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whose adjacency matrix coincides with the support of
Θ. That is, we are interested in learning which entries
of Θ are non-zero.

The graph learning is done using m independent sam-
ples (X1, . . . , Xm) fromN (0,Σ). Given these samples,
the estimation algorithm forms an estimate Ĝ of the
graph, or equivalently, an estimate Ê of the edge set,
and the error probability is given by

P(error) = P(Ĝ 6= G). (2)

We are interested in characterizing the worst-case er-
ror probability over all graphs within some class (de-
scribed below). Since our approach is based on neigh-
borhood estimation, and each node has p−1 candidate
neighbors, it will be convenient to let n = p− 1.

Definitions and assumptions. Similarly to existing
works such as [Misra et al., 2017, Wang et al., 2010],
our results depend on the minimum normalized edge
strength, defined as

κ = min
(i,j)∈E

∣∣∣∣∣ θij√
θiiθjj

∣∣∣∣∣ . (3)

Intuitively, the sample complexity must depend on κ
because weaker edges require more samples to detect.

We introduce some assumptions that are similar to
those appearing in some existing works. First, for each
i = 1, . . . , p, we introduce the quantity

λi =
∑
j 6=i

∣∣∣∣θijθii
∣∣∣∣, (4)

and we assume that maxi∈[p] λi is upper bounded by
some known value λ. As we discuss following our main
result (Theorem 9), this is closely related to an as-
sumption made in [Cai et al., 2011, 2016], and as dis-
cussed in [Kelner et al., 2019], the latter can be viewed
as a type of condition number assumption, though
eigenvalues do not explicitly appear.

In addition, we define an upper bound θmax on the
absolute values of the entries in Θ, and an upper bound
νmax on the variance of any marginal variable:

θmax = max
i,j
|θi,j | = max

i
θi,i (5)

νmax = max
i

Var[Xi]. (6)

A (θmaxνmax)2 term appears in our final sample com-
plexity bound (Theorem 9). This can again be viewed
as a type of condition number assumption, since ma-
trices with a high condition number may have large
θmaxνmax; e.g., see the example of [Misra et al., 2017].

We will sometimes refer to the maximal degree d of
the graph in our discussions, but our analysis and final
result will not depend on d. Rather, one can think of
λ as implicitly capturing the dependence on d.

For the purpose of simplifying our final expression for
the sample complexity, we make some mild assump-
tions on the scaling laws of the above parameters:

• We assume that λ = Ω(1). This is mild since one
can verify that λ = Ω(κd), and the typical regimes
considered in existing works are κd = Θ(1) and
κd→∞ (e.g., see [Wang et al., 2010]).

• We assume that λ, κ, νmax, and θmax are in be-
tween 1

poly(p) and poly(p). This is mild since these

may be high-degree polynomials, e.g., p10 or p100.

3 Overview of the Algorithm

To recover the graph structure, we are first interested
in estimating the inverse covariance matrix Θ ∈ Rp×p
of the multivariate Gaussian distribution.

For a zero-mean Gaussian random vector X, we have
the following well-known result for any index i (see
Lemma 2 below):

E[Xi|Xī] =
∑
j 6=i

−θij
θii

Xj = wi ·Xī, (7)

where wi =
(−θij
θii

)
j 6=i, Xī = (Xj)j 6=i, and a · b denotes

the dot product. In the related setting of learning Ising
models and generalized linear models, the authors of
[Klivans and Meka, 2017] used an analogous relation to
turn the ‘unsupervised’ problem of learning the inverse
covariance matrix to a ‘supervised’ problem of learning
weight vectors given samples (xt, yt), where the xt are
n-dimensional tuples consisting of the values of Xī,
and yt are the values of Xi. In particular, under the
standard Ising model, the relationship analogous to (7)
follows a logistic (rather than linear) relation.

In [Klivans and Meka, 2017], the Hedge algorithm of
[Freund and Schapire, 1997] is adapted to the problem
of estimating the coefficients of wi. This is achieved for
sparse generalized linear models (with bounded Lip-
schitz transfer functions) by first finding a vector v
that approximately minimizes an expected risk quan-
tity with high probability, which we define analogously
for our setting. Their algorithm, referred to as Spar-
sitron, is shown in Algorithm 1. Note that both (x̃t, ỹt)
will represent suitably-normalized samples (xt, yt) to
be described below, and (at, bt) will represent further
samples with the same distribution as (x̃t, ỹt).
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Data: T +M normalized samples
{(x̃t, ỹt)}Tt=1, {(aj , bj)}Mj=1; `1-norm
parameter λ; update parameter β
(default value 1

1+
√

lnn
T

)

Result: Estimate of weight vector in Rn
Initialize v0 = 1/n
for t=1,. . . , T do

· Let pt = vt−1

‖vt−1‖1
· Define lt ∈ Rn by
lt = (1/2)(1 + (λpt · x̃t − ỹt)x̃t)
· Update the weight vectors: For each
i ∈ [n], set vti = vt−1

i · βlti
end
for t=1,. . . ,M do
· Compute the empirical risk for each t:

ε̂(λpt) =

∑M
j=1(λpt · aj − bj)2

M
(9)

end

return λpt
∗

for t∗ = arg mint∈[T ] ε̂(λp
t)

Algorithm 1: Sparsitron algorithm for estimating
a weight vector w ∈ Rn. It is assumed here that
the true weight vector has only positive weights
and `1-norm exactly λ (see Footnote 2).

Data: T +M samples, tuple (νmax, θmax, λ, κ),
target error probability δ

Result: Estimate of the graph
for i = 1, · · · , p do
· Normalize the T samples as
(x̃t, ỹt) := 1

B
√
νmax(λ+1)

(xt, yt) with

B =
√

2 log 2pT
δ , and similarly normalize

the final M samples to obtain
{(aj , bj)}Mj=1

· Run Sparsitron on the normalized
samples to obtain an estimate vi of the
weight vector wi =

(−θij
θii

)
j 6=i of node i

end
For every pair i and j, identify an edge
between them if max{|vij |, |v

j
i |} ≥ 2κ/3

Algorithm 2: Overview of the algorithm for Gaus-
sian graphical model selection.

Definition 1. The expected risk of a candidate v ∈
Rn for the neighborhood weight vector wi of a marginal
variable Xi is

ε(v) := EX
[(
v ·Xī − wi ·Xī

)2]
. (8)

The Sparsitron algorithm uses what can be seen as
a simple majority weighted voting scheme. For every
possible member Xj of the neighborhood of node i,
the algorithm maintains a weight vj (which we think
of as seeking to approximate the j-th entry of wi), and
updates the weight vector via multiplicative updates
as in the Hedge algorithm. After T such consecutive
estimates, the algorithm uses an additional M samples
to estimate the expected risk for each of the T candi-
dates empirically, and then returns the candidate with
the smallest empirical risk.

As in [Klivans and Meka, 2017], we assume without
loss of generality that wi ≥ 0 for all i; for if not, we can
map our samples (x, y) to ([x,−x], y) and adjust the
weight vector accordingly. We can also assume that
‖w‖1 equals its upper bound λ, since otherwise we can
introduce a new coefficient and map our samples to
([x,−x, 0], y).2 If the true norm were λ′ < λ, then the
modified weight vector would have a value of λ − λ′
corresponding to the 0 coefficient.

Once the neighborhood weight vectors have been es-
timated, we recover the graph structure using thresh-
olding, as outlined in Algorithm 2. Here, T and M
must satisfy certain upper bounds that we derive later
(see Theorem 9). The overall sample complexity is
m = T + M , and as we discuss following Theorem 9,
the runtime is O(mp2). This runtime is compared to
the runtimes of various existing algorithms for learning
Gaussian graphical models in Appendix A.

4 Analysis and Sample Complexity

Our analysis proceeds in several steps, given in the
following subsections.

4.1 Preliminary Results

4.1.1 Properties of Multivariate Gaussians

We first recall some results regarding multivariate
Gaussian random variables that we will need through-
out the analysis.

2This step is omitted in Algorithm 1, so that we can
lighten notation and work with vectors in Rn rather than
R2n+1. Formally, it can be inserted as an initial step,
and then the resulting length 2n + 1 weight vector can
be mapped back to a length-n weight vector by taking the
first n entries and subtracting the second n entries, while
ignoring the final entry. The initial part of our analysis
considering Sparsitron can be viewed as corresponding to
the case where the weights are already positive and the
`1-norm bound λ already holds with equality, but it goes
through essentially unchanged in the general case.
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Lemma 2. Given a zero-mean multivariate Gaussian
X = (X1, . . . , Xp) with inverse covariance matrix Θ =
[θij ], and given T independent samples (X1, . . . , XT )
with the same distribution as X, we have the following:

1. For any i ∈ [p], we have Xi = ηi +
∑
j 6=i
(
−

θij
θii

)
Xj, where ηi is a Gaussian random variable

with variance 1
θii

, independent of all Xj for j 6= i.

2. E[Xi|Xī] =
∑
j 6=i
(−θij
θii

)
Xj = wi ·Xī, where wi =(−θij

θii

)
j 6=i ∈ Rn (with n = p− 1).

3. Let λ and νmax be defined as in (4) and (6),

set B :=
√

2 log 2pT
δ , and define (x̃t, ỹt) :=

1

B
√
νmax(λ+1)

(xt, yt), where (xt, yt) = (Xt
ī
, Xt

i ) for

an arbitrary fixed coordinate i. Then, with prob-
ability at least 1 − δ, ỹt and all entries of x̃t

(t = 1, . . . , T ) have absolute value at most 1√
λ+1

.

Proof. These properties are all standard and/or use
standard arguments; see Appendix B for details.

4.1.2 Loss Guarantee for Sparsitron

Recall that n = p − 1. In the proof of [Klivans and
Meka, 2017, Theorem 3.1], it is observed that the
Hedge regret guarantee implies the following.

Lemma 3. ([Klivans and Meka, 2017]) For any se-
quence of loss vectors lt ∈ [0, 1]n for t = 1, . . . T , the
Sparsitron algorithm guarantees that

T∑
t=1

pt · lt ≤ min
i∈[n]

T∑
t=1

lti +O(
√
T log n+ log n). (10)

To run the Sparsitron algorithm, we need to define an
appropriate sequence of loss vectors in [0, 1]n. Let

lt = (1/2)(1 + (λpt · x̃t − ỹt)x̃t), (11)

where 1 is the vector of ones, and λpt is Sparsitron’s
estimate at the beginning of the t-th iteration, formed
using samples 1, . . . , t−1. To account for the fact that
the Hedge algorithm requires bounded losses for its
regret guarantee, we use the high probability scaling
in the third part of Lemma 2: Since pt ∈ [0, 1]n and∑n
t=1 pt = 1, we have that |λpt · x̃t − ỹt| <

√
λ+ 1,

and that consequently (λpt · x̃t − ỹt)x̃t ∈ [−1, 1]n. It
then follows that lt, as defined in (11), lies in [0, 1]n.
Hence, Lemma 3 applies with probability at least 1−δ
when we use (x̃t, ỹt) := 1

B
√
νmax(λ+1)

(xt, yt).

4.1.3 Concentration Bound for Martingales

Unlike the analysis of Ising (and related) models in
[Klivans and Meka, 2017], here we do not have the
liberty of assuming bounded losses. In the previous
subsection, we circumvented this issue by noting that
the losses are bounded with high probability, and such
an approach is sufficient for that step due to the fact
that the Hedge regret guarantee applies for arbitrary
(possibly adversarially chosen) bounded losses. How-
ever, while such a “truncation” approach was sufficient
above, it will be insufficient (or at least challenging to
make use of) in later parts of the analysis that rely on
the Gaussianity of the samples.

In this subsection, we present a concentration bound
that helps to overcome this difficulty, and serves as a
replacement for the Azuma-Hoeffding martingale con-
centration bound used in [Klivans and Meka, 2017].

Specifically, we use [van de Geer, 1995, Lemma 2.2],
which states that given a martingale Mt, if we can
establish Bernstein-like inequalities on the ‘sums of
drifts’ of certain higher order processes, then we can
establish a concentration bound on the main process.
Here we state a simplified version for discrete-time
martingales that suffices for our purposes (in [van de
Geer, 1995], continuous-time martingales are also per-
mitted). This reduction from [van de Geer, 1995,
Lemma 2.2] is outlined in Appendix C.

Lemma 4. ([van de Geer, 1995]) Let Mt be a discrete-
time martingale with respect to a filtration Ft such that
E[M2

t ] < ∞ for all t, and define ∆Mt = Mt −Mt−1

and Vm,t =
∑t
j=1 E[|∆Mj |m | Fj−1]. Suppose that for

all t and some 0 < K <∞, we have

Vm,t ≤
m!

2
Km−2Rt, m = 2, 3, . . . (12)

for some process Rt that is measurable with respect to
Ft−1. Then, for any a, b > 0, we have

P(Mt ≥ a and Rt ≤ b2 for some t)

≤ exp

(
− a2

2aK + b2

)
. (13)

4.2 Bounding the Expected Risk

For compactness, we subsequently write w as a short-
hand for the weight vector wi ∈ Rn of the node i whose
neighborhood is being estimated. We recall the choice
of lt in (11), and make use of the following definitions
from [Klivans and Meka, 2017]:

Qt := (pt − w/λ) · lt (14)

Zt := Qt − Et−1[Qt], (15)
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where here and subsequently, we use the notation
Et[·] := E[·|(x1, y1), . . . , (xt, yt)] to denote condition-
ing on the samples up to time t. The analysis proceeds
by showing that

∑T
j=1 Z

j is concentrated around zero,

upper bounding the expected risk in terms of Et−1[Qt],
and applying Sparsitron’s guarantee from Lemma 3.

We first use Lemma 4 to obtain the following result.

Lemma 5. |
∑T
j=1 Z

j | = O
(√

T log 1
δ

)
with probabil-

ity at least 1− δ.

Proof. The proof essentially just requires substitutions
in Lemma 4. The martingale process isMt =

∑
j≤t Z

j ,

and we obtain ∆Mt = Zt, along with

Vm,t =
t∑

j=1

Ej−1[|Zj |m]. (16)

The rest of the proof entails unpacking the definitions
and using standard properties of Gaussian random
variables to show that the Bernstein-like requirements
are satisfied for the concentration bound in Lemma 4.
The details are provided in Appendix D.

Lemma 6. If Sparsitron is run with T ≥ log n, then

min
t∈[T ]

ε(λpt) = O

(
λ(λ+ 1)νmax log nT

δ

(√
T log n

δ

)
T

)
(17)

with probability at least 1− δ.

Proof. From the definition of Qt in (14), we have that

Et−1[Qt]

= Et−1[(pt − (1/λ)w) · lt] (18)

= Et−1[(pt − (1/λ)w) · (1/2)(1 + (λpt · x̃t − ỹt)x̃t)]
(19)

=
1

2
Et−1

[(∑
i

pti −
∑
i

wi
λ

)

+ (pt − (1/λ)w) · x̃t(λpt · x̃t − ỹt)
]

(20)

=
1

2
Et−1

[(
1− λ

λ

)
+ (pt · x̃t − (1/λ)w · x̃t)(λpt · x̃t − ỹt)

]
(21)

=
1

2
Et−1

[
(pt · x̃t − (1/λ)w · x̃t)(λpt · x̃t − ỹt)

]
(22)

=
1

2λ
Et−1[(λpt · x̃t − w · x̃t)2] (23)

≥ 1

2λ(λ+ 1)νmaxB2
ε(λpt), (24)

where (19) uses the definition of lt in (11), (21) uses
‖w‖1 = λ (see Footnote 2) and

∑
i p
t
i = 1, (23) fol-

lows by noting that pt is a function of {x̃i, ỹi}t−1
i=1) and

computing the expectation over ỹt first (using the sec-
ond part of Lemma 2), and (24) uses the definition of
expected risk in (8), along with x̃t = 1

B
√
νmax(λ+1)

xt.

Summing both sides above over t = 1, . . . , T , we have
the following with probability 1−O(δ):3

1

2λ(λ+ 1)νmaxB2

T∑
t=1

ε(λpt)

≤
T∑
t=1

Et−1[Qt] (25)

=

T∑
t=1

(Qt − Zt) (26)

≤
T∑
t=1

Qt +O

(√
T log

1

δ

)
(27)

≤
T∑
t=1

(pt − w/λ) · lt +O

(√
T log

1

δ

)
(28)

≤ min
i∈[n]

T∑
t=1

lti −
T∑
t=1

(w/λ) · lt +O(
√
T log n+ log n)

+O

(√
T log

1

δ

)
, (29)

where (26) follows from the the definition of Zt in (15),
(27) uses Lemma 5, (28) follows from the definition of
Qt in (14), and (29) follows from Lemma 3.

Since ‖w‖1 = λ (see Footnote 2), mini∈[n]

∑T
t=1 l

t
i −∑T

t=1(w/λ) · lt ≤ 0. It follows from (29) that

1

2λ(λ+ 1)νmaxB2

T∑
j=1

ε(λpt)

= O

(√
T log n+ log n+

√
T log

1

δ

)
, (30)

and substituting B =
√

2 log 2(n+1)T
δ gives

min
t∈[T ]

ε(λpt) = O

(
λ(λ+ 1)νmax log nT

δ

T

×
(√

T log n+ log n+

√
T log

1

δ

))
, (31)

3In the analysis, we apply multiple results that each
hold with probability at least 1−δ. More precisely, δ should
be replaced by δ/L when applying a union bound over L
events, but since L is finite, this only amounts to a change
in the constant of the O(·) notation in (17).
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where we also lower bounded
∑T
j=1 ε(λp

t) by T times
the minimum value. When T ≥ log n, the above bound
simplifies to (17), as desired.

Having ensured that that the minimal expected risk is
small, we need the algorithm to identify a candidate
whose expected risk is also sufficiently close to that
minimum. Sparsitron does this by using an additional
M samples to estimate the expected risk empirically.

Lemma 7. For γ > 0, ρ ∈ (0, 1], and fixed v ∈ Rn sat-

isfying ‖v‖1 ≤ λ, there is some M = O
(
(λ+1) log(1/ρ)

γ

)
such that

P

∣∣∣∣∣∣ 1

M

M∑
j=1

(
(v · aj − bj)2 − Ξ

)
− ε(v)

∣∣∣∣∣∣ ≥ γ
 ≤ ρ,

(32)

where {(aj , bj)}Mj=1 are the normalized samples defined

in Algorithm 2, and Ξ = E
[
Var[bj | aj ]

]
.4

Proof. The high-level steps of the proof are to first
establish the equality

E[(v · aj − bj)2] = ε(v) + Ξ, (33)

and then use Bernstein’s inequality to bound the devi-
ation of

∑M
j=1

(
(v · aj − bj)2 − Ξ

)
from its mean value

ε(v). The details are given in Appendix E.

4.3 Graph Recovery and Sample Complexity

We complete the analysis of our algorithm in a se-
quence of three steps, given as follows.

An `∞ bound. We show that if our estimate v ap-
proximates the true weight vector w ∈ Rn well in terms
of the expected risk, then it also approximates it in
the `∞ norm. In [Klivans and Meka, 2017], this was
done using a property termed the ‘δ-unbiased condi-
tion’, whose definition relies on the underlying random
variables being binary. Hence, we require a different
approach, given as follows.5

Lemma 8. Under the preceding setup, if we have
ε(v) ≤ ε, then we also have ‖v − w‖∞ ≤

√
εθmax,

where θmax is a uniform upper bound on the diagonal
entries of Θ.

Proof. The proof uses a direct calculation to establish
that Var((v−w) ·Xī) ≥ |vi∗−wi∗ |2Var(ηi∗) for a fixed
index i∗; the details are given in Appendix F.

4This quantity is the same for all values of j.
5See also [Kelner et al., 2019, Thm. 17] for similar con-

siderations under a different set of assumptions.

Suppose that we would like to recover the true weight
vector with a maximum deviation of ε′ in any coor-
dinate with probability at least 1 − δ. By Lemma 8,
we require ε to be no more than (ε′)2/θmax. We know
from Lemma 6 that

min
t∈[T ]

ε(λpt) = O

(
λ(λ+ 1)νmax log nT

δ

(√
T log n

δ

)
T

)
,

(34)

from which we have that with T =
O
(
λ2(λ+1)2ν2

max

ε2 log3 n
δ

)
,6 the minimum expected

risk is less than ε/2 with probability at least 1− δ/2.

From Lemma 7 with ρ = δ/(2T ) and γ = ε/2, we
observe that we can choose M satisfying

M ≤ O
(

(λ+ 1)
log(T/δ)

ε

)
(35)

≤ O
(

(λ+ 1) log
λ(λ+ 1)νmax log3/2 n

δ

εδ

)
(36)

and estimate ε(λpt) + Ξ (note that the second term
doesn’t affect the arg min) of the T candidates λpt

within ε/4 with probability at least 1 − δ
2T . By the

union bound (which blows the δ
2T up to δ

2 ), the same
follows for all T candidates simultaneously. We then
have that the candidate with the lowest estimate has
expected risk within ε/2 of the candidate with the low-
est expected risk, and that the latter candidate’s ex-
pected risk is less than ε/2, so in sum the vector re-
turned by the candidate has an expected risk less than
ε with probability at least 1−δ. Moreover, the sample
complexity is

T +M

= O

(
λ2(λ+ 1)2ν2

max

ε2
log3 n

δ

)
+O

(
(λ+ 1) log

λ(λ+ 1)νmax log3/2 n
δ

εδ

)
(37)

= O

(
λ4ν2

max

ε2
log3 n

δ

)
, (38)

where the simplification comes by recalling from Sec-
tion 2 that λ = Ω(1) and all parameters are polynomi-
ally bounded with respect to n. While the sample com-
plexity (38) corresponds to probability at least 1−δ for
the algorithm of only a single i ∈ [p], we can replace δ
by δ/p and apply a union bound to conclude the same
for all i ∈ [p]; since p = n+ 1, this only amounts to a
chance in the constant of the O(·) notation.

6The removal of T in the logarithm log nT
δ

can be jus-
tified by the assumption that all parameters are polynomi-
ally bounded with respect to p (see Section 2).



Learning Gaussian Graphical Models via Multiplicative Weights

Recovering the graph. Recall from Lemma 8 that
an expected risk of at most ε translates to a coordinate-
wise deviation of at most ε′ =

√
εθmax. We set ε =

κ2

9θmax
, so that ε′ = κ

3 .

We observe that if Xi and Xj are neighbors, then (3)
yields the following lower bound:

θ2
ij

θiiθjj
≥ κ2 (39)

This ensures that at least one of the two values |θij/θii|
and |θij/θjj | must be greater than or equal to κ. On
the other hand, if they are not neighbors, then the
true value of both of these terms must be 0. Since
we have estimated all weights to within κ/3, it follows
that any estimate of at least 2κ/3 must arise from
a true neighborhood relation (with high probability).
Conversely, if there is a neighborhood relation, then
at least one of the two factors θij/θii and θij/θjj must
have been found to be at least 2κ/3.

The method for recovering the graph structure is then
as follows: For each possible edge, the weight estimates
vij and vji are calculated; if either of them is found to
be greater than 2κ/3, then the edge is declared to lie
in the graph, and otherwise it is not.

Substituting ε = κ2

9θmax
into (38), and recalling our

notation n = p − 1, we deduce the final sample com-
plexity, stated as follows.

Theorem 9. For learning graphs on p nodes with
minimum normalized edge strength κ, under the addi-
tional assumptions stated in Section 2 with parameters
(λ, νmax, θmax), the algorithm described above attains
P(error) ≤ δ with a sample complexity of at most

m = O

(
λ4ν2

maxθ
2
max

κ4
log3 p

δ

)
. (40)

We can compare this guarantee with those of exist-
ing algorithms: As discussed in [Kelner et al., 2019,
Remark 8], the `1-based ACLIME algorithm [Cai
et al., 2016] can be used for graph recovery with

m = O
( λ̃2 log p

δ

κ4

)
samples, where λ̃ is an upper bound

on the `1 norm of any row of Θ. An algorithm termed
HybridMB in [Kelner et al., 2019] achieves the same
guarantee, and a greedy pruning method in the same

paper attains a weaker m = O
( λ̃4 log p

δ

κ6

)
bound.

The quantities λ and λ̃ are closely related; for instance,
in the case that θii = 1 for all i, we have λ̃ = 1 + λ.
More generally, if νmax and θmax behave as Θ(1), then

our bound can be written as O
(
λ̃4

κ4 log3 p
δ

)
, which is

qualitatively similar to the bounds of [Cai et al., 2016,

Kelner et al., 2019] but with an extra
(
λ log p

δ

)2
term.

We again highlight that our main goal is not to at-
tain a state-of-the-art sample complexity, but rather
to introduce a new algorithmic approach to Gaussian
graphical model selection. The advantages of this ap-
proach, as highlighted in [Klivans and Meka, 2017],
are low runtime and direct applicability to the online
setting. In addition, as we discuss in the following sec-
tion, we expect that there are parts of our analysis
that could be refined to bring the sample complexity
down further.

Runtime. The algorithm enjoys a low runtime similar
to the case of Ising models [Klivans and Meka, 2017]:
Sparsitron performs m = T + M iterations that each
require time O(n) = O(p), for an overall runtime of
O(mp). Since this is done separately for each i =
1, . . . , p, the overall runtime is O(mp2).

5 Conclusion

We have introduced a novel adaptation of the multi-
plicative weights approach to graphical model selection
[Klivans and Meka, 2017] to the Gaussian setting, and
established a resulting sample complexity bound un-
der suitable assumptions on the covariance matrix and
its inverse. The algorithm enjoys a low runtime com-
pared to existing methods, and can directly be applied
in the online setting.

The most immediate direction for further work is to
seek refinements of our algorithm and analysis that can
further reduce the sample complexity and/or weaken
the assumptions made. For instance, we normalized
the samples to ensure a loss function in [0, 1] with
high probability, and this is potentially more crude
then necessary (and ultimately yields the log3 p de-
pendence). One may therefore consider using an al-
ternative to Hedge that is more suited to unbounded
rewards. In addition, various steps in our analysis in-
troduced θmax and νmax, and the individual estimation
of diagonals of Σ and/or Θ (e.g., as done in [Cai et al.,
2016]) may help to avoid this.
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