
Ronshee Chawla, Abishek Sankararaman, Ayalvadi Ganesh, Sanjay Shakkottai

Appendix A Technical Assumptions in Section 3.1

We make two technical assumptions on the input parameters.

(A.1) The communication matrix P is irreducible. Namely, for any two i, j 2 {1, · · · , N}, with i 6= j, there exists
2  l  N and k1, · · · , kl 2 {1, · · · , N}, with k1 = i and kl = j such that the product P (k1, k2) · · · , P (kl�1, kl) >
0 is strictly positive.

(A.2) The communication budget (Bt)t2N and " > 0 is such that for all D > 0, there exists t0(D) such that for
all t � t0(D), Bt � D log(t) (i.e., Bt = ⌦(log(t))). Furthermore, we shall assume a convexity condition, i.e., for
every x, y 2 N and � 2 [0, 1], Ab�x+(1��)yc  �Ax + (1� �)Ay, where the sequence (Ax)x2N is given in Equation

(1). Furthermore,
P

l�2
A2l

A3
l�1

<1.

Assumption A.1 states that the graph of communication among agents is connected. Observe that if A.1 is
not satisfied, then there exists at-least a pair of agents that can never exchange information among each other,
making the setup degenerate. Assumption A.2 implies that, any agent over a time interval of T arm-pulls, can
engage in information-pulls, at-least ⌦(log(T )) times. The convergence of the series in A.2 also hold true for
all ‘natural’ examples, such as exponential and polynomial. For instance, the series is convergent if for all large
l, either Bl = d

1
D log�(l)e or Bl = dl1/(D+1)

e, for all D > 0 and � > 1. Thus, conditions A.1 and A.2 do not
impact any practical insights we can draw from our results.

Appendix B Discussion on Theorem 1

In order to get some intuition from the Theorem, we consider a special case. Recall from Equation (1), that Ax

is the time slot when any agent pulls information for the x th time. Thus, if for some � > 1, the communication
budget Bt = bt1/�c, then for all small " and all large x, the sequence Ax = dx�

e . In other words, if communication
budget scales polynomially (but sub-linearly) with time, then Ax is also polynomial, but super linear. Similarly, if
the gossip matrix corresponded to the complete graph, i.e., P (i, j) = 1/N , for all i 6= j and Ax = x� , we will show
in the sequel (Corollary 18), that there exists an universal constant C > 0 such that E[A

2⌧ (P )
spr

]  (C log(N))� .

Thus, we have the following corollary.

Corollary 5. Suppose the communication budget satisfies Bt = bt1/�c, for all t � 1, for some � > 1. Let " > 0
be su�ciently small. Then the communication sequence (Ax)x2N in Equation (1) with " < � � 1 is such that

Ax = dx�
e, for all large x. If the gossip matrix connecting the agents corresponded to the complete graph, i.e.,

P (i, j) = 1/N , for all i 6= j, then under the conditions of Theorem 1, the regret of any agent i 2 {1, · · · , N} at

time T 2 N satisfies

E[R(i)
T ] 

0
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,

where C is an universal constant given in Corollary 18.

The proof is provided in Appendix K. The terms denoting cost of pairwise communications correspond to the
average amount of time any agent must wait before the best arm is in the playing set of that agent. This cost

can be decomposed into the sum of two dominant terms. The term of order
⇣

d
K
N e

�2

⌘ 2�
��1

is the expected number

of samples needed to identify the best arm by any agent. The term (log(N))� is the amount of time taken by a
pure gossip process to spread a message (the best arm in our case) to all agents, if the communication budget is
given by Bt = bt1/�c.

Appendix C Proof of Theorem 1

In order to give the proof, we first set some notations and definitions. We make explicit a probability space
construction from (Lattimore and Szepesvári, 2018), that makes the proof simpler. We assume that there is

a sequence of independent {0, 1} valued random variables (Y (i)
j (t))i2[N ],j2[K],t�0, where for every j 2 [K], the
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collection (Y (i)
j (t))t�0,i2[N ] is an i.i.d. Bernoulli random variable of mean µj . The interpretation being that if an

agent i pulls arm j for the lth time, it will receive reward Y (i)
j (l). Additionally, we also have on the probability

space a sequence of independent [N ] valued random variables (Z(i)
j )j�0,i2[N ], where for each i 2 [N ], the sequence

(Z(i)
j )j�0 is iid distributed as P (i, ·). The interpretation is that when agent i wishes to receive a recommendation

at the end of phase j, it will do so from agent Z(i)
j .

C.1 Definitions and Notations

In order to analyze the algorithm, we set some definitions. Let B
(i)
j to be the best arm in S(i)

j , i.e.,

µ
B

(i)
j

= max
l2S(i)

j
µl. Observe that since the set S(i)

j is random, B(i)
j is also a random variable. For every agent

i 2 [N ] and phase j � 0, we denote by bO(i)
j 2 S(i)

j to be that arm, that agent i played the most in phase j. Note,

from the algorithm, if any agent i
0
pulled an arm from agent i at the end of phase j for a recommendation, it

would have received arm bO(i)
j .

Fix an agent i 2 [N ] and phase j � 0. Let S(i) be a collection of all subsets S ⇢ [K] of cardinality |S| = dKN e+2,

such that 1 2 S, bS(i)
⇢ S. For any S 2 S

(i), index the elements in S as {l1, · · · , ldK
N e+2} in increasing order of

arm-ids. Let a1, · · · adK
N e+2 2 Nd

K
N e+2 be such that

Pd
K
N e+2

m=0 am � 0. For every agent i 2 [N ], phase j � 0 and

(a1, · · · , adK
N e+2) 2 Nd

K
N e+2, denote by the event ⇠(i)j (S; a1, · · · , adK

N e
) as

⇠(i)j (S; a1, · · · , adK
N e

) :=
n
S(i)
j = S, Tl1(Aj�1) = a1, · · · , TldK

N
e+2

(Aj�1) = a
d
K
N e+2, bO

(i)
j 6= 1

o
.

Denote by ⌅(i)
j as the union of all such events, i.e.,

⌅(i)
j :=

[

S2S(i)

0

BBB@
[

✓
a1,···adK

N
e+2

◆
2NdK

N
e+2

⇠(i)j (S; a1, · · · , adK
N e

)

1

CCCA
,

and by �(i)
j its indicator random variable, i.e.,

�(i)
j = 1

⌅(i)
j
. (6)

In words, the event �(i)
j is the indicator variable indicating whether agent i does not recommend the best arm

at the end of phase j, under some sample path, i.e., we take an union over all possible set of playing arms that
contain arm 1 (i.e., set S

(i)) and all possible number of plays of the various arms in S until the beginning of
phase j (i.e., the set of histories in Aj). In Lemma 6, we provide an upper bound to this quantity. Notice from

the construction that for each agent i 2 [N ] and phase j � 0, the random variable �(i)
j is measurable with respect

to the reward sequence (Y (i)
j (t))j2[K],t2[0,Aj ]. Also, trivially by definition, observe that �(i)

j � 1 bO(i)
j 6=1,12S(i)

j

almost-surely. This is so since �(i)
j is an union bound over all possible realizations of the communication

sequence and reward sequence of other agents, while 1 bO(i)
j 6=1,12S(i)

j
considers a particular realization of the

communication and rewards of other agents.

We now define certain random times that will be useful in the analysis.

b⌧ (i)stab = inf{j
0
� j⇤ : 8j � j

0
,�(i)

j = 0},

b⌧stab = max
i2[N ]

b⌧ (i)stab,
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b⌧ (i)spr = inf{j � b⌧stab : 1 2 S(i)
j }� b⌧stab,

b⌧spr = max
i2{1,··· ,N}

b⌧ (i)spr,

⌧ = b⌧stab + b⌧spr.

In words, b⌧ (i)stab is the earliest phase such that, for all subsequent phases, if agent i has the best arm, then it will

recommend the best arm. The time b⌧ (i)spr is the number of phases it takes after b⌧stab for agent i to have arm 1 in
its playing set. The following proposition follows from the definition of the random times.

Proposition 1. For all agents i 2 {1, · · · , N}, we have almost-surely,

\

j�⌧

S(i)
j = S(i)

⌧ ,

bO(i)
l = 1 8l � ⌧, 8i 2 {1, · · · , N}.

Proof. Fix any agent i 2 [N ] and any phase j � ⌧ . Since ⌧ � b⌧ (i)stab, we have for all j � ⌧ ,

�(i)
j = 0. (7)

Furthermore, from the definition of �(i)
j , we know that

�(i)
j � 1

12S(i)
j , bO(i)

j 6=1
, (8)

almost-surely. However, as ⌧ � b⌧ (i)spr + b⌧stab, we know that

1 2 S(i)
j . (9)

Thus, from Equations (7), (8) and (9), we have that bO(i)
j = 1. Since j � ⌧ was arbitrary, we have that for all

j � ⌧ , bO(i)
j = 1. Since agent i 2 [N ] was arbitrary, we have that for all agents i 2 [N ] and all phases j � ⌧ , we

have bO(i)
j =1. From the Algorithm, we know that any agent will change its set of arms only if the recommendation

it receives is not present in the playing set (see line 8 of Algorithm 1). The preceding argument says that is not

the case and hence for all agents i 2 [N ],
T

j�⌧ S
(i)
j = S(i)

⌧ .

In other words, after phase ⌧ , the system is frozen, i.e., the set of arms of all agents remain fixed for all time

in the future. Moreover, all agents will only recommend the best arm going forward from this phase. We will
show in the sequel that E[A⌧ ] < 1 for all settings of the algorithm and hence the system freezes after only
almost-surely finitely many changes in the set of arms played by the di↵erent agents.

C.2 Intermediate Propositions

Proposition 2. The regret of any agent i 2 {1, · · · , N} after playing for T steps is bounded by

E[R(i)
T ]  E[A⌧ ] +

K

4
+ 4↵ ln(T )

0

@
d
K
N e+2X

j=2

1

�j

1

A .

Proof. From the definition of regret, we can write,

R(i)
T =

TX

l=1

(µ1 � µ
I(i)
l
),
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=
TX

l=1

KX

j=2

�j1I(i)
l =j

,

 A⌧ +
TX

l=A⌧+1

KX

j=2

�j1I(i)
l =j

,

= A⌧ +
KX

j=2

�j

TX

l=A⌧+1

1
I(i)
l =j

.

Thus, taking expectations on both sides, we get that

E[R(i)
T ]  E[A⌧ ] +

KX

j=2

�j

TX

l=A⌧+1

P[I(i)l = j, j 2 S(i)
⌧ ]. (10)

We can break up the summation on the RHS as follows. Fix an arm j 2 {2, · · · ,K} and evaluate the sum

TX

l=A⌧+1

P[I(i)l = j, j 2 S(i)
⌧ ] =

TX

l=A⌧+1

P
"
I(i)l = j, T (i)

j (l) 
4↵ ln(T )

�2
j

, j 2 S(i)
⌧

#
+ (11)

TX

l=A⌧+1

P
"
I(i)l = j, T (i)

j (l) �
4↵ ln(T )

�2
j

, j 2 S(i)
⌧

#
,


4↵ ln(T )

�2
j

P[j 2 S(i)
⌧ ] +

TX

l=A⌧+1

P
"
I(i)l = j, T (i)

j (l) �
4↵ ln(T )

�2
j

#
,


4↵ ln(T )

�2
j

P[j 2 S(i)
⌧ ] +

1X

l=3

2l2(1�↵), (12)

where in the last line we substitute the classical estimate from (Auer et al., 2002). We can use this estimate, as

we know that both the best arm, i.e., arm indexed 1 and the sub-optimal arm indexed j are in the set S(i)
⌧ and

hence the agent can potentially play those arms. Now plugging Equation (12) into Equation (10), we get that

E[R(i)
T ]  E[A⌧ ] +

KX

j=2

�j

 
4↵ ln(T )

�2
j

P[j 2 S(i)
⌧ ] +

1X

l=3

2l2(1�↵)

!
,

(a)
 E[A⌧ ] +

4↵ ln(T )

�

KX

j=2

P[j 2 S(i)
⌧ ] +

KX

j=2

�j

4
,

(b)
 E[A⌧ ] +

4↵ ln(T )

�

✓⇠
K

N

⇡
+ 2

◆
+

K

4
.

In step (a), we use the bound that �j � �, for all j 2 {2, · · · ,K} and the fact that for ↵ > 3, we haveP
1

l=3 2l
2(1�↵)

 1/8. In step (b), we use the crucial identity that for any agent i 2 {1, · · · , N} and any phase  
either deterministic or random, we have almost-surely,

KX

j=1

1
j2S(i)

 
=

⇠
K

N

⇡
+ 2.

Taking expectations on both sides yields the result. If one were more precise in step (a), then it is possible to
establish that

E[R(i)
T ]  E[A⌧ ] + 4↵ ln(T )

KX

j=2

1

�j
P[j 2 S(i)

⌧ ] +
KX

j=2

�j

4
,
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 E[A⌧ ] + 4↵ ln(T )

0

@
d
K
N e+2X

j=2

1

�j

1

A+
KX

j=2

�j

4
.

This will then yield the proof.

Proposition 3. For all N 2 N, � 2 (0, 1], ↵ > 3 and M > 0,

E[A⌧ ]  Aj⇤ +
2

2↵� 3

X

l� j⇤
2 �1

A2l+1

A3
l�1

+ E[A2b⌧spr ],

where j⇤ is defined in Theorem 1.

Proof. Recall the fact that for any N valued random variable X, its expectation can be written as a sum of its
tail probabilities, i.e., E[X] =

P
t�1 P[X � t]. We use this fact to bound the expected value of E[A⌧ ] as

E[A⌧ ] =
X

t�1

P[A⌧ � t],

(a)


X

t�1

P[⌧ � A�1(t)],

=
X

t�1

P[b⌧stab + b⌧spr � A�1(t)],



X

t�1

P

b⌧stab �

1

2
(A�1(t))

�
+
X

t�1

P

b⌧spr �

1

2

�
A�1(t)

��
,

 Aj⇤ +
X

t�Aj⇤+1

P

b⌧stab �

1

2

�
A�1(t)

��
+ E[A2b⌧spr ].

Step (a) follows from the definition of A�1(·) given in Theorem 1. The estimate for E[A(2b⌧spr)] follows by
noticing that this random variable can be coupled to the spreading time for a classical rumor spreading model,
which we do so in the sequel in Proposition 4. The first summation can be bounded by using estimates from
Lemma 6. We do so by applying a union bound over all agents and phases as follows. Fix some x � j⇤/2 in the
following calculations.

P[b⌧stab � x] = P
"

N[

i=1

b⌧ (i)stab � x

#
,



NX

i=1

P[b⌧ (i)stab � x],

=
NX

i=1

P
"

1[

l=x

�(i)
l = 1

#
,



NX

i=1

X

l�x

P
h
�(i)
l = 1

i
,

(a)


NX

i=1

X

l�x

2

2↵� 3

✓
K

2

◆✓⇠
K

N

⇡
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◆
A�(2↵�3)

l�1 ,

=
X

l�x
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2↵� 3
N

✓
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◆✓⇠
K

N

⇡
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l�1 ,

(b)


2

2↵� 3

X

l�x

A�3
l�1,
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In the above calculations, we use the bound from Lemma 6 in step (a) as x � j⇤/2. In step (b), we use

N
�K
2

�✓⇠
K
N

⇡
+ 1

◆


⇣
A j⇤

2 �1

⌘2↵�6
, which follows from the definition of j⇤ given in Theorem 1. Thus, we can

obtain the following.

X

t�Aj⇤+1

P

b⌧stab �

1

2

�
A�1(t)

��


X

t�Aj⇤+1

✓
2

2↵� 3

◆ X

l� 1
2A

�1(t)

A�3
l�1,



✓
2

2↵� 3

◆ X

t�Aj⇤+1

X

l� 1
2A

�1(t)

A�3
l�1,

(c)


✓
2

2↵� 3

◆ X

l� 1
2A

�1(Aj⇤+1)

A2lX

t=Aj⇤+1

A�3
l�1,



✓
2

2↵� 3

◆ X

l� j⇤
2

A2l

A3
l�1

<1.

Step (c) follows by swapping the order of summations. The condition A.2 in Section 3.1 satisfied by the sequence
(Aj)j2N ensures that the last summation is finite.

Proposition 4. The random variable b⌧spr is stochastically dominated by ⌧ (P )
spr .

Proof. We construct a coupling of the spreading process induced by our algorithm and a PULL based rumor

spreading on P . We construct the coupling as follows. First we sample the reward vectors (Y (i)
j (t))i2[N ],j2[K],t�0.

Then we can construct the random variable b⌧stab, which is a measurable function of the reward vectors. We

then sample the communication random variables of our algorithm (Z(i)
j )i2[N ],j�0. We then construct a PULL

based communication protocol with the random variables (Z(i)
j )i2[N ],j�b⌧stab

. Since b⌧stab is independent of

(Z(i)
j )i2[N ],j�0, the sequence of (Z(i)

j�b⌧stab
)i2[N ],j�b⌧stab

is identically distributed as (Z(i)
j )i2[N ],j�0.

Now, for the stochastic domination, consider the case where in the PULL based system, which starts at phase
(time) b⌧stab, only agent 1 has the rumor (best-arm). By definition of b⌧stab, any agent that contacts another agent
possesing the rumor (best-arm), is also aware of the rumor (best-arm). The stochastic domination is concluded
as at phase b⌧stab, many agents may be aware of the rumor (best-arm) in our algorithm, while in the rumor
spreading process, only agent 1 is aware of the rumor at phase b⌧ .

Proof of Theorem 1

Proof. We can conclude Theorem 1 by plugging in the estimates from Propositions 3 and 4 into Proposition
2.

Appendix D Analysis of the UCB Error Estimates

Lemma 6. For any agent i 2 [N ] and phase j such that
Aj�Aj�1

2+d
K
n e
� 1 + 4↵ log(Aj)

�2 , we have

E[�(i)
j ] 

2

2↵� 3

✓
K

2

◆✓⇠
K

N

⇡
+ 1

◆ 
1

A2↵�3
j�1

!
,

where �(i)
j is defined in Equation (6).
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Proof. As the algorithm recommends the most played arm in a phase, the arm that is recommended (i.e., O(i)
j )

must be payed by agent i at-least Aj�Aj�1

|S(i)
j |

times in phase j. This follows from an elementary pigeon hole

argument. Let S
(i) be the collection of all subsets S ⇢ {1, · · · ,K} such that bS(i)

⇢ S and 1 2 S. Let Aj be

a collection of all N valued tuples (a1, · · · adK
N e+2) 2 N s.t.

Pd
K
N e+2

m=0 am = Aj�1. We shall however, consider all

possible histories, i.e., Nd
K
N e+2.

E[�(i)
j ]

(a)


X

S2S(i)

P

2

664
[

(a1,···adK
N

e+2
)2NdK

N
e+2

�(i)
j (S; a1, · · · , adK

N e
)

3

775 ,

(b)


X

S2S(i)

P

2

664
[

(a1,···adK
N

e+2
)2NdK

N
e+2

[

l2S,l 6=1

T (i)
l (Aj)� T (i)

l (Aj�1) �
Aj �Aj�1

|S|

3

775 ,

(c)


X

S2S(i)

AjX

t=Aj�1+
Aj�Aj�1

|S(i)
j |

P

2

664
[

(a1,···adK
N

e+2
)2NdK

N
e+2

[

l2S,l 6=1

T (i)
l (t� 1)� T (i)

l (Aj�1) =
Aj �Aj�1

|S(i)
j |

� 1, I(i)t = l

3

775 ,

(d)


X

S2S(i)

AjX

t=Aj�1+
Aj�Aj�1

|S(i)
j |

X

l2S,l 6=1

P

2

664
[

(a1,···adK
N

e+2
)2NdK

N
e+2

T (i)
l (t� 1)� T (i)

l (Aj�1) =
Aj �Aj�1

|S(i)
j |

� 1, I(i)t = l

3

775 ,

(e)


X

S2S(i)

X

l2S,l 6=1

AjX

t=Aj�1+
Aj�Aj�1

|S(i)
j |

P
"
T (i)
l (t� 1) �

Aj �Aj�1

|S(i)
j |

� 1,UCB(i)
l (t) � UCB(i)

1 (t)

#
, (13)

(f)


X

S2S(i)

X

l2S,l 6=1

AjX

t=Aj�1+
Aj�Aj�1

|S(i)
j |

2t2(1�↵). (14)

Step (a) follows from an union bound over S(i). In step (b) we use the fact that if an arm l has to be the most

played, then it must be played at-least Aj�Aj�1

|S|
times. In step (c), we search over times, when the number of

times arm l has been played exceeds Aj�Aj�1

|S|
exactly. In step (d), we use an union bound over S. In step (e), for

any arm l 2 S, UCB(i)
l (t) = bµ(i)

l (t�1)+
r

↵ ln(t)

T (i)
l (t�1)

. In step (e), we ask that arm l and 1 has been played at-least

0 or more times in the past before time t and that the UCB index of arm l at agent i at time t, exceed that of
the index of the best arm. In step (f), we plug in the classical estimate from (Auer et al., 2002). This bound is
applicable in our case as 1 2 S and the arm gap between the best and the second best arm in S is at-least �.

Furthermore, the condition in the lemma Aj�Aj�1

2+d
K
n e
� 1+ 4↵ log(Aj)

�2 implies that for all t 2


Aj�1 +

Aj�Aj�1

|S(i)
j |

, Aj

�
,

the conditions in the bound in (Auer et al., 2002) is satisfied and is hence applicable. Notice that |S(i)
| 

�K
2

�
.

Thus, switching the order of summation and simplifying Equation 14, we get

E[�(i)
j ] 

✓
K

2

◆✓⇠
K

N

⇡
+ 1

◆ AjX

t=Aj�1+
Aj�Aj�1

|S(i)
j |

2t2(1�↵)

 2

✓
K

2

◆✓⇠
K

N

⇡
+ 1

◆Z Aj

Aj�1

u2(1�↵)du
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Algorithm 3 Asynch GosInE Algorithm (at Agent i)

1: Input: Communication Budget (Bt)t2N, UCB Parameter ↵, Slack �, " > 0

2: Initialization: bS(i), S(i)
0 according to Equations (2) and (3) respectively.

3: j  0
4: Aj = max

�
min{t � 0, Bt � j}, d(1 + j)1+"

e
�

. Reparametrize the communication budget

5: P
(i)
j ⇠ Unif[(Aj �Aj�1), (1 + �)(Aj �Aj�1)] . Uniformly distributed phase length

6: for Time t 2 N do

7: Pull - argmax
l2S(j)

i

✓
bµ(i)
l (t� 1) +

r
↵ ln(t)

T (i)
l (t�1)

◆

8: if t ==
Pj

y=0 P
(i)
y then

9: O
(i)
j  GET-ARM-PREV(i, t)

10: if O
(i)
j 62 S(j)

i then

11: U (i)
j+1  argmax

l2{U(i)
j ,L(i)

j }

⇣
Tl

⇣Pj
y=0 P

(i)
y

⌘
� Tl

⇣Pj�1
y=0 P

(i)
y

⌘⌘
. Most played arm in current

phase

12: L(i)
j+1  O

(i)
j

13: S(i)
j+1  

bS(i)
[ L(i)

j+1 [ U (i)
j+1 . Update set of playing arms

14: else

15: S(i)
j+1  S(i)

j .

16: j  j + 1
17: Aj = max

�
min{t � 0, Bt � j}, d(1 + j)1+"

e
�

. Reparametrize the communication budget

18: P
(i)
j ⇠ Unif[(Aj �Aj�1), (1 + �)(Aj �Aj�1)] . Update next phase length


2

2↵� 3

✓
K

2

◆✓⇠
K

N

⇡
+ 1

◆ 
1

A2↵�3
j�1

�
1

A2↵�3
j

!
.

Similarly, we also have a bound on the error probability in the case of random phase length system in the
following lemma.

Lemma 7. For any agent i 2 [N ] and every j 2 N such that
Aj�Aj�1

2+d
K
n e
� 1 + 4↵ log(Aj)

�2 , we have

E[�(i)
j 1j�H⇤ ] 

2

2↵� 3

✓
K

2

◆✓⇠
K

N

⇡
+ 1

◆ 
1

A2↵�3
j�1

!
,

where �(i)
j is defined in Equation (16).

Proof. The proof is identical to that in Lemma 6 upto Equation 13, where the upper limit of summation is
(1 + �)Aj in the asynchronous communication scenario. Continuing with the rest of the calculation, identical to
that in Lemma 6 yields the result.

Appendix E Asynchronous GosInE Algorithm

We give the pseudo code of the Asynchronous GosInE in Algorithm 3.

Appendix F Poisson Asynchronous Algorithm - Buildup to Proof of Theorem 2

In order to prove Theorem 2, we will state a more general algorithm in the sequel in Algorithm 5 and prove a
performance bound on it in Theorem 8. We shall then subsequently prove Theorem 8 in Appendix G and as a
corollary of the proof, deduce Theorem 2 in Appendix H.
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Algorithm 4 Asynch Arm Recommendation

procedure Get-Arm-Prev((i,t)) . Input an agent i and time t
m ⇠ P (i, ·) . Sample another agent

j  inf{r � 0 :
Pr

y=0 P
(m)
y � t} . Phase of agent m at time t

Y
(m)
j�1  

Pj�1
y=0 P

(m)
y , Y(m)

j�2  
Pj�2

y=0 P
(m)
y

return argmax
l2S(j�1)

m

✓
T (m)
l (Y(m)

j�1)� T (m)
l (Y(m)

j�2)

◆
. Most played arm in phase j � 1

Algorithm 5 Distributed Poisson Asynchronous MAB Regret Minimization (at Agent i)

1: Input Parameters: Communication Budget (Bt)t2N, UCB Parameter ↵, Slack �, " > 0

2: Initialization: bS(i), S(0)
i according to Equations (2) and (3).

3: j  0
4: Aj = max

�
inf{t � 0, Bt � j}, (1 + j)1+"

�
. Reparametrize the commuication budget

5: Pj ⇠ Poisson[(Aj �Aj�1), (1 + �)(Aj �Aj�1)] . Poisson distributed phase length
6: for Time t 2 N do

7: Pull arm - argmax
l2S(j)

i

✓
bµ(i)
l (t� 1) +

r
↵ ln(t)

T (i)
l (t�1)

◆

8: if t ==
Pj

y=0 Py then

9: O(j)
i  GET-ARM-PREV(i) . Given in Algorithm 4

10: if O(j)
i 62 S(j)

i then

11: U (i)
j+1  argmax

l2{U(i)
j ,L(i)

j }
(Tl(Aj)� Tl(Aj�1)) . The most played arm

12: L(i)
j+1  O(i)

j . Update the set of playing arms

13: S(i)
j+1  

bS(i)
[ L(i)

j+1 [ U (i)
j+1

14: else

15: S(i)
j+1  S(i)

j .

16: j  j + 1
17: Aj = max

�
inf{t � 0, Bt � j}, (1 + j)1+"

�
. Reparametrize the commuication budget

18: Pj ⇠ Poisson[(Aj �Aj�1), (1 + �)(Aj �Aj�1)]

This algorithm does not fit our framework exactly, as the communication budget is not necessarily met. In
particular, this algorithm only ensures that with high probability, the number of information pulls by agents
in the first t time slots is within the prescribed budget Bt. Thus, we present this algorithm in the Appendix
and not as a solution to the multi-agent MAB problem. In order to prove this result, we will need a further
assumption on the input parameters.

(A.3) - The communication budget (Bt)t2N and " > 0 is such that 9  > 0,
P

x�1 AAxe
�(Ax�Ax�1) < 1,

where (Ax)x2N is given in Equation (1).

Theorem 8. Suppose in a system of N � 2 agents connected by a communication matrix P satisfying assumption

A.1 and K � 2 arms, each agent runs Algorithm 5, with input parameters (Bt)t2N, and the UCB parameter

↵ > 3 and " > 0 satisfying assumptions A.2 and A.3 and � > 0 such that 9D > 0 with c(�) � 5
4D and

(3 + 2� + ln(4 + 2�)) � 5
4D

�1
, where c(�) = min

⇣
�
2 + ln

�
1 + �

2

�
, (1 + �) ln

⇣
2+2�
2+�

⌘
�

�
2

⌘
. Then the regret of any

agent i 2 [N ], after any time T 2 N is bounded by

E[R(i)
T ] 

0

@
d
K
N e+2X

j=2

1

�j

1

A 4↵ ln(T ) +
K

4
| {z }

Collaborative UCB Regret

+(1 + �)E[A
2b2+�c⌧ (P )

spr
] + bg1((Ax)x2N, �) +Nbg2((Ax)x2N, �)

| {z }
Cost of Asynchronous Infrequent Pairwise Communications

,
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where

bg1((Ax)x2N, �) = 2(1 + �)

0

B@A2d2+�ej⇤ +

✓
2

2↵� 3

◆X

l�3

A2l

A3
l�1

+ 2
X

x�d
j⇤
2 e

(Ad4d2+�exe)
(2(2↵�6)+2)e�c(�)(Ax+1�Ax)

1

CA ,

and

bg2((Ax)x2N, �) = 2

0

@A2
x0
e�c(�)(Ax0�Ax0�1) +

X

x�1

Axe
�c(�)A!x

1

A+
1

c(�)
+

(1 + �)

0

@2
X

x�1

AdAxe
e�c(�)(Ax�Ax�1) +N

X

t�1

e�(3+2�+ln(4+2�))A�1(t)

1

A ,

where j⇤ is given in Theorem 1, and x0 2 N is from Assumption A.2 in Section 3.1.

The proof of this theorem is carried out in Appendix G.

Appendix G Proof of Theorem 8

For every agent i 2 [N ] and phase j � 0, we shall denote by P
(i)
j 2 N to be the number of times agent i pulls

an arm in phase j. Notice from the conditions on the input parameter (pj)j2N that the following property is
satisfied - X

j�0

P[Pj  Aj �Aj�1] <1,

X

j�0

P[Pj � (1 + �)(Aj �Aj�1)] <1.
(15)

To make things simpler, we shall consider the following probability space. As before, it contains the reward and

communication random variables (Y (i)
j (t))i2[N ],j2[K],t�0 and (Z(i)

j )j�0,i2[N ]. For every j 2 [K], the collection

(Y (i)
j (t))t�0,i2[N ] is an i.i.d. Bernoulli random variable of mean µj . The interpretation being that if an agent i

pulls arm j for the lth time, it will receive reward Y (i)
j (l). Similarly, for each i 2 [N ], the sequence (Z(i)

j )j�0

is iid distributed as P (i, ·). The interpretation is that when agent i wishes to receive a recommendation at the

end of phase j, it will do so from agent Z(i)
j . In addition, we also assume that the probability space consists

of another independent sequence (P(i)
j )i2[N ],j�0, where for each i 2 [N ] and j � 0, the random variable P

(i)
j is

independent of everything else and distributed as a Poisson random variable with mean
�
1 + �

2

�
(Aj+1 �Aj).

G.1 Definition and Notations

To proceed with the analysis, define by a N valued random variable H⇤ as

H⇤ = inf
n
j
0
� 0 : 8i 2 [1, N ], 8j � j

0
,P(i)

j 2 [Aj �Aj�1, (1 + �)(Aj �Aj�1)]
o
,

Equations (15) imply from Borel Cantelli lemma that H⇤ < 1 almost-surely. We will need another random
variable � 2 N, which is defined as

� = sup

8
<

:t � 0 : 9i 2 [N ],
H⇤X

j=0

P
(i)
j � t

9
=

; .

In words, � represents the time when the last agent shift to phase H⇤. Similar to that done in the proof of

Theorem 1, we define a sequence of indicator random variables (�(i)
j )j�0,i2[N ] as follows. The definition is identical
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to the one used in the proof of Theorem 1, which we reproduce here for completeness. Fix some agent i 2 [N ] and
phase j � 0. Denote by S

(i) as the collection of all subsets S of [K] with cardinality dKN e+2, such that bS(i)
⇢ S

and 1 2 S. Clearly, |S(i)
| 

�K
2

�
. Denote by the tuples (a1, · · · , adK

N e+2) 2 Nd
K
N e+2 such that

Pd
K
N e+2

m=0 am � 0.

For any set S 2 S
(i) and tuples (a1, · · · , adK

N e+2) 2 Aj , denote by the event ⇠(i)j (S, a1, · · · , adK
N e+2) as

⇠(i)j (S, a1, · · · , adK
N e+2) :=

n
S(i)
j = S, Tl1(Aj�1) = a1, · · · , TldK

N
e+2

(Aj�1) = a
d
K
N e+2, bO

(i)
j 6= 1

o
.

Denote by ⌅(i)
j as the union of all such events above, i.e.,

⌅(i)
j :=

[

S2S(i)

0

BB@
[

(a1,··· ,adK
N

e+2
)2NdK

N
e+2

⇠(i)j (S, a1, · · · , adK
N e+2)

1

CCA .

Denote by �(i)
j as the indicator random variable, i.e.,

�(i)
j = 1

⌅(i)
j
. (16)

Observe that, as before, for all agents i 2 [N ] and phases j � 0, the random variable ⇠(i)j is measurable with

respect to the reward sequence (Y (i)
l )lAj . Furthermore, we have the almost-sure inequality that

⇠(i)j � 1
12S(i)

j , bO(i)
j 6=1,j�H⇤ .

This follows from the same reasoning as in Theorem 1 as ⇠(i)j considers all possible sample paths for communication
while 1

12S(i)
j , bO(i)

j 6=1,j�H⇤ is for a particular sample path of communications among agents. Notice that since the

phase lengths are random, we can only reason about the sample path for agent phases larger than or equal to H⇤.

Similar to before, we define the random variables b⌧ (i)stab, b⌧stab, b⌧
(i)
spr and b⌧spr. Denote by ⌧ = b⌧stab + b⌧spr. These

definitions from the Proof of Theorem 1 are reproduced here for completeness.

b⌧ (i)stab = inf{j
0
� j⇤ : 8j � j

0
,�(i)

j = 0},

b⌧stab = max
i2[N ]

b⌧ (i)stab,

b⌧ (i)spr = inf{j � b⌧stab : 1 2 S(i)
j }� b⌧stab,

b⌧spr = max
i2{1,··· ,N}

b⌧ (i)spr,

⌧ = b⌧stab + b⌧spr.

From the definitions, the statement and proof of Proposition 1 holds verbatim for the present algorithm as well.
We will need two additional definitions to help state our result. Denote by Tstab 2 N to be the first time when
all agents pull arms and are in phase b⌧stab or larger, i.e.,

Tstab = sup

8
<

:t � � : 9i 2 [N ],
b⌧stabX

j=0

P
(i)
j � t

9
=

; .

Similarly, define H to be the maximum over all agents phases at time Tstab, i.e.,

H = sup

(
j � 0 : 9i 2 [N ],

jX

l=0

P
(i)
l  Tstab

)
.

Similarly, denote by T as the first time when all agents pull arms in phase ⌧ or larger, i.e.,

T = sup

8
<

:t � 0 : 9i 2 [N ],
⌧X

j=0

P
(i)
j � t

9
=

;



The Gossiping Insert-Eliminate Algorithm for Multi-Agent Bandits

G.2 Structural Results

In this section, we give inequalities relating the random variables defined in the previous section, that will be
helpful in proving Theorem 2.

Lemma 9.

E[T ]  E[Tstab] + (1 + �)(E[A
H+(2⌧ (P )

spr �1)b2+�c+1
�AH ])

where the random variable ⌧ (P )
spr is independent of H.

Proof. The proof consists of three steps. First, we will construct a coupling with a standard PULL based rumor

process on the communication matrix P such that H and ⌧ (P )
spr are independent. Then we shall argue a stochastic

domination and for the constructed coupling show that, almost-surely, we have

T  Tstab + (1 + �)(A
H+(⌧ (P )

spr �1)b2+�c+1
�AH) (17)

where ⌧ (P )
spr is independent of H and st represents stochastic domination. This will then conclude the proof by

taking expectations on both sides.

(1) Coupling Construction - We proceed with the coupling as follows. We assume that our probability space

consists of the random variables (Y (i)
j )i2[N ],j2[K],l�0, (P

(i)
j )j�0,i2[N ], (Z

(i)
j )j�0,i2[N ] and ( bZ(i)

j )j�0,i2[N ]. The

sequence (Y (i)
j )i2[N ],j2[K],l�0 is independent of everything else and is used to construct the observed rewards

of agents. The sequence (P(i)
j )j�0,i2[N ] is independent of everything else and denotes the phase length random

variables of agents as before. The sequence ( bZ(i)
j )j�0,i2[N ] denotes a standard PULL based rumor spreading

process on P , independent of everything else. In other words, for each agent i 2 [N ], the sequence ( bZ(i)
j )j�0 is

i.i.d., with each element distributed according to the distribution P (i, ·). Thus, they represent the sequence of

callers called by agent i in the PULL based rumor process. The random communication sequence (Z(i)
j )j�0,i2[N ]

will be constructed such that it is independent of (Y (i)
j )i2[N ],j2[K],l�0, (P

(i)
j )j�0,i2[N ], and equal in distribution

to ( bZ(i)
j )j�0,i2[N ] such that the stochastic domination in Equation (17) holds.

To do so, we will recursively define a sequence of random times (ti)i�0 which are measurable with respect to the

agent rewards and phases, i.e., for all i � 0, ti 2 �((Y
(i)
j (l))i2[N ],j2[K],l�0, (P

(i)
j )j�0,i2[N ]). Let t0 = Tstab. We

know that Tstab is measurable only with respect to the reward random variables (Y (i)
j (l))i2[N ],j2[K],l�0 and the

phase lengths of the agents (P(i)
j )j�0,i2[N ]. For all i � 1, let ti be the first time after ti�1, such that all agents

have changed phase at-least once in the time interval [ti�1, ti]. More formally, we have

ti = inf

(
x > ti�1 : 8i 2 [N ], 9j 2 N s.t.

jX

l=0

P
(i)
l � ti�1,

j+1X

l=0

P
(i)
l  x

)
.

We construct another sequence of random variables (j(i)x )x�0,i2[N ], where for every agent i 2 [N ] and x � 0, j(i)x

is the first phase change of agent i in the time interval [tx, tx+1) of our algorithm, i.e.,

j(i)x = inf

(
j � 0 :

j�1X

l=0

P
(i)
l < tx,

jX

l=0

P
(i)
l � tx

)
,

where
P

�1
l=0 = 0. By construction observe that for all agents i 2 [N ] and all x � 0, the random variable j(i)x is

measurable with respect to the rewards and phase lengths.

Equipped with these definitions, we construct the communication random variables of our algorithm

(Z(i)
j )j�0,i2[N ] as follows. For every agent i 2 [N ] and x � 0, we let

Z(i)

j(i)2x

= bZ(i)
x .
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For an agent i 2 [N ], and any phase j 62 {j(i)x , x � 0}, we let Z(i)
j be i.i.d., from P (i, ·).

We only look at alternate intervals [t0, t1], [t2, t3] and so on because in our algorithm, an agent recommends the
most played arm in the previous phase. Thus, if an agent becomes aware of the best arm in interval say [t0, t1],
then it will definitely recommend it in phase [t2, t3], if asked, as since t2 � �, agent will recommend the best
arm, and moreover at-least one phase elapses after the agent receives the best arm.

(2) Stochastic Domination - We now conclude about the stochastic domination as follows. In the algorithm,
we will only consider even time intervals [t0, t1], [t2, t3] and so on, where an agent becomes newly aware of the
best arm. This is so since our recommendation algorithm only recommends the best arm in the previous phase.
At time t0, exactly one agent knows the rumor in the PULL rumor spreading process while potentially more
agents may be aware of the rumor (best-arm) in the algorithm. Furthermore, we consider that there is exactly
one communication request in the rumor spreading process per even time-interval, (i.e., in [t0, t1), [t2, t3) and so
on), while potentially many more can occur in our algorithm. Thus, we have the following almost-sure bound
under the afore mentioned coupling,

T  t
2⌧ (P )

spr
. (18)

(3) Deterministic Bounds on (tx)x�0- If we further establish that for all x � 0, almost-surely, we have

tx  Tstab + (1 + �)(AH+(x�1)b2+�c+1 �AH), (19)

then we can conclude the proof from Equations (18) and (19). To establish Equation (19), first observe
that Tstab � � almost-surely. Thus, if any agent i 2 [N ] will be in any phase j, for at-least Aj � Aj�1

number of arm-pulls and for at-most (1 + �)(Aj � Aj�1) number of arm-pulls. Thus, by definition at time
t0, we know that no agent is in phase H + 1 or beyond. Thus, at time t0 + (1 + �)(AH+1 � AH), we know
that all agents would have changed phase at-least once after t0. Thus, t1  t0+(1+�)(AH+1�AH) almost-surely.

We now make the above into an induction argument. For the base case, suppose that at time t0, all agents are
within phase H � which is true by definition. For all 0  x

0
 x, assume the induction hypothesis that

tx0+1  tx0 + (1 + �)(AH+x0
b2+�c+1 �AH+x0

b2+�c),

and that all agents at time tx0+1 are at phase H + (x
0
+ 1)b2 + �c or lower. Since tx � �, we know that in the

time interval [tx, tx + (1 + �)(AH+xb2+�c+1 � AH+xb2+�c)], all agents would have changed phase at-least once.
Thus, tx+1  tx+(1+�)(AH+xb2+�c+1�AH+xb2+�c). It now remains to conclude that all agents will be in phase
H + (x + 1)b2 + �c or lower at time tx + (1 + �)(AH+xb2+�c+1 � AH+xb2+�c). Notice that the maximum phase
any agent can be in at time tx+(1+ �)(AH+xb2+�c+1�AH+xb2+�c), given that it was in a phase H+xb2+ �c or
lower at time tx is bounded above by Proposition 6 as H +xb2+ �c+ b2+ �c. This then concludes the induction
step and hence we have for all x � 0, almost-surely, by a simple telescoping sum

tx  t0 + (1 + �)
x�1X

l=0

(AH+lb2+�c+1 �AH+lb2+�c),

 t0 + (1 + �)(AH+(x�1)b2+�c+1 �AH).

Lemma 10. For any agent i 2 [N ], the regret after it has pulled arms for T times is bounded by

E[R(i)
T ]  E[T ] +

K

4
+ 4↵

0

@
d
K
N e+1X

j=1

1

�j

1

A ln(T ).
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Proof. The proof of this Lemma follows similarly to that of Lemma 2. We can write the regret of any agent
i 2 [N ] as follows -

R(i)
T =

TX

t=1

µ1 � µ
I(i)
t
,

 T +
TX

t=T +1

µ1 � µ
I(i)
t
,

= T +
TX

t=T +1+1

KX

l=2

�l1I(i)
t =l

,

(a)
= T +

KX

l=2

�l

TX

t=T +1

1
I(i)
t =l

1
l2S(i)

⌧

In step (a), we use Proposition 1 that at time T , all agents are in a phase that is at-least ⌧ . Furthermore, from
Proposition 1 (recall that the statement and proof of Proposition 1 holds verbatim for the present case also)

implies almost-surely that, for all j � ⌧ , and all i 2 [N ], S(i)
j = S(i)

⌧ . Taking expectations on the last display
yields

E[R(i)
T ]  E[T ] +

KX

l=2

�l

TX

t=T +1

P[I(i)t = l, l 2 S(i)
⌧ ]

Using the same techniques as in the proof of Proposition 2, i.e., following all steps from Equation 12 onwards,
one obtains

KX

l=2

�l

TX

t=T +1

P[I(i)t = l, l 2 S(i)
⌧ ] 

0

@
d
K
N e+2X

j=2

1

�j

1

A 4↵ ln(T ) +
K

4

Lemma 11.

E[T ]  E[�] + (1 + �)E[Ab⌧stab
] + (1 + �)E[A4�] + (1 + �)E[A4d1+�eb⌧stab

] + (1 + �)E[A
2b2+�c⌧ (P )

spr
].

Proof. From Lemma 9, we know that

E[T ]  E[Tstab] + (1 + �)E[(A
H+(⌧ (P )

spr �1)b2+�c+1
�AH)],

(a)
 E[Tstab] + (1 + �)(E[A2H ] + E[A

2b2+�c⌧ (P )
spr

]),

(b)
 E[�] + (1 + �)E[Ab⌧stab

] + (1 + �)E[A2�+2d1+�eb⌧stab
] + (1 + �)E[A

2b2+�c⌧ (P )
spr

],

(c)
 E[�] + (1 + �)E[Ab⌧stab

] + (1 + �)E[A4�] + (1 + �)E[A4d1+�eb⌧stab
] + (1 + �)E[A

2b2+�c⌧ (P )
spr

].

Steps (a) and (c) follow from the elementary fact that for any two random variables X and Y and any invertible
function f(·), E[f(X + Y )]  E[f(2X)] + E[f(2Y )]. Step (b) follows from Lemma 12.

Lemma 12.

E[Tstab]  E[�] + (1 + �)E[Ab⌧stab
].
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Proof. The first inequality follows as the time taken to reach Tstab is upper bounded by the time it takes all
agents to reach phase b⌧stab after time �. However, by definition we know that all agents last in any phase j after
time � for at-most (1 + �)(Aj+1 � Aj) arm-pulls. The upper bound is concluded by noticing that an agent can
be in a phase no smaller than 0 at time � and subsequently it takes an agent a maximum of (1 + �)Ab⌧stab

time
to reach phase b⌧stab.

Lemma 13. Almost-surely, we have

H  �+ d1 + �eb⌧stab.

Proof. Notice that at time �, the maximum phase any agent can be in is �. This follows from the trivial upper
bound, where in each time step, an agent increases its phase by one in each time slot. After time �, we know by
definition, that any agent plays arms at-least Aj �Aj�1 times and at-most (1+ �)(Aj �Aj�1) in phase j. Thus,
the total number of phase changes an agent will have in the time interval [�+1, Tstab] is at-most A�1(Tstab��).
Thus, we get

H  �+A�1(Tstab � �),

(a)
 �+A�1((1 + �)Ab⌧stab

),

(b)
 �+A�1(Ad1+�eb⌧stab

),

 �+ d1 + �eb⌧stab.

Step (a) follows from Lemma 12, step (b) follows from convexity of (Ax)x�1 and the last inequality follows from
the definition of A�1(·).

G.3 Quantitative Results

In this section, we compute quantitative bounds in terms of the algorithm’ input parameters.

Proposition 5. For all x � 2 and � > 0,

P[H⇤ > l]  2N
X

x�l

e�c(�)(Ax�Ax�1),

where c(�) = min
⇣

�
2 + ln

�
1 + �

2

�
, (1 + �) ln

⇣
2+2�
2+�

⌘
�

�
2

⌘
.

Proof. From the definition of H⇤, we have

P[H⇤
� l] = P

2

4
N[

i=1

[

x�l

Poisson

✓✓
1 +

�

2

◆
(Ax �Ax�1)

◆
/2 [(Ax �Ax�1), (1 + �)(Ax �Ax�1)]

3

5 ,

 N
X

x�l

P

Poisson

✓✓
1 +

�

2

◆
(Ax �Ax�1)

◆
/2 [(Ax �Ax�1), (1 + �)(Ax �Ax�1)]

�
,

 N
X

x�l

(2e�2c(�)(Ax�Ax�1)).

In the last inequality, we use the classical large-deviation estimate for a Poisson random variable.

Lemma 14.

E[�]  2N

0

@A2
x0
e�c(�)(Ax0�Ax0�1) +

X

x�1

Axe
�c(�)A!x�1

1

A+
N

c(�)
,

where c(�) is given in Proposition 5 and x0 is from Assumption A.2 in Section 3.1.
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Proof. We start by computing the tail probability P[� > t]. The key observation to do so is the following
inequality. For every L � 0, we have

P[� � t]  P[H⇤
� L] + P

2

4
N[

i=1

LX

j=0

P
(i)
j  t

3

5 .

We will then compute E[�] by choosing L = A�1(t). We shall compute each of these terms separately.

P[H⇤
� A�(t)] = P

2

4
N[

i=1

[

x�A�1(t)

P
(i)
x 62 [(Ax �Ax�1), (1 + �)(Ax �Ax�1)]

3

5 ,

 N
X

x�A�1(t)

2e�c(�)(Ax�Ax�1),

where the second inequality follows from Proposition 5. Similarly, standard large deviation estimates for Poisson

random variables (observe that for all L,
PL

j=0 P
(i)
j is Poisson distributed with mean L ) and union bound gives

P

2

4
N[

i=1

LX

j=0

P
(i)
j  t

3

5  Ne�c(�)t.

Thus, we can bound E[�] as

E[�] 
X

t�1

P[� � t],

 2N
X

t�1

X

x�A�1(t)

e�c(�)(Ax�Ax�1) +N
X

t�1

e�c(�)t,

(a)
 2N

X

x�1

AxX

t=1

e�c(�)(Ax�Ax�1) +N
X

t�1

e�c(�)t,

(b)
 2N

0

@A2
x0
e�c(�)(Ax0�Ax0�1) +

X

x�1

Axe
�c(�)A!x�1

1

A+N

Z

t�0
e�c(�)tdt,

= 2N

0

@A2
x0
e�c(�)(Ax0�Ax0�1) +

X

x�1

Axe
�c(�)A!x�1

1

A+
N

c(�)
.

Step (a) follows from changing the order of summation (which is licit as all terms are positive) and step (b)
follows from the assumption A.2 in Section 3.1. Standard results from analysis gives that the series in the last
display is finite as c(�) > 0 and Ax  A2x  A3

x�1, where the second inequality follows from Assumption A.2 in
Section 3.1.

Lemma 15. For all � > 0 such that c(�) > 5
4D and (3 + 2� + ln(4 + 2�)) � 5

4D
�1

, where c(�) is given in

Proposition 5 and D is in Assumption A.2 in Section 3.1,

E[A4�]  2N
X

x�1

AAxe
�c(�)(Ax�Ax�1) +N

X

t�1

e�(3+2�+ln(4+2�))A�1(t).

Proof. Observe that E[A4�] 
P

t�1 P
⇥
� � 1

4A
�1(t)

⇤
. We use similar ideas as in Lemma 14 to bound the tail

probability. Recall that for any t � 1 and any L � 1, the following bound holds

P[� � t]  P[H⇤
� L] + P

2

4
N[

i=1

LX

j=0

P
(i)
j  t

3

5 ,
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 P[H⇤
� L] +NP


Poisson

✓✓
1 +

�

2

◆
AL

◆
 t

�
.

In this proof, we shall use L = A�1
�
A�1(t)

�
. Thus,

P

� �

1

4
A�1(t)

�
 P

⇥
H⇤
� A�1

�
A�1(t)

�⇤
+NP


Poisson

✓✓
1 +

�

2

◆
AA�1(A�1(t))

◆


1

4
A�1(t)

�
,

= P
⇥
H⇤
� A�1

�
A�1(t)

�⇤
+NP


Poisson

✓✓
1 +

�

2

◆
A�1(t)

◆


1

4
A�1(t)

�
,

 2N
X

x�A�1( 1
M A�1(t))

e�c(�)(Ax�Ax�1) +Ne�(3+2�+ln(4+2�))A�1(t).

The last display follows from Proposition 5 and standard Poisson random variable Cherno↵ bound. Thus, we
can bound E[A4�] as

E[A4�] 
X

t�1

P

� �

1

4
A�1(t)

�
,

 2N
X

t�1

X

x�A�1(A�1(t))

e�c(�)(Ax�Ax�1) +N
X

t�1

e�(3+2�+ln(4+2�))A�1(t),

(a)
= 2N

X

x�1

A(Ax)X

t=1

e�c(�)(Ax�Ax�1) +N
X

t�1

e�(3+2�+ln(4+2�))A�1(t),

= 2N
X

x�1

AAxe
�c(�)(Ax�Ax�1) +N

X

t�1

e�(3+2�+ln(4+2�))A�1(t).

We will choose � su�ciently large so that both the series are convergent. This is possible as the maps � �! c(�)
and � �! (3+2�+ln(4+2�)) are non-decreasing and lim�!1 c(�) = lim�!1(3+2�+ln(4+2�)) =1. Observe
that since Ax  eDx, for all large x, we have A�1(t) � 1

D ln(t). Thus, if c(�) � 5
4D and (3+2�+ln(4+2�)) > D�1,

both series are convergent.

Lemma 16. For any C � 2,

E[ACb⌧stab
]  A

d
C
2 ej⇤ +

✓
2

2↵� 3

◆X

l�3

A2l

A3
l�1

+ 2
X

x�d
j⇤
2 e

(AdCxe)
(2(2↵�6)+2)e�c(�)(Ax�Ax�1),

where c(�) is given in Proposition 5 and j⇤ is given in Theorem 1.

Proof. We start with the definition of expectation and repeatedly applying union bound yields,

E[ACb⌧stab
] =
X

t�1

P[ACb⌧stab
� t],



X

t�1

P

b⌧stab �

1

C
A�1(t)

�
,

 A
d
C
2 ej⇤ +

X

t�AdC
2

ej⇤+1

P

b⌧stab �

1

C
A�1(t)

�
,

 A
d
C
2 ej⇤ +

X

t�AdC
2

ej⇤+1

P

2

4
N[

i=1

[

l� 1
C A�1(t)

�(i)
l = 0

3

5 ,

 A
d
C
2 ej⇤ +

X

t�AdC
2

ej⇤+1

NP

2

4
[

l� 1
C A�1(t)

�(i)
l = 0

3

5 ,
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 A
d
C
2 ej⇤ +

X

t�AdC
2

ej⇤+1

N
X

l� 1
C A�1(t)

⇣
P[�(i)

l = 0, l � H⇤] + P[�(i)
l = 0, l < H⇤]

⌘
,

 A
d
C
2 ej⇤ +

X

t�AdC
2

ej⇤+1

N
X

l� 1
C A�1(t)

⇣
P[�(i)

l = 0, l � H⇤] + P[l < H⇤]
⌘
,

= A
d
C
2 ej⇤ +

X

t�AdC
2

ej⇤+1

N
X

l� 1
C A�1(t)

P[�(i)
l = 0, l � H⇤] +

X

t�AdC
2

ej⇤+1

X

l� 1
C A�1(t)

NP[l < H⇤],

(a)
 A

d
C
2 ej⇤ +

✓
2

2↵� 3

◆X

l�3

A2l

A3
l�1

+
X

t�AdC
2

ej⇤+1

X

l� 1
C A�1(t)

NP[l < H⇤].

Step (a) follows as C � 2, and hence, the first summation follows from identical calculations as carried out in
Proposition 3. This is so as the bound in Lemma 6 and in Lemma 7 are identical. Thus, the first series is upper

bounded by
⇣

2
2↵�3

⌘P
l�3

A2l

A3
l�1

. We shall now estimate the second series.

X

t�AdC
2

ej⇤+1

X

l� 1
C A�1(t)

NP[l < H⇤] 
X

l�d
j⇤
2 e

AdCleX

t=AdC
2

ej⇤+1

NP[l < H⇤],



X

l�d
j⇤
2 e

NAdCleP[l < H⇤],

(b)


X

l�d
j⇤
2 e

N2AdCle

X

x�l

2e�c(�)(Ax�Ax�1),

= N2
X

x�d
j⇤
2 e

xX

l=d
j⇤
2 e

AdCle2e
�c(�)(Ax�Ax�1),

 N2
X

x�d
j⇤
2 e

xAdCxee
�c(�)A!x�1 ,

(c)


X

x�d
j⇤
2 e

(AdCxe)
2(2↵�6)+22e�c(�)(Ax�Ax�1),

(d)
< 1.

Step (b) follows from Proposition 5 and in step (c), we use the fact that for all x � j⇤

2 , we have N  A2↵�6
x .

Step (d) follows from Assumption A.2 that for all su�ciently large l, A2l  A3
l , which on iterating yields that

for all large x and any C � 2, we have ACx  A3dlog2(C)e

x . Thus, we have the following chain of inequalities.

X

x�d
j⇤
2 e

(AdCxe)
2(2↵�6)+22e�c(�)(Ax�Ax�1) 

X

x�d
j⇤
2 e

(Ax)
3dlog2(C)e(2(2↵�6)+2)2e�c(�)(Ax�Ax�1),

(e)
 D1

X

x�2

AD2
x e�cA!x�1 <1.

for some D1, D2,!
0
> 0. Step (e) follows as we can replace the tail terms of the series with Ax � Ax�1 � A!

x�1

from Assumption A.2. The finiteness of the series in (e) is a standard fact from real analysis and can be proven
for instance through a Taylor series approximation of the exponential function.

G.4 Proof of Theorem 8

The proof of Theorem 2 is concluded by using estimates in Lemmas 14 and 16 into Lemmas 11 and 10.
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Appendix H Proof of Theorem 2

The proof follows identical steps as that of Theorem 8, with the exception that H⇤ = � = 0 almost-surely. More
precisely, substituting these two facts in Lemma 11 and re-using all the remaining structural and quantitative
results from the proof of Theorem 8 will yield the desired result.

Appendix I Auxillary Results

Proposition 6. For each � > 0, y � 0 and convex sequence (Aj)j�0, we have

sup{j + x � 0 : 9j  y + 1, (Aj+x �Aj)  (1 + �)(Ay+1 �Ay)}  y + b2 + �c

Proof. Let x � 0 and j  y + 1 be such that

(Aj+x + (1 + �)Ay)  (1 + �)Ay+1 +Aj . (20)

Now since j  y + 1, and (Al)l�0 is non-decreasing, the above inequality implies

Aj+x + (1 + �)Ay

2 + �
 Ay+1.

Now, let j + x = y + b2 + �c+ k, for some k � 0. From convexity of (Aj)j�1, we have

A
y+ b2+�c+k

2+�


Aj+x + (1 + �)Ay

2 + �
 Ay+1

But for all k � 1, we have A
y+ b2+�c+k

2+�
> Ay+1 and hence k = 0 is the only possibility such that Equation (20)

holds.

Appendix J Proof of Theorem 3

Proof. In order to prove the bound, we shall consider a system of full interaction among agents, where there
are no constraints on communications. In this system, each agent after pulling an arm and observing a reward,
communicates this information (the arm pulled and reward observed) to central board. Thus, at the beginning
of each time-step, every agent has access to the entire system history (arms pulled and rewards obtained) up-to
the previous time step, by which to base the current time step’s action (arm pull) on. As all agents have access
to the same history at the beginning of a time step, the optimal strategy to minimize per agent regret is one
where in each time step, all agents play the same arm. Hence, this system is equivalent to a single leader

playing arms, such that on playing any arm at any time, the leader observes N i.i.d. reward samples from the
chosen arm, each corresponding to the obtained reward by the agents. From henceforth, we mean by the full
interaction setting, as one wherein a single leader agent pull an arm at each time step, and observes N i.i.d.
reward samples from the chosen arm.

By construction, a lower bound for regret incurred by the leader agent in the full interaction setting forms a lower
bound on the per-agent regret in our model with communication constraints. This is so, since the leader agent
in full interaction setting can ‘simulate’ any feasible policy of any agent i 2 [N ] with communication constraints
among agents. Notice that each time the leader agent in the full-interaction setting plays an arm, it receives N
i.i.d. samples of rewards, corresponding to the reward on that arm obtained by the N agents. We will consider
an alternate system where a fictitious leader agent plays for NT time steps, where at each time, the fictitious
agent is playing arms, as a measurable function of its observed history. From standard results, (for eg. (Lai and
Robbins, 1985)), the total regret of the fictitious agent, after NT arm-pulls satisfies

lim inf
T!1

E[R(fictitious)
NT ]

ln(NT )
�

0

@
K�1X

j=1

�j

KL(µj , µ1)

1

A , (21)
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Now, we shall argue that the preceding display implies the desired lower bound on per-agent regret in the full
interaction setting. Fix some a 2 {0, · · · , N � 1}. Denote, by the regret incurred by the fictitious agent at time

steps a,N + a, · · · , N(T � 1) + a as R(f)
a . Clearly

PN
a=1 R

(f)
a = E[R(fictitious)

NT ].

Denote by⇧agent to be the set of consistent policies for the agents in the full-interaction setting and by⇧fictitious

as the set of all consistent policies for the fictitious agent. Denote by the set of policies e⇧fictitious ⇢ ⇧fictitious,

as those policies for the fictitious agents, where for any policy ⇡ 2 e⇧fictitious, the arms played at time instants
N, 2N, · · · , NT , belong to ⇧agent. Furthermore, for all a 2 {1, · · · , T}, and all b 2 {1, · · · , N � 1}, and all

⇡ 2 e⇧fictitious, the arm chosen by ⇡ at time instant aN is the same as the arm chosen at time-instant aN + b.

In other words, the the set of policies e⇧fictitious are the ones that any agent under the full interaction setting of
our model can play. This definitions now give us for any a 2 {0, · · · , N � 1}

inf
⇡2⇧agent

E[R(i)
T ] = inf

⇡2e⇧fictitious

R
(f)
a ,

= inf
⇡2e⇧fictitious

1

N

NX

a=1

R
(f)
a ,

= inf
⇡2e⇧fictitious

1

N
E[R(fictitious)

NT ],

� inf
⇡2⇧fictitious

1

N
E[R(fictitious)

NT ].

The first equality follows as under any policy in e⇧fictitious, the arms played by the fictitious agent only chooses
potentially new arms to play at instants N, 2N, · · · . Now, using Equation (21), we get from the previous display,
that for any policy ⇡ 2 ⇧agent,

lim inf
T!1

E[R(i)
T ]

ln(NT )
�

0

@ 1

N

X

j�1

�j

KL(µj , µ1)

1

A .

Appendix K Proof of Corollary 5

In order to prove the corollary, we first establish that Ax  2x� , for all small " in Equation (1). Notice from
Equation (1) that for all x 2 N, we have

Ax = max
�
min{t 2 N : Bt � x}, d(1 + x)1+"

e
�
,

= max
�
min{t 2 N : Bt � x}, d(1 + x)1+"

e
�
,

 max
�
x� , (1 + x)1+"

�
,

 max(2x� , 2x1+"),

= 2x� ,

where the last equality follows since " < � � 1. Furthermore, for all x � x0 where " < � ln(x0)
ln(x0+1) � 1, we have

Ax = x� . Such a x0 exists since � � 1 > 0. Moreover, from definition of Ax, we have Ax � x� , for all x.

Recall that g((Ax)x2N) = Aj⇤ + 2
2↵�3

P
l� j⇤

2 �1
A2l+1

A3
l�1

. We first bound the series term in as follows

X

l� j⇤
2 �1

A2l+1

A3
l�1

(a)


X

l�2

2
(2l + 1)�

(l � 1)3�
, (22)
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 2
X

l�2

3�
1

(l � 1)2�
,

 2
⇡2

6
3� . (23)

We now bound j⇤ in this case. Recall that

j⇤ = 2max

✓
A�1

 ✓
N

✓
K

2

◆✓⇠
K

N

⇡
+ 1

◆◆ 1
(2↵�6)

!
+ 1,min

(
j 2 N :

Aj �Aj�1

2 + dKN e
� 1 +

4↵ log(Aj)

�2
2

)◆
,

 2max

 
K

3
�(2↵�6) + 1,min

(
j 2 N :

j� � (2(j � 1))�

2 + dKN e
� 1 +

4↵ log(j�)

�2
2

)!
,

 2max

 
K

3
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(
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�

8↵ log(j�)

�2
2

)!
,

 2max
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@K
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�(2↵�6) ,
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2 + dKN e

�2
2

! 1
��1

1

A .

Thus, we have

Aj⇤  2(j⇤)� ,

 4max

0

@K
3

(2↵�6) ,

 
16↵

2 + dKN e

�2
2

! �
��1

1

A . (24)

. Thus from Equations (23) and (24), we get that

g((Ax)x2N) 
4

2↵� 3

⇡2

6
3� + 4max

0

@K
3

(2↵�6) ,

 
16↵

2 + dKN e

�2
2

! �
��1

1

A .

The proof is completed thanks to the formula in Corollary 17.

Appendix L Impact of Gossip Matrix P

Corollary 17. Suppose N � 2 agents are connected by a d-regular graph with adjacency matrix AG having

conductance � and the gossip matrix P = d�1AG. If the agents are using Algorithm 1 with parameters satisfying

assumptions in Theorem 1, then for any i 2 [N ] and T 2 N

E[R(i)
T ]  4↵ ln(T )

0

@
d
K
N e+2X

j=2

1

�j

1

A+
K

4
| {z }

Collaborative UCB Regret

+A
2C log(N)

�
+ g ((Ax)x2N) +Aj⇤ + 1

| {z }
Cost of Pairwise Communications

,

where g(·) is from Theorem 1, and C > 0 is an universal constant stated in Lemma 19 in the Appendix. Similarly,

if all agents run Algorithm 3 with assumptions as in Theorem 2, then

E[R(i)
T ]  4↵ ln(T )

0

@
d
K
N e+2X

j=2

1

�j

1

A+
K

4
| {z }

Collaborative UCB Regret

+(1 + �)A
2b2+�cC log(N)

�
+ bg ((Ax)x2N, �) + 1

| {z }
Cost of Pairwise Communications

,

where bg(·) is given in Theorem 2.

Before providing the proof, we provide a special case of above to be able to derive some intuition.



The Gossiping Insert-Eliminate Algorithm for Multi-Agent Bandits

Corollary 18. Suppose N � 2 agents are connected by a d-regular graph with adjacency matrix AG having

conductance � and the gossip matrix P = d�1AG. Suppose the communication budget scales as Bt = bt1/�c, for
all t � 1, where � > 1 is arbitrary. If the agents are using Algorithm 1 with parameters satisfying assumptions

in Theorem 1, then for any i 2 [N ] and T 2 N

E[R(i)
T ]  4↵ ln(T )

0

@
d
K
N e+2X

j=2

1

�j

1

A+
K

4
| {z }

Collaborative UCB Regret

+

✓
2C

log(N)

�

◆�

| {z }
Impact of Gossip Matrix

+2
3�

2↵� 3

⇡2

6
+ (j⇤)� + 1

| {z }
Constant Independent of P

,

where j⇤ is a constant independent of the gossip matrix P , depending only on N,K and �2 (given in Theorem

1).

We now prove Corollary 17.

Proof. The proof follows if we establish that E[A
2⌧ (P )

spr
]  A 2C log(N)

�
+ 1 and E[A

2b2+�c⌧ (P )
spr

]  A 2b2+�cC log(N)
�

+ 1.

We can bound them using the main result from (Chierichetti et al., 2010), restated as Lemma 19 in the sequel.
That lemma in particular gives that, one can compute E[A

2⌧ (P )
spr

] as follows.

E[A
2⌧ (P )

spr
]  A 2C log(N)

�
+

X

t�A 2C log(N)
�

P[A
2⌧ (P )

spr
� t],

 A 2C log(N)
�

+
X

l�1

P
h
A

2⌧ (P )
spr
� A 2Cl log(N)

�

i
A 2Cl log(N)

�
,

 A 2C log(N)
�

+
X

l�1

P

2⌧ (P )

spr �
2Cl log(N)

�

�
A 2Cl log(N)

�
,

(a)
 A 2C log(N)

�
+
X

l�1

e�4llog(N)A 2Cl log(N)
�

,

(b)
 A 2C log(N)

�
+
X

l�1

e�2llog(N),

(c)
 A 2C log(N)

�
+ 1.

In step (a), we use the estimate from Lemma 19. In step (b), we use the additional assumption in the corollary
that Al  eDl, for all D > 0. Thus, we can choose D  �

C to arrive at the conclusion in step (b). In step (c), we
use N � 2 to bound the geometric series. Similar computation will yield the bound on E[A

2b2+�c⌧ (P )
spr

].

Lemma 19. There exists an universal constant C > 0, such that for every d � 2 regular graph on N vertices

with conductance �, the spreading time of the standard PULL process completes in time ⌧ (P )
spr which satisfies for

all l 2 N,

P

⌧ (P )
spr � Cl

log(N)

�

�
 N�4l.

Proof. The main result (Lemma 6) of (Chierichetti et al., 2010) gives that there exists a constant C > 0, such
that for all d-regular graphs with conductance �, the spreading time satisfies

P

⌧ (P )
spr � C

log(N)

�

�
 N�4.

Now, given any l 2 N, we can now divide the time into intervals
h
0, C log(N)

�

i
,
h
C log(N)

� , 2C log(N)
�

i
, · · ·

,
h
C(l � 1) log(N)

� , Cl log(N)
�

i
. For the event

n
⌧ (P )
spr � Cl log(N)

�

o
to occur, we need the spreading to be not finished
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in each of the l intervals. However, at the beginning of each interval, we know that at-least one node is informed
of the rumor. Thus, the probability, that the rumor spreading does not complete in a single interval is at-most
N�4, which follows from monotonicity, where we can bound by saying that exactly one worst-case node is aware
of the rumor. As the sequence of callers is independent across intervals, the probability that rumor spreading
fails in all l intervals is then at-most N�4l.

Appendix M Regret Communication Tradeo↵

Corollary 20. Suppose, Algorithm 1 is run with K arms and N agents connected by a gossip matrix P , with

two di↵erent communication schedules (A(1)
x )x2N and (A(2)

x )x2N, such that limx!1

A(1)
x

A(2)
x

= 0. Then there exist

positive constants N0,K0 2 N (depending on the two communication sequences), such that for all N � N0 and

K � K0, and P , the cost of communications in the regret bound in Equation (4) is ordered as

g((A(1)
x )) + E[A(1)

2⌧ (P )
spr

] � g((A(2)
x )) + E[A(2)

2⌧ (P )
spr

].

Proof. Consider a fixed (A(1)
x )x2N and (A(2)

x )x2N, such that limx!1

A(1)
x

A(2)
x

= 0. The ordering on E[(A(P )
2⌧spr )

(1)] 

E[(A(P )
2⌧spr )

(2)] follows trivially as P is fixed for the two cases. It su�ces to show that there exist positive constants

N0 and K0 (depending on (A(1)
x )x2N and (A(2)

x )x2N)), such that for all N � N0 and K � K0, g(A
(1)
x )  g(A(2)

x ).

If N or K is su�ciently large, then (j⇤)(i) = 2(A�1)(i)
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Notice that A(2)
(j⇤)(2)

� A(1)
(j⇤)(1)

> 0 and scaling (is monotone non-decreasing) with N and K. In other words, for

fixed K, limN!1(A(2)
(j⇤)(2)

� A(1)
(j⇤)(1)

) = 1 and for fixed N , limK!1(A(2)
(j⇤)(2)

� A(1)
(j⇤)(1)

) = 1. This follows as

(A(i)
x )x�1 is super-linear for i 2 {1, 2} and limx!1

A(1)
x

A(2)
x

= 0. From the hypothesis that the two communication

sequences satisfy assumption A.2, we have that 2
2↵�3

✓P
l�1

A(1)
2l+1

(A(1)
l�1)

3

◆
<1 and independent of N and K. Thus,

for all large N or K, Equation (25), simplifies to g(A(2)
x )� g(A(1)

x ) > 0.

Appendix N An Algorithm without using agent ids

The initialization in Line 2 of Algorithms 1 and 3 relied on each agent knowing its identity. However, in many
settings, it may be desirable to have algorithms that do not depend on the agent’s identity. We outline here a
randomized initialization procedure in Line 2 to convert Algorithms 1 and 3 to one without using agent ids. Fix
some � 2 (0, 1). We replace Line 2 in Algorithms 1 and 3 with a randomization, where each agent i 2 [N ] chooses

independently of other agents, a uniformly random subset of size

⇠
ln
⇣

1
�

⌘
K
N

⇡
+2 from the set of K arms as S(i)

0 .

Each agent i, then subsequently chooses a random subset of size

⇠
ln
⇣

1
�

⌘
K
N

⇡
uniformly at random from S(i)

0 as

its ‘sticky set’ bS(i). The rest of the algorithms from Line 3 will be identical. One can then immediately see that
the regret guarantees stated in Theorems 1 and 2 hold verbatim for this modification, with probability at-least
1��, where the probability is over the initial random assignment of the sets bS(i) to agents. More precisely, with
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probability at-least 1� �, the above random initialization ensures that there exists an agent i 2 [N ], such that
the best arm 1 2 bS(i). On this event, the regret guarantees along with the same proof of Theorems 1 and 2 hold.
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