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A Proof of Lemma [I]

Proof. Using the assumption that F' is G-Lipschitz continuous, we have

|F(2) — F(y)|=[Eynpa[F(z + 6v) — F(y + 6v)]| (15)
<E,.pa[[F(z+ 6v) — F(y + 6v)]] (16)
<E,.p4[G||(z + 6v) — (y + ov)|] (17)
=G|z —yl|, (18)
and
|F(z) — F(2)|=|E,~pa[F(z + 6v) — F(z)]| (19)
<E,.pa[|F(z + 6v) — F(z)]] (20)
<E,~pa[Gd][v]] (21)
<4G. (22)

If F' is G-Lipschitz continuous and monotone continuous DR-submodular, then F' is differentiable. For Vz < y,
we also have

VF(z) > VF(y), (23)

and
F(x) < F(y). (24)

By definition of F', we have F is differentiable and for Vz < v,

VF(x) — VF(y) =VE,.pa[F(x + 0v)] — VE, pga[F (y + v)] (25)
=E,.pa[VF(x + dv) — VF(y + 0v)] (26)
ZEUNBd [0} (27)
=0, (28)
and
F(z) = F(y) =Eypal F(z + 60)] = Eypal F(y + )] (29)
=E, pga[F(x + dv) — F(y + dv)] (30)
SEUNBUZ [0} (31)
=0, (32)
i.e., VF(z) > VF(y), F(z) < F(y). So F is also a monotone continuous DR-submodular function. O

B Proof of Theorem [1

In order to prove Theorem (1} we need the following variance reduction lemmas [Shamir} [2017, |Chen et al.| 2018b],
where the second one is a slight improvement of Lemma 2 in [Mokhtari et al [2018a] and Lemma 5 in [Mokhtari

2018h)].
Lemma 4 (Lemma 10 of 2017]). It holds that

Eyogat [%(F(z + 0u) — F(z — du))u|z] = VF(2), (33)

E, g [||%(F(z +6u) — F(z — du)u— VE()|2]2] < cdG?, (34)

where ¢ 1s a constant.
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Lemma 5 (Theorem 3 of |Chen et al., 2018b|). Let {a;}!_, be a sequence of points in R™ such that ||a; — a;_1]|<
Go/(t+s) for all 1 <t < T with fized constants Go > 0 and s > 3. Let {a;}}_; be a sequence of random variables
such that E[a;|Fi—1] = a; and E[||a; — ai]|?|Fi—1] < o2 for every t > 0, where Fy_1 is the o-field generated by
{a;}t_, and Fo = @. Let {d;}1_, be a sequence of random variables where dgy is fized and subsequent d; are
obtained by the recurrence

di = (1 — p)di—1 + pray (35)

with py = W Then, we have

Ellla; — di|?) < —2

S s+ P )

where Q £ max{||ag — do|*(s +1)*/3,40% + 3G3/2}.

Now we turn to prove Theorem [T}

Proof of Theorem[]] First of all, we note that technically we need the iteration number 7' > 4, which always
holds in practical applications.

Then we show that Vt =1,...,T + 1, x; € Ds. By the definition of x;, we have z; = Zi;} 7. Since v;’s are

non-negative vectors, we know that x;’s are also non-negative vectors and that 0 = z; < 2o < ... < xpyp. It
suffices to show that 71 € Ds. Since x4 is a convex combination of vy, ..., v and v;’s are in Dy, we conclude
that zp41 € Ds. In addition, since v;’s are also in K — 61, 744 is also in K — 1. Therefore our final choice
Z7y1 + 01 resides in the constraint /.

Let z; £ 2, + 61 and the shrunk domain (without translation) D§ £ Djs + 01 = ]_[?:1[57 a; — 8] € D. By Jensen’s
inequality and the fact F' has L-Lipschitz continuous gradients, we have

IVF(z) = VE)|I< Lllz -yl (37)
Thus,
~ ~ ~ v ~
F(z4) = F(ar) =F(z+ o) = F(=) (38)
1_~ L
>5VE(z) v — o[l (39)
1_ - L
> VE(2) o = 5 D (40)
1/ ~ _ L
== (7 v+ (VE (o) = 30)Tvr) = 555 D3 (41)

Let z} £ arg MAax, e pr Ak F(z). Since x%, 2, € D, we have v} 2 (25 —2)V0 € Ds. We know 2, +v; = x5V 2 € D

and
vy +01 = (25 —x¢) V1 < xj. (42)

Since we assume that F' is monotone continuous DR-submodular, by Lemma [1f F' is also monotone continuous
DR-submodular. As a result, F' is concave along non-negative directions, and VI is entry-wise non-negative.
Thus we have

F(z +v}) — F(z) <VF(z) v} (43)
<VF(z)" (3 - 61). (44)

Since x5 — 01 € K, we deduce

g/ v =g/ (x5 — o1) (45)
=V F(z) " (xf —01) + (3. — VF(2))" (x} — 61) (46)
>F(z 4+ 0f) — F(2) + (3o — VF(2)) " (2 — 61) (47)
>F(x}) — F(z) + (G — VF(2)) T (23 — 61). (48)
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Therefore, we obtain

d v+ (VE(z0) = §0) Toe > F(a5) = F(z) + (VE(20) = o) " (0 — (2§ — 61)). (49)

By plugging Eq. into Eq. , after re-arrangement of the terms, we obtain
. L
het < (1= 2+ 1 (VF() — 30)T (05— 61) ~w) + 575 D3, (50)

where h; £ F(z%) — F(2). Next we derive an upper bound for (VF(z) — g;) " (x5 — 01) — v;). By Young’s
inequality, it can be deduced that for any 5; > 0,

(VE(1) = 97 (5 - 51) = 0) SLITE0) = 3+ - 01) = P G1)

<X |VF() - gt||2+7D2 62)

Now let F; £ @ and F; be the o-field generate by {g1,..., 1}, then by Lemma {4, we have

Bl (Fy) — Fli) el For] = VE(z0) (53)
and J
E[Ilﬁ(F(yL) — Fy;))uei — VF(2)|?|Fioi] < cdG?. (54)
Therefore,
2 d
E[g:|Fi—1] = BtZTS (i) = Fyp:))ue,il Fei] (55)
=VFE(z), (56)
and
Elllg: — VF(z)|1%| Fo1] QZE — F(y;))uri — VE(z)|* Fra] (57)
c 2
< dBCj (58)

By Jensen’s inequality and the assumption F'is L-smooth, we have

Dy < 2LD,

IVE(2) — VE(z1)||< L T <1+3"

(59)

Then by Lemmawith s=3,dy = g, Vt > 0,0 = g¢, ap = VF(zt),Vt >1,a0 = Vﬁ'(zl),Go = 2L Dy, we have

Q

E[|VE(z) — g:]|%] < (e

(60)

where Q £ max{||VF(x; 4 01)||242/3, % + 6L2D?}. Note that by Lemma we have ||[VF(z)||< G, thus we
can re-define Q = max{4?/3G?, % +6L2D?}.
Using Egs. , and and taking expectation, we obtain

1 1 {85 Q D? L 1 D,Q'/? L
E[hty1] < (1 - ?)E[ht] + (2 S + 28, ) + ﬁzﬂ (1- T)]E[ht] + 7T(t1+4)1/3 + ﬁD (61)



Black Box Submodular Maximization: Discrete and Continuous Settings

D (t+4)1/3

ol Using the above inequality recursively, we have

where we set 3; =

N L DiQ? L
E[hri1] <(1 - T) (F(x3) — F(o1) +Z tl_f?4 iz T D2
S = 1Q1/2 dz L
<G - Py + 225 [T L
B 5 1/2
<e YF(xf) — F(61)) + D1§ g(T +4)28 4+ ;TD%
- - D,Q'/? 2/3 L o
(Fa3) - Fon) + 222 aryera 4 L ps

A e = 3D,QY? LD?
<e V(F(a}) — F(51)) + T11/3 L

By re-arranging the terms, we conclude

1

(1= )P (25) = E[F (2r41)] < — 7 F(51) + 3D1QY? | LD

T3 2T

3D,QY? LD?
= T3 2T’

where the second inequality holds since the image of F'is in R,.

By Lemma we have F(zp41) < F(zp41) 4 6G and

F(x}) > F(z*) — 6GVd > F(z*) — 6G(Vd +1).
Therefore,

1/2 2
(1- %)F(:c*) — E[F(er11)] < 3DTlf/23 + L;;l +0G(1+ (Vd+1)(1 - é)).

C Proof of Theorem 2|

Proof. By the unbiasedness of F and Lemma |4 we have

(F(yy) = Flyr )il Foor] =E[E]
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where z; = 2; + 01, and

Efll55( (v's) = F(yr)uei — VE(2) | For]
d N
—E[E[II%(F(@/L) F(y,;))uei — VF(2)
d -
d , ~, _
~ 55 F(Wei) = F(yy ) ill* [ Frer, ue ]| Fioa]
d N
:E[E[II%(F(%) F(yy )i — VEF(z0) |?[Fror, ue )| Fioa]
d A
+ E[E[II%(F(yZi) — Fy ) uel | Feor, we il | Fia]
d . _
+EE[ 55 (F(ye) — F(yy )il ?[Fier, ue ]| Fioa]
d -
SE[II%(F(Z/ZZ) Fy;))uti — VF(z0)|?| Fia]
d? R
+ @E[E[IF@L) — Fy )Pl || Fee, ue )| Fioa)
d? A _
S EEIP() = Py Pl | e, el Fi)
d? d?
2 2
<CdG +4(52 0 @UO
2 4 &? 2
=cdG 26200
Then we have
2 d
E[g:| Fi—1] = Btz::? (F(y,) = Fyp,))uril Fri]
and
d .
Elllge — VE(z0) || Fe-1] 2Z]E *5 — F(y;))uri — VF(z)|* Fia]

2
< cch2 + ;?00
— Bt .

Similar to the proof of Theorem [1} we have

E[|VF(z) — g|*] < (tﬁ)m’

where Q = max{4?/3G? 6L>D? + W}. Thus we conclude

) ) 3D1Q1/2 LD%
(1— E)F(J; ) —E[F(zr41)] < T1/3 2T

+6G(1+ (Vd+1)(1 - é)).

D Proof of Lemma 3l

Proof. Recall that F(z) = Ex~a[f(X)] = X gcq f(5) [Lies @ill;¢5(1 — 2;), then for any fixed i € [d], where

d = |Q], we have
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|—|Zf V[T [T —20) = > £ [ [T =)l (92)

SCQ je€S k¢S SCQ jE€S k¢S
i€S VES) k#i i¢S VE] k#i
ZHIJH 1— ) —|—ZH%H 1— )] (93)
SCQjes k¢S SCQjeSs
i€S G ki e
=2M. (94)
So we have
IVF(z)||< 2M V. (95)

Then F is 2M+/d-Lipschitz.

Now we turn to prove that F' has Lipschitz continuous gradients. Thanks to the multilinearity, we have

oF
=F =1)—F ; = 0).
oz, (z|x; = 1) — F(z|z; = 0) (96)
Since
F(zlz; =1) Z f(s H x; H (1—xp), (97)
SCQ jes k¢S
i€s GAi ki
we have OF (x| 0
T|\Tr; = -
T =0, (98)

and for any fixed j # i,

s T D IFCN | I I a-e= 3 5 IL e 1L a-aol 99

SCQ les SCQ les k¢S
WeS g kel iesjgs  1¢{ia}  kelig)
<M ] = J] =20+ D> J[ = JI (-] (100)
SCQ les k¢S SCQ es k¢S
ijes1g{igy  kelig) iesjgs1¢{iq}  kelig}
=2M. (101)

Similarly, we have % =0, and \%\S 2M for j # i. So we conclude that

2 . s .
R (102)
Oz ;0x; 4M, if j #£1.

Then ||Vg—£H§ 4M~/d -1, i.e., Ti is 4M+/d — 1-Lipschitz.
Then we deduce that

M4 ) 1/2
IVF(21) — VF(z)|= | Y (agfl) - az;;gz)) (103)
i=1 (2 (3
- d 1/2
<D oEMVAd =12z — 2| (104)
0 d
\IZ AMVAd —=1)% - ||l21 — 2| (105)

=AM \/d(d —1)||z, — 2] (106)
So F'is 4M +/d(d — 1)-smooth. O
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E Proof of Theorem [3

Proof. Recall that we define z; = x; + 1. Then we have

Bllge — V() PIFia) = Z S~ T =~ VEGIF ] (107
Vi ZE [ F(y;)uei — VE(z) (108)

- %[ﬁt ~ F(y ) - %[ﬁ; — Py 1 7] (109)

& ZE I Fly)ues — VEGOIPIF ) (10

+ 5 ;Enz‘g[m — FIPIFio] (111)

+ 5 il@n;fs[ﬁ; ~ Pl )IPFea), (112)

where we used the independence of ftiz and the facts that E[ftiz] = F(ytiz), E[%(F(y;) — F(y, ))uei] = VF(z).

Then same to Eq. and by Lemma the first item is no more than %. To upper bound the last two
items, we have for every i € [By],

l

d . - d?
Ell gz 7 = i) PIFi-a] = 5B (£ ) = P/ IR Fa]
j=1
2 M2 (113)
< — ] —
~ 402 : 12
d2M2
= 4z

Similarly, we have

d _ B d2M2
El| o [fi — i IPIF] < oy (114)
As a result, we have
~ ded? M? 1 d>M? 1 d2M?
E —_VF NF <=4+ _.B,.-— 4 __.B .-
(llge = VE(z0)||*|Fi-1] < B, + Btz t 4152 +Bt2 L4162 (115)

ded? M? L d>*M?
By 2Bl62°

Then same to the proof for Theorem [I] we have

(1= ) P@t) Bl (e < 22O VI OPE i+ (as =Yy, )

where D; £ diam(K'), Q = max{4%/3dM?, W

on K.

+96d(d — 1)M?D3?}, x* is the global maximizer of F

Note that since the rounding scheme is lossless, we have

1 1

(1= DA = Blf (Xrs)] £ (1= DF(@) — E[F(sr41)] (117)
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Combine Egs. (116)) and (117)), we have

(1= D) Bl () < B2QE L MVACZDPE oy 4 (Vi pa- ). )

O



