A Appendices

A. 1 Proofs for decomposition and scaling

Proof of Lemma 2.2. Recall the summation by parts formula: for scalar sequences $\left\{a_{k}, b_{k}\right\}$,

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k+1}\left[b_{k+1}-b_{k}\right]=a_{k+1} b_{k+1}-a_{1} b_{0}-\sum_{k=1}^{N}\left[a_{k+1}-a_{k}\right] b_{k} \tag{44}
\end{equation*}
$$

This is applied to (29b), beginning with

$$
\widetilde{\theta}_{N+1}^{\mathcal{T}}=\sum_{n=0}^{N} \alpha_{n+1} A \widetilde{\theta}_{n}^{\mathcal{T}}+\sum_{n=0}^{N} \alpha_{n+1}\left[Z_{n+1}-Z_{n+2}\right]
$$

Hence with $a_{k}=\alpha_{k}$ and $b_{k}=Z_{k+1}$, the identity (44) implies

$$
\begin{aligned}
\sum_{n=0}^{N} \alpha_{n+1}\left[Z_{n+1}-Z_{n+2}\right] & =Z_{1}-\alpha_{N+1} Z_{N+2}+\sum_{n=1}^{N}\left[\alpha_{n+1}-\alpha_{n}\right] Z_{n+1} \\
& =Z_{1}-\alpha_{N+1} Z_{N+2}-\sum_{n=1}^{N} \alpha_{n+1} \alpha_{n} Z_{n+1}
\end{aligned}
$$

By substitution, and using $\widetilde{\theta}_{0}^{\mathcal{T}}=0$,

$$
\widetilde{\theta}_{N+1}^{\mathcal{T}}=Z_{1}-\alpha_{N+1} Z_{N+2}+\sum_{n=1}^{N} \alpha_{n+1}\left[A \widetilde{\theta}_{n}^{\mathcal{T}}-\alpha_{n} Z_{n+1}\right]
$$

With $\Xi_{n}:=\widetilde{\theta}_{n}^{\mathcal{T}}+\alpha_{n} Z_{n+1}$ for $n \geq 1$ we finally obtain for $N \geq 1$,

$$
\Xi_{N+1}=Z_{1}+\sum_{n=1}^{N} \alpha_{n+1}\left[A \Xi_{n}-\alpha_{n}[I+A] Z_{n+1}\right]
$$

which is equivalent to (30).
Proof of Lemma 2.3. Consider the Taylor series expansion:

$$
\begin{aligned}
\frac{(n+1)^{\varrho}}{n^{\varrho}}=\left(1+n^{-1}\right)^{\varrho} & =1+\varrho n^{-1}-\frac{1}{2} \varrho(1-\varrho) n^{-2}+O\left(n^{-3}\right) \\
& =1+\varrho(n+1)^{-1}+\varrho n^{-1}(n+1)^{-1}-\frac{1}{2} \varrho(1-\varrho) n^{-2}+O\left(n^{-3}\right)
\end{aligned}
$$

where the second equation uses $n^{-1}-(n+1)^{-1}=n^{-1}(n+1)^{-1}$. With $\alpha_{n}=1 / n$, the following bound follows:

$$
(n+1)^{\varrho}=n^{\varrho}\left[1+\alpha_{n+1}(\varrho+\varepsilon(n, \varrho))\right]
$$

where $\varepsilon(n, \varrho)=O\left(n^{-1}\right)$, and $\varepsilon(n, \varrho)>0$ for all n.
Multiplying both sides of (3) by $(n+1)^{\varrho}$, we obtain

$$
\widetilde{\theta}_{n+1}^{\varrho}=\widetilde{\theta}_{n}^{\varrho}+\alpha_{n+1}\left[\varrho_{n} \widetilde{\theta}_{n}^{\varrho}+A(n, \varrho) \widetilde{\theta}_{n}^{\varrho}+(n+1)^{\varrho} \Delta_{n+1}\right]
$$

where $\varrho_{n}=\varrho+\varepsilon(n, \varrho)$ and $A(n, \varrho)=\left(1+n^{-1}\right)^{\varrho} A$.

Lemma A.1. Let $\varrho_{0}>0, L \geq 0$ be fixed real numbers. Then the following holds for each $n \geq 1$ and $1 \leq n_{0}<n$:

$$
\prod_{k=n_{0}}^{n}\left[1-\varrho_{0} \alpha_{k}+L^{2} \alpha_{k}^{2}\right] \leq K_{A .1} \frac{n_{0}^{\varrho_{0}}}{(n+1)^{\varrho_{0}}}
$$

where $K_{A .1}=\exp \left(\varrho_{0}+L^{2} \sum_{k=1}^{\infty} \alpha_{k}^{2}\right)$.
Proof. By the inequality $1-x \leq \exp (-x)$,

$$
\prod_{k=n_{0}}^{n}\left[1-\varrho_{0} \alpha_{k}+L^{2} \alpha_{k}^{2}\right] \leq \exp \left(-\varrho_{0} \sum_{k=n_{0}}^{n} \alpha_{k}\right) \exp \left(L^{2} \sum_{k=n_{0}}^{n} \alpha_{k}^{2}\right) \leq \exp \left(-\varrho_{0}\right) K \exp \left(-\varrho_{0} \sum_{k=n_{0}}^{n} \alpha_{k}\right)
$$

The remainder of the proof involves establishing the bound

$$
\begin{equation*}
\exp \left(-\varrho_{0} \sum_{k=n_{0}}^{n} \alpha_{k}\right) \leq \exp \left(\varrho_{0}\right) \frac{n_{0}^{\varrho_{0}}}{(n+1)^{\varrho_{0}}} \tag{45}
\end{equation*}
$$

For $n_{0}=1$ this follows from the bound $\sum_{k=1}^{n} \alpha_{k} \geq \ln (n+1)$, and for $n_{0} \geq 2$ the bound (45) follows from $\sum_{k=n_{0}}^{n} \alpha_{k}>\ln (n+1)-\ln \left(n_{0}-1\right)-1$.
Lemma A.2. Under Assumptions A1-A3, let $\lambda=-\varrho_{0}+$ ui denote an eigenvalue of the matrix A with largest real part. Then

$$
\lim _{n \rightarrow \infty} n^{2 \varrho} \mathrm{E}\left[\widetilde{\theta}_{n}^{\top} \widetilde{\theta}_{n}\right]=0, \quad \varrho<\varrho_{0} \text { and } \varrho \leq \frac{1}{2}
$$

Proof. Recall the decomposition of $\widetilde{\theta}_{n}$ in (31): $\widetilde{\theta}_{n}=\widetilde{\theta}_{n}^{(1)}+\widetilde{\theta}_{n}^{(2)}+\widetilde{\theta}_{n}^{(3)}$, with $\widetilde{\theta}_{n}^{(1)}, \widetilde{\theta}_{n}^{(2)}$ evolving as

$$
\begin{array}{ll}
\widetilde{\theta}_{n+1}^{(1)}=\widetilde{\theta}_{n}^{(1)}+\alpha_{n+1}\left[A \widetilde{\theta}_{n}^{(1)}+\Delta_{n+2}^{m}\right], & \widetilde{\theta}_{0}^{(1)}=\widetilde{\theta}_{0} \\
\widetilde{\theta}_{n+1}^{(2)}=\widetilde{\theta}_{n}^{(2)}+\alpha_{n+1}\left[A \widetilde{\theta}_{n}^{(2)}-\alpha_{n}[I+A] Z_{n+1}\right], & \widetilde{\theta}_{1}^{(2)}=Z_{1} \tag{46b}
\end{array}
$$

For fixed $\varrho<\varrho_{0}$ and $\varrho \leq \frac{1}{2}$, Let $T>0$ solve the Lyapunov equation $[A+\varrho I] T+T[A+\varrho I]^{\top}+I=0$, which exists since $A+\varrho I$ is Hurwitz. Define the norm of $\widetilde{\theta}_{n}$ by $\left\|\widetilde{\theta}_{n}\right\|_{T}:=\sqrt{\mathrm{E}\left[\widetilde{\theta}_{n}^{\top} T \widetilde{\theta}_{n}\right]}$.

First consider $\widetilde{\theta}_{n}^{(1)}$. Since the martingale difference Δ_{n+2}^{m} is uncorrelated with $\widetilde{\theta}_{n}^{(1)}$, denoting $e_{n}=$ $\left\|\widetilde{\theta}_{n}^{(1)}\right\|_{T}^{2}, b_{n+2}=\left\|\Delta_{n+2}^{m}\right\|_{T}^{2}$, we obtain the following from (46a):

$$
\begin{equation*}
e_{n+1}=\left\|\left[I+\alpha_{n+1} A\right] \widetilde{\theta}_{n}^{(1)}\right\|_{T}^{2}+b_{n+2} \tag{47}
\end{equation*}
$$

Letting $\lambda_{0}>0$ denote the largest eigenvalue of T, we arrive at the following simplification of the first term in (47)

$$
\begin{align*}
\left\|\left[I+\alpha_{n+1} A\right] \widetilde{\theta}_{n}^{(1)}\right\|_{T}^{2} & =\mathrm{E}\left[\left(\widetilde{\theta}_{n}^{(1)}\right)^{\top}\left[T-2 \alpha_{n+1} \varrho T-\alpha_{n+1} I+\alpha_{n+1}^{2} A T A^{\top}\right] \widetilde{\theta}_{n}^{(1)}\right] \\
& \leq \mathrm{E}\left[\left(\widetilde{\theta}_{n}^{(1)}\right)^{\top}\left[T-2 \alpha_{n+1} \varrho T-\frac{1}{\lambda_{\circ}} \alpha_{n+1} T+\alpha_{n+1}^{2} A T A^{\top}\right] \widetilde{\theta}_{n}^{(1)}\right] \tag{48}\\
& \leq\left[1-2 \alpha_{n+1} \varrho-\alpha_{n+1} / \lambda_{\circ}+\alpha_{n+1}^{2} L^{2}\right]\left\|\widetilde{\theta}_{n}\right\|_{T}^{2}
\end{align*}
$$

where L denotes the induced operator norm of A with respect to the norm $\|\cdot\|_{T}$. We then obtain the following recursive bound from (47) and (48)

$$
e_{n+1} \leq\left[1-\left(2 \varrho+1 / \lambda_{\circ}\right) \alpha_{n+1}+L^{2} \alpha_{n+1}^{2}\right] e_{n}+\alpha_{n+1}^{2} K
$$

where $K=\sup _{n \geq 1} b_{n}$. K is finite since b_{n} converges to $\mathrm{E}_{\pi}\left[\left(\Delta_{n}^{m}\right)^{\top} T \Delta_{n}^{m}\right]$ geometrically fast. Consequently, for each $n \geq 1$,

$$
e_{n+1} \leq e_{0} \prod_{k=1}^{n+1}\left[1-\left(2 \varrho+1 / \lambda_{\circ}\right) \alpha_{k}+L^{2} \alpha_{k}^{2}\right]+K \sum_{k=1}^{n+1} \alpha_{k}^{2} \prod_{l=k+1}^{n+1}\left[1-\left(2 \varrho+1 / \lambda_{\circ}\right) \alpha_{l}+L^{2} \alpha_{l}^{2}\right]
$$

By Lemma A.1,

$$
e_{n+1} \leq e_{1} K_{A .1} \frac{1}{(n+2)^{2 \varrho+1 / \lambda_{\circ}}}+\frac{K K_{A .1}}{(n+2)^{2 \varrho+1 / \lambda_{\circ}}} \sum_{k=1}^{n+1} \alpha_{k}^{2-2 \varrho-1 / \lambda_{\circ}}
$$

Therefore, $e_{n+1} \rightarrow 0$ at rate at least $n^{-2 \varrho}$.
For $\widetilde{\theta}_{n}^{(2)}$, we use similar arguments. We obtain the following from (46b) by the triangle inequality.

$$
\left\|\widetilde{\theta}_{n+1}^{(2)}\right\|_{T} \leq\left\|\left[I+\alpha_{n+1} A\right] \widetilde{\theta}_{n}^{(2)}\right\|_{T}+\alpha_{n} \alpha_{n+1}\left\|[I+A] Z_{n+1}\right\|_{T}
$$

Using the same argument as in (48), along with the inequality $\sqrt{1+x} \leq 1+\frac{1}{2} x$,

$$
\begin{aligned}
\left\|\left[I+\alpha_{n+1} A\right] \widetilde{\theta}_{n}^{(2)}\right\|_{T} & \leq\left\|\widetilde{\theta}_{n}^{(2)}\right\|_{T} \sqrt{1-2 \alpha_{n+1} \varrho-\alpha_{n+1} / \lambda_{\circ}+\alpha_{n+1}^{2} L^{2}} \\
& \leq\left\|\widetilde{\theta}_{n}^{(2)}\right\|_{T}\left(1-\alpha_{n+1} \varrho-\alpha_{n+1} /\left(2 \lambda_{\circ}\right)+\frac{1}{2} \alpha_{n+1}^{2} L^{2}\right)
\end{aligned}
$$

Denote $K^{\prime}=\sup _{n \geq 1}\left\|[I+A] Z_{n+1}\right\|_{T}$.

$$
\left\|\widetilde{\theta}_{n+1}^{(2)}\right\|_{T} \leq\left[1-\left(\varrho+1 /\left(2 \lambda_{\circ}\right)\right) \alpha_{n+1}+\frac{1}{2} \alpha_{n+1}^{2} L^{2}\right]\left\|\widetilde{\theta}_{n}^{(2)}\right\|_{T}+\alpha_{n} \alpha_{n+1} K^{\prime}
$$

Then by the same argument for the martingale difference term, we can show that $\left\|\widetilde{\theta}_{n}^{(2)}\right\|_{T} \rightarrow 0$ at rate at least $n^{-\varrho}$.
Given $\left\|\widetilde{\theta}_{n}^{(3)}\right\|_{T}=\alpha_{n}\left\|Z_{n+1}\right\|_{T}$ converges to zero at rate $1 / n$, the proof is completed by the triangle inequality.

A. 2 Proof of Thm. 2.4

Denote $\operatorname{Cov}\left(\theta_{n}^{(i)}\right)=\mathrm{E}\left[\widetilde{\theta}_{n}^{(i)}\left(\widetilde{\theta}_{n}^{(i)}\right)^{\top}\right]$ and $\Sigma_{n}^{\varrho,(i)}=\mathrm{E}\left[\widetilde{\theta^{\varrho},(i)}\left(\widetilde{\theta}^{\varrho},(i)\right)^{\top}\right]=n^{2 \varrho} \operatorname{Cov}\left(\theta_{n}^{(i)}\right)$ for each i in (33). The proof proceeds by establishing the convergence rate for each $\operatorname{Cov}\left(\theta_{n}^{(i)}\right)$. The main challenges are the first two: $\operatorname{Cov}\left(\theta_{n}^{(1)}\right)$ and $\operatorname{Cov}\left(\theta_{n}^{(2)}\right)$, for which explicit bounds are obtained by studying recursions of the scaled sequences. Bounding $\widetilde{\theta}_{n}^{(3)}=-\alpha_{n} Z_{n+1}$ is trivial.

The martingale difference term

Proposition A.3. Under (A1)-(A3),
(i) If $\operatorname{Real}(\lambda)<-\frac{1}{2}$ for every eigenvalue λ of A, then

$$
\operatorname{Cov}\left(\theta_{n}^{(1)}\right)=n^{-1} \Sigma_{\theta}+O\left(n^{-1-\delta}\right)
$$

where $\delta=\delta\left(\frac{1}{2} I+A, \Sigma_{\Delta}\right)>0$, and Σ_{θ} is the solution to the Lyapunov equation (4).
(ii) Suppose there is an eigenvalue λ of A, that satisfies $-\varrho_{0}=\operatorname{Real}(\lambda)>-\frac{1}{2}$. Let $v \neq 0$ denote the corresponding left eigenvector, and suppose moreover that $\Sigma_{\Delta} v \neq 0$. Then, $\mathrm{E}\left[\left|\nu^{\top} \widetilde{\theta}_{n}^{(1)}\right|^{2}\right]$ converges to 0 at rate $n^{-2 \varrho_{0}}$.

Proof of Prop. A. 3 (i) Recall that $\left\{\Delta_{n}^{m}\right\}$ is a martingale difference sequence. It is thus an uncorrelated sequence for which $\widetilde{\theta}_{n}^{(1)}$ and Δ_{n+k}^{m} are uncorrelated for $k \geq 2$. The following recursion is obtained from these facts and (29a)

$$
\operatorname{Cov}\left(\theta_{n+1}^{(1)}\right)=\operatorname{Cov}\left(\theta_{n}^{(1)}\right)+\alpha_{n+1}\left[\operatorname{Cov}\left(\theta_{n}^{(1)}\right) A^{\top}+A \operatorname{Cov}\left(\theta_{n}^{(1)}\right)+\alpha_{n+1}\left[A \operatorname{Cov}\left(\theta_{n}^{(1)}\right) A^{\top}+\Sigma_{\Delta_{n+2}}\right]\right]
$$

Multiplying each side by $n+1$ gives

$$
\begin{aligned}
(n+1) \operatorname{Cov}\left(\theta_{n+1}^{(1)}\right)= & n \operatorname{Cov}\left(\theta_{n}^{(1)}\right)+\operatorname{Cov}\left(\theta_{n}^{(1)}\right)+\operatorname{Cov}\left(\theta_{n}^{(1)}\right) A^{\top}+A \operatorname{Cov}\left(\theta_{n}^{(1)}\right) \\
& +\alpha_{n+1}\left[A \operatorname{Cov}\left(\theta_{n}^{(1)}\right) A^{\top}+\Sigma_{\Delta_{n+2}}\right] \\
= & n \operatorname{Cov}\left(\theta_{n}^{(1)}\right)+\alpha_{n+1}\left[\left(1+\frac{1}{n}\right)\left[n \operatorname{Cov}\left(\theta_{n}^{(1)}\right)+n \operatorname{Cov}\left(\theta_{n}^{(1)}\right) A^{\top}+A n \operatorname{Cov}\left(\theta_{n}^{(1)}\right)\right]\right. \\
& \left.+A \operatorname{Cov}\left(\theta_{n}^{(1)}\right) A^{\top}+\Sigma_{\Delta_{n+2}}\right]
\end{aligned}
$$

The following argument will be used repeatedly through this Appendix: the recursion for $n \operatorname{Cov}\left(\theta_{n}^{(1)}\right)$ is a deterministic SA recursion for $n \operatorname{Cov}\left(\theta_{n}^{(1)}\right)$, and is regarded as an Euler approximation to the stable linear system

$$
\begin{equation*}
\frac{d}{d t} \mathcal{X}(t)=\left(1+e^{-t}\right)\left[\mathcal{X}(t)+A \mathcal{X}(t)+\mathcal{X}(t) A^{\top}\right]+\Sigma_{\Delta}+e^{-t} A \mathcal{X}(t) A^{\top} \tag{49}
\end{equation*}
$$

Stability follows from the assumption that $\frac{1}{2} I+A$ is Hurwitz. The standard justification of the Euler approximation is through the choice of timescale: let $t_{n}=\sum_{k=1}^{n} \alpha_{k}$ and let $\mathcal{X}^{n}(t)$ denote the solution to this ODE on $\left[t_{n}, \infty\right)$ with $\mathcal{X}^{n}\left(t_{n}\right)=n \operatorname{Cov}\left(\theta_{n}^{(1)}\right), t \geq t_{n}$, for any $n \geq 1$. Using standard ODE arguments (Borkar, 2008),

$$
\sup _{k \geq n}\left\|\mathcal{X}^{n}\left(t_{k}\right)-k \Sigma_{k}^{(1)}\right\|=O(1 / n)
$$

Exponential convergence of \mathcal{X} to Σ_{θ} implies convergence of $\left\{n \operatorname{Cov}\left(\theta_{n}^{(1)}\right)\right\}$ to zero at rate $1 / n^{\delta}$ for some $\delta=\delta\left(\frac{1}{2} I+A, \Sigma_{\Delta}\right)>0$.

Proof of Prop. A. 3 (ii) Denote $e_{n}^{\varrho_{0}}=\mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n}^{\varrho_{0}}\right|^{2}\right]$ and $\lambda=-\varrho_{0}+u i$. We begin with the proof that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} e_{n}^{\varrho_{0}}>0 \tag{50}
\end{equation*}
$$

With $v^{\top}[I \lambda-A]=0$, we have $v^{\top}\left[I \varrho_{n}+A(n, \varrho)\right]=\left[\varepsilon_{v}\left(n, \varrho_{0}\right)+u i\right] v^{\top}$, with $\varepsilon_{v}\left(n, \varrho_{0}\right)=O\left(n^{-1}\right)$. Applying (34a) gives

$$
v^{\top} \widetilde{\theta}_{n+1}^{\varrho_{0},(1)}=v^{\top} \widetilde{\theta}_{n}^{\rho_{0},(1)}+\alpha_{n+1}\left[\left[\varepsilon_{v}\left(n, \varrho_{0}\right)+u i\right] v^{\top} \widetilde{\theta}_{n}^{\rho_{0},(1)}+(n+1)^{\varrho_{0}} v^{\top} \Delta_{n+2}^{m}\right]
$$

Let \bar{v} denote the conjugate of v. Consequently, with $\sigma_{n}^{2}(v)=v^{\top} \Sigma_{\Delta_{n}} \bar{v}$,

$$
e_{n+1}^{\varrho_{0}}=\left[\left[1+\varepsilon_{v}\left(n, \varrho_{0}\right) /(n+1)\right]^{2}+u^{2} /(n+1)^{2}\right] e_{n}^{\varrho_{0}}+(n+1)^{2 \varrho_{0}-2} \sigma_{n+2}^{2}(v)
$$

V-uniform ergodicity implies that $\sigma_{n}^{2}(v) \rightarrow v^{\top} \Sigma_{\Delta} \bar{v}>0$ as $n \rightarrow \infty$ at a geometric rate. Fix $n_{0}>0$ so that $\sigma_{n_{0}}^{2}(v)>0$, and hence also $e_{n_{0}+1}^{\varrho_{0}}>0$. We also assume that $1+\varepsilon_{v}\left(n, \varrho_{0}\right) /(n+1)>0$ for $n \geq n_{0}$, which is possible since $\varepsilon_{v}\left(n, \varrho_{0}\right)=O\left(n^{-1}\right)$.
For $N>n_{0}$ we obtain the uniform bound

$$
\log \left(e_{N}^{\varrho_{0}}\right) \geq \log \left(e_{n_{0}+1}^{\varrho_{0}}\right)+2 \sum_{n=n_{0}+2}^{\infty} \log \left[1-\left|\varepsilon_{v}\left(n, \varrho_{0}\right)\right| /(n+1)\right]>-\infty
$$

which proves that $\liminf _{n \rightarrow \infty} e_{n}^{\rho_{0}}=\liminf _{n \rightarrow \infty} v^{\top} \Sigma_{n}^{\varrho_{0},(1)} \bar{v}>0$.
The proof of an upper bound for $\varrho_{0}<1 / 2$: by concavity of the logarithm,

$$
\log \left(e_{n+1}^{\varrho_{0}}\right) \leq \log \left(\left[\left[1+\varepsilon_{v}\left(n, \varrho_{0}\right) /(n+1)\right]^{2}+u^{2} /(n+1)^{2}\right] e_{n}^{\varrho_{0}}\right)+K(n+1)^{2 \varrho_{0}-2}
$$

where $K=\sup _{n>n_{0}}\left[\left[1+\varepsilon_{v}\left(n, \varrho_{0}\right) /(n+1)\right]^{2}+u^{2} /(n+1)^{2}\right]^{-1}\left[e_{n}^{\varrho_{0}}\right]^{-1} \sigma_{n+2}^{2}(v)$. Using concavity of the logarithm once more gives

$$
\log \left(e_{n+1}^{\varrho_{0}}\right) \leq \log \left(e_{n}^{\varrho_{0}}\right)+2 \varepsilon_{v}\left(n, \varrho_{0}\right) /(n+1)+\frac{\varepsilon_{v}\left(n, \varrho_{0}\right)^{2}}{(n+1)^{2}}+\frac{u^{2}}{(n+1)^{2}}+K(n+1)^{2 \varrho_{0}-2}
$$

which gives the uniform upper bound

$$
\log \left(e_{N}^{\varrho_{0}}\right) \leq \log \left(e_{n_{0}+1}^{\varrho_{0}}\right)+\sum_{n=n_{0}+2}^{\infty}\left(2 \frac{\left|\varepsilon_{v}\left(n, \varrho_{0}\right)\right|}{n+1)}+\frac{\varepsilon_{v}\left(n, \varrho_{0}\right)^{2}}{(n+1)^{2}}+\frac{u^{2}}{(n+1)^{2}}+K(n+1)^{2 \varrho_{0}-2}\right)<\infty
$$

This proves that $\lim \sup _{n \rightarrow \infty} e_{n}^{\varrho_{0}}=\lim \sup _{n \rightarrow \infty} v^{\top} \Sigma_{n}^{\varrho_{0},(1)} \bar{v}<\infty$.
The telescoping sequence term
Proposition A.4. Under (A1)-(A3),
(i) If $\operatorname{Real}(\lambda)<-\frac{1}{2}$ for every eigenvalue λ of A, then, $\operatorname{Cov}\left(\theta_{n}^{(2)}\right)=O\left(n^{-1-\delta}\right)$ for some $\delta=\delta\left(\frac{1}{2} I+\right.$ $\left.A, \Sigma_{\Delta}\right)>0$.
(ii) Suppose there is an eigenvalue λ of A that satisfies $-\varrho_{0}=\operatorname{Real}(\lambda)>-\frac{1}{2}$. Let $v \neq 0$ denote the corresponding left eigenvector, and suppose moreover that $\Sigma_{\Delta} v \neq 0$. Then,

$$
\limsup _{n \rightarrow \infty} n^{2 \varrho_{0}} \mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n}^{(2)}\right|^{2}\right]<\infty
$$

Proof for Prop. A. 4 (i) Denote $\mathcal{D}_{n}=\varepsilon(n, \varrho) I+A(n, \varrho)-A$. We can rewrite (34b) as

$$
\begin{align*}
\widetilde{\theta}_{n+1}^{\varrho,(2)} & =\widetilde{\theta}_{n}^{\varrho,(2)}+\alpha_{n+1}\left[\left[\frac{1}{2} I+A\right] \widetilde{\theta}_{n}^{\varrho,(2)}+\mathcal{D}_{n} \widetilde{\theta}_{n}^{\varrho,(2)}-\alpha_{n}(n+1)^{\varrho}[I+A] Z_{n+1}\right] \\
& =\left[I+\alpha_{n+1}\left[\frac{1}{2} I+A\right]\right] \widetilde{\theta}_{n}^{\varrho,(2)}+\alpha_{n+1} \mathcal{D}_{n} \widetilde{\theta}_{n}^{\varrho,(2)}-\alpha_{n+1} \alpha_{n}(n+1)^{\varrho}[I+A] Z_{n+1} \tag{51}
\end{align*}
$$

Let $T>0$ solve the Lyapunov equation

$$
\left[\frac{1}{2} I+A\right]^{\top} T+T\left[\frac{1}{2} I+A\right]+I=0
$$

As in the proof of Lemma A.2, a solution exists because $\frac{1}{2} I+A$ is Hurwitz. Adopting the familiar notation $\left\|\widetilde{\theta}_{n}^{\varrho,(2)}\right\|_{T}:=\sqrt{\mathrm{E}\left[\left(\widetilde{\theta_{n}^{\varrho},(2)}\right)^{\top} T \widetilde{\theta}_{n}^{\varrho,(2)}\right]}$, the triangle inequality applied to (51) gives

$$
\begin{equation*}
\left\|\widetilde{\theta}_{n+1}^{\varrho,(2)}\right\|_{T} \leq\left\|\left[I+\alpha_{n+1}\left[\frac{1}{2} I+A\right]\right] \widetilde{\theta}_{n}^{\varrho,(2)}\right\|_{T}+\alpha_{n+1}\left\|\mathcal{D}_{n}\right\|_{T}\left\|\widetilde{\theta}_{n}^{\varrho,(2)}\right\|_{T}+\alpha_{n+1} \alpha_{n}(n+1)^{\varrho}\left\|[I+A] Z_{n+1}\right\|_{T} \tag{52}
\end{equation*}
$$

The first term can be simplified by the Lyapunov equation.

$$
\begin{aligned}
\left\|\left[I+\alpha_{n+1}\left[\frac{1}{2} I+A\right]\right] \widetilde{\theta}_{n}^{o,(2)}\right\|_{T}^{2} & =\mathrm{E}\left[\left(\widetilde{\theta}_{n}^{o,(2)}\right)^{\top}\left[T-\alpha_{n+1} I+\alpha_{n+1}^{2}\left[\frac{1}{2} I+A\right]^{\top} T\left[\frac{1}{2} I+A\right]\right] \widetilde{\theta}_{n}^{\rho,(2)}\right] \\
& \leq \mathrm{E}\left[\left(\widetilde{\theta}_{n}^{\varrho,(2)}\right)^{\top}\left[T-\frac{\alpha_{n+1}}{\lambda_{\circ}} T+\alpha_{n+1}^{2}\left[\frac{1}{2} I+A\right]^{\top} T\left[\frac{1}{2} I+A\right]\right]_{\theta_{n}^{\rho,(2)}}\right] \\
& \leq\left\|\widetilde{\theta}_{n}^{\varrho,(2)}\right\|_{T}^{2}-\frac{\alpha_{n+1}}{\lambda_{\circ}}\left\|\widetilde{\theta}_{n}^{\rho,(2)}\right\|_{T}^{2}+\alpha_{n+1}^{2} L^{2}\left\|\widetilde{\theta}_{n}^{\varrho,(2)}\right\|_{T}^{2}
\end{aligned}
$$

where L is the induced operator norm of $\frac{1}{2} I+A$, and $\lambda_{\circ}>0$ denotes its largest eigenvalue.
Consequently, by the inequality $\sqrt{1+x} \leq 1+\frac{1}{2} x$,

$$
\left\|\left[I+\alpha_{n+1}\left[\frac{1}{2} I+A\right]\right] \widetilde{\theta}_{n}^{\varrho}(2)\right\|_{T} \leq\left\|\widetilde{\theta}_{n}^{o,(2)}\right\|_{T} \sqrt{1-\frac{\alpha_{n+1}}{\lambda_{\circ}}+\alpha_{n+1}^{2} L^{2}} \leq\left\|\widetilde{\theta}_{n}^{\rho_{0},(2)}\right\|_{T}\left(1-\frac{\alpha_{n+1}}{2 \lambda_{\circ}}+\frac{1}{2} \alpha_{n+1}^{2} L^{2}\right)
$$

Fix $n_{0}>0$ such that for $n \geq n_{0}$,

$$
1-\frac{\alpha_{n+1}}{2 \lambda_{\circ}}+\frac{1}{2} \alpha_{n+1}^{2} L^{2}+\alpha_{n+1}\left\|\mathcal{D}_{n}\right\|_{T} \leq 1-\frac{\alpha_{n+1}}{4 \lambda_{\circ}}
$$

This is possible since $\left\|\mathcal{D}_{n}\right\|_{T}=O\left(n^{-1}\right)$.
Denote $\delta=\min \left(\frac{1}{4 \lambda_{0}}, \frac{1}{4}\right)$ and $K=\sup _{n \geq n_{0}}\left\|[I+A] Z_{n+1}\right\|_{T}$, which is finite because $\left\|Z_{n+1}\right\|_{T}$ converges. We obtain the following from (52)

$$
\begin{align*}
\left\|\widetilde{\theta}_{n+1}^{\varrho,(2)}\right\|_{T} & \leq\left\|\widetilde{\theta}_{n}^{\varrho,(2)}\right\|_{T}\left(1-\delta \alpha_{n+1}\right)+\alpha_{n+1}^{1 / 2} \alpha_{n} K \tag{53}\\
& \leq\left\|\widetilde{\theta}_{n}^{\varrho,(2)}\right\|_{T}\left(1-\delta \alpha_{n+1}\right)+\alpha_{n}^{3 / 2} K
\end{align*}
$$

Apply (53) repeatedly for $n \geq n_{0}$

$$
\begin{aligned}
\left\|\widetilde{\theta}_{n+1}^{\varrho,(2)}\right\|_{T} & \leq\left\|\widetilde{\theta}_{n_{0}}^{\varrho,(2)}\right\|_{T} \prod_{k=n_{0}+1}^{n+1}\left(1-\delta \alpha_{k}\right)+K \sum_{k=n_{0}}^{n} \alpha_{k}^{3 / 2} \prod_{l=k+1}^{n}\left(1-\delta \alpha_{l}\right) \\
& \leq\left\|\widetilde{\theta}_{n_{0}}^{\varrho,(2)}\right\|_{T} \exp (\delta) \frac{n_{0}^{\delta}}{(n+2)^{\delta}}+\frac{K \exp (\delta)}{(n+1)^{\delta}} \sum_{k=n_{0}}^{n} k^{-\frac{3}{2}+\delta}
\end{aligned}
$$

where $\sum_{k=1}^{\infty} k^{-\frac{3}{2}+\delta}<\infty$ for $\delta \leq 1 / 4$. Therefore, $\left\|\widetilde{\theta}_{n}^{\varrho,(2)}\right\|_{T} \rightarrow 0$ at rate at least $n^{-\delta}$. The desired conclusion follows: letting $\lambda_{\bullet}>0$ denote the smallest eigenvalue of T,

$$
\Sigma_{n}^{\varrho,(2)} \leq \mathrm{E}\left[\left(\widetilde{\theta}_{n}^{\varrho},(2)\right)^{\top} \widetilde{\theta}_{n}^{\varrho,(2)}\right] I \leq \frac{1}{\lambda_{\bullet}}\left\|\widetilde{\theta}_{n}^{\varrho,(2)}\right\|_{T}^{2} I
$$

Proof for Prop. A. 4 (ii) Multiplying both sides of (34b) by v^{\top} gives

$$
\begin{align*}
v^{\top} \widetilde{\theta}_{n+1}^{\varrho_{0},(2)} & =v^{\top} \widetilde{\theta}_{n}^{\varrho_{0},(2)}+\alpha_{n+1}\left[\left[\varepsilon_{v}\left(n, \varrho_{0}\right)+u i\right] v^{\top} \widetilde{\theta}_{n}^{\varrho_{0},(2)}-\left(1-\varrho_{0}+u i\right) \alpha_{n}(n+1)^{\varrho_{0}} v^{\top} Z_{n+1}\right] \tag{54}\\
& =\left[1+\alpha_{n+1}\left[\varepsilon_{v}\left(n, \varrho_{0}\right)+u i\right]\right] v^{\top} \widetilde{\theta}_{n}^{\varrho_{0},(2)}-\left(1-\varrho_{0}+u i\right) \alpha_{n} \alpha_{n+1}(n+1)^{\varrho_{0}} v^{\top} Z_{n+1}
\end{align*}
$$

With $\left\|v^{\top} \widetilde{\theta}_{n}^{\rho_{0},(2)}\right\|_{2}:=\sqrt{\mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n}^{\rho_{0},(2)}\right|^{2}\right]}$, we obtain the following from (54) by the triangle inequality

$$
\begin{equation*}
\left\|v^{\top} \widetilde{\theta}_{n+1}^{\varrho_{0},(2)}\right\|_{2} \leq\left|1+\alpha_{n+1}\left[\varepsilon_{v}\left(n, \varrho_{0}\right)+u i\right]\right|\left\|v^{\top} \widetilde{\theta}_{n}^{\varrho_{0},(2)}\right\|_{2}+\left|1-\varrho_{0}+u i\right| \alpha_{n} \alpha_{n+1}(n+1)^{\varrho_{0}}\left\|v^{\top} Z_{n+1}\right\|_{2} \tag{55}
\end{equation*}
$$

By the inequality $\sqrt{1+x} \leq 1+\frac{1}{2} x$, we have

$$
\left|1+\alpha_{n+1} \varepsilon_{v}\left(n, \varrho_{0}\right)+\alpha_{n+1} u i\right| \leq 1+\alpha_{n+1} \varepsilon_{v}\left(n, \varrho_{0}\right)+\frac{1}{2} \alpha_{n+1}^{2} \varepsilon_{v}\left(n, \varrho_{0}\right)^{2}+\frac{1}{2} \alpha_{n+1}^{2} u^{2}
$$

Fix $n_{0}>0$ such that for $n \geq n_{0}$,

$$
1+\alpha_{n+1} \varepsilon_{v}\left(n, \varrho_{0}\right)+\frac{1}{2} \alpha_{n+1}^{2} \varepsilon_{v}\left(n, \varrho_{0}\right)^{2}+\frac{1}{2} \alpha_{n+1}^{2} u^{2} \leq 1+\alpha_{n+1}^{3 / 2}
$$

which is possible since $\varepsilon_{v}\left(n, \varrho_{0}\right)=O\left(n^{-1}\right)$. With $K=\sup _{n \geq n_{0}} \mid 1-\varrho_{0}+u i\left\|v^{\top} Z_{n+1}\right\|_{2}$, we obtain the following bound from (55):

$$
\begin{equation*}
\left\|v^{\top} \widetilde{\theta}_{n+1}^{\varrho_{0},(2)}\right\|_{2} \leq\left(1+\alpha_{n+1}^{3 / 2}\right)\left\|v^{\top} \widetilde{\theta}_{n}^{\varrho_{0},(2)}\right\|_{2}+\alpha_{n}^{2-\varrho_{0}} K \tag{56}
\end{equation*}
$$

Iterating (56) gives,

$$
\begin{aligned}
\left\|v^{\top} \widetilde{\theta}_{n+1}^{\varrho_{0},(2)}\right\|_{2} & \leq\left\|v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho_{0},(2)}\right\|_{2} \prod_{k=n_{0}+1}^{n+1}\left(1+\alpha_{k}^{3 / 2}\right)+K \sum_{k=n_{0}}^{n} \alpha_{k}^{2-\varrho_{0}} \prod_{l=k+1}^{n}\left(1+\alpha_{l}^{3 / 2}\right) \\
& \leq\left\|v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho_{0},(2)}\right\|_{2} \exp \left(\sum_{k=n_{0}+1}^{n+1} k^{-2 / 3}\right)+K \sum_{k=n_{0}}^{n} k^{-2+\varrho_{0}} \exp \left(\sum_{l=k+1}^{n} l^{-3 / 2}\right)
\end{aligned}
$$

$\left.\lim \sup _{n \rightarrow \infty} \| v^{\top} \widetilde{\theta}_{n}^{\varrho_{0},(2)}\right) \|_{2}<\infty$, since it is assumed that $\varrho_{0}<\frac{1}{2}$.
Proof of Thm. 2.4 We obtain the convergence rate of $\operatorname{Cov}\left(\theta_{n}\right)$ based on

$$
\operatorname{Cov}\left(\theta_{n}\right)=\sum_{i=1}^{3} \operatorname{Cov}\left(\theta_{n}^{(i)}\right)+\sum_{i=1}^{3} \sum_{j=1, j \neq i}^{3} \mathrm{E}\left[\widetilde{\theta}_{n}^{(i)}\left(\widetilde{\theta}_{n}^{(j)}\right)^{\mathrm{\top}}\right]
$$

For case (i), by Prop. A. 3 (i) and Prop. A. 4 (i), there exists $\delta=\delta\left(\frac{1}{2} I+A, \Sigma_{\Delta}\right)>0$ such that

$$
\begin{aligned}
& \operatorname{Cov}\left(\theta_{n}^{(1)}\right)=n^{-1} \Sigma_{\theta}+O\left(n^{-1-\delta}\right) \\
& \operatorname{Cov}\left(\theta_{n}^{(2)}\right)=O\left(n^{-1-\delta}\right) \\
& \operatorname{Cov}\left(\theta_{n}^{(3)}\right)=n^{-2} \Sigma_{Z_{n+1}}
\end{aligned}
$$

The cross terms between $\widetilde{\theta}_{n}^{(i)}$ and $\widetilde{\theta}_{n}^{(j)}$ for $i \neq j$ are of smaller orders than $O(1 / n)$ by the Cauchy-Schwarz inequality. Therefore, for a possibly smaller $\delta>0$,

$$
\operatorname{Cov}\left(\theta_{n}\right)=n^{-1} \Sigma_{\theta}+O\left(n^{-1-\delta}\right)
$$

For case (ii), $\lim _{n \rightarrow 0} n^{2 \varrho} \mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n}\right|^{2}\right]=0$ for each $\varrho<\varrho_{0}$ can be obtained from Prop. A. 3 (ii) and Prop. A. 4 (ii) directly by the triangle inequality. For $\varrho>\varrho_{0}$, the result $\lim _{n \rightarrow 0} n^{2 \varrho} \mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n}\right|^{2}\right]=\infty$ is established independently in Lemma A. 13.

A. 3 Proof of Thm. 2.8

Denote the correlation between $\widetilde{\theta}_{n}^{(a)}$ and $\widetilde{\theta}_{n}^{(b)}$ as $R_{n}^{(a),(b)}=\mathrm{E}\left[\widetilde{\theta}_{n}^{(a)}\left(\widetilde{\theta}_{n}^{(b)}\right)^{\top}\right]$, where $\widetilde{\theta}_{n}^{(a)}, \widetilde{\theta}_{n}^{(b)}$ are different terms in (42). The key results that help establish Thm. 2.8 are summarized in the following proposition.
Proposition A.5. Under Assumptions (A1)-(A3), if Real $(\lambda)<-1$ for every eigenvalue of A, then there is $\delta>0$ such that
(i) $\operatorname{Cov}\left(\theta_{n}^{(1)}\right)=n^{-1} \Sigma_{\theta}+n^{-2} \Sigma_{\sharp}^{(1)}+O\left(n^{-2-\delta}\right)$, where $\delta=\delta\left(I+A, \Sigma_{\Delta}\right)>0, \Sigma_{\theta} \geq 0$ is the unique solution to the Lyapunov equation (4), and $\Sigma_{\sharp}^{(1)} \geq 0$ solves the Lyapunov equation,

$$
\begin{equation*}
[I+A] \Sigma+\Sigma[I+A]^{\top}+A \Sigma_{\theta} A^{\top}-\Sigma_{\Delta}=0 \tag{57}
\end{equation*}
$$

(ii) $R_{n}^{(2,1),(1)}+R_{n}^{(1),(2,1)}=n^{-2} \Sigma_{\sharp}^{(2)}+O\left(n^{-2-\delta}\right)$, where $\Sigma_{\sharp}^{(2)}$ solves the Lyapunov equation:

$$
\begin{equation*}
[I+A] \Sigma+\Sigma[I+A]^{\top}-[I+A] \operatorname{Cov}_{\pi}\left(\widehat{\Delta}_{n}^{m}, \Delta_{n}^{m}\right)-\operatorname{Cov}_{\pi}\left(\Delta_{n}^{m}, \widehat{\Delta}_{n}^{m}\right)[I+A]^{\top}=0 \tag{58}
\end{equation*}
$$

(iii) $R_{n}^{(1),(3)}=-n^{-2} \mathrm{E}_{\pi}\left[\Delta_{n}^{m} \widehat{Z}_{n}^{\top}\right]+O\left(n^{-3}\right)$.

Proof of Prop. A. 5 (i) Since Δ_{n+2}^{m} is uncorrelated with $\widetilde{\theta}_{n}^{(1)}$, the following recursion follows from (29a):

$$
\operatorname{Cov}\left(\theta_{n+1}^{(1)}\right)=\operatorname{Cov}\left(\theta_{n}^{(1)}\right)+\alpha_{n+1}\left[\operatorname{Cov}\left(\theta_{n}^{(1)}\right) A^{\top}+A \operatorname{Cov}\left(\theta_{n}^{(1)}\right)+\alpha_{n+1}\left[A \operatorname{Cov}\left(\theta_{n}^{(1)}\right) A^{\top}+\Sigma_{\Delta_{n+2}}\right]\right]
$$

Take $\varrho=1 / 2$ in the definition of $\widetilde{\theta}^{\varrho,(1)}$ and $\Sigma_{n}^{\varrho,(1)}=\mathrm{E}\left[\widetilde{\theta}^{\varrho,(1)}\left(\widetilde{\theta}^{\varrho,(1)}\right)^{\top}\right]=n \operatorname{Cov}\left(\theta_{n}^{(1)}\right)$. Multiplying each side of the equation by $n+1$ gives

$$
\begin{equation*}
\Sigma_{n+1}^{\varrho,(1)}=\Sigma_{n}^{\varrho,(1)}+\alpha_{n+1}\left[\left(1+\frac{1}{n}\right)\left[\Sigma_{n}^{\varrho,(1)}+\Sigma_{n}^{\varrho,(1)} A^{\top}+A \Sigma_{n}^{\varrho,(1)}\right]+\frac{1}{n} A \Sigma_{n}^{\varrho,(1)} A^{\top}+\Sigma_{\Delta_{n+2}}\right] \tag{59}
\end{equation*}
$$

Recall that Σ_{θ} solves the Laypunov equation $\Sigma+\Sigma A^{\top}+A \Sigma+\Sigma_{\Delta}=0$. Denoting $E_{n}=\Sigma_{n}^{\rho,(1)}-\Sigma_{\theta}$, the following identity holds

$$
\Sigma_{n}^{\varrho,(1)}+\Sigma_{n}^{\rho,(1)} A^{\top}+A \Sigma_{n}^{\varrho,(1)}=E_{n}+E_{n} A^{\top}+A E_{n}-\Sigma_{\Delta}
$$

Subtracting Σ_{θ} from both sides of (59) gives the recursion

$$
\begin{align*}
E_{n+1}=E_{n}+\alpha_{n+1}[& \left(1+\frac{1}{n}\right)\left[E_{n}+E_{n} A^{\top}+A E_{n}\right]+\frac{1}{n} A E_{n} A^{\top} \\
& \left.+\frac{1}{n} A \Sigma_{\theta} A^{\top}-\frac{1}{n} \Sigma_{\Delta}-\Sigma_{\Delta}+\Sigma_{\Delta_{n+2}}\right] \tag{60}
\end{align*}
$$

Similar to the decomposition in (29), we have $E_{n}=E_{n}^{(1)}+E_{n}^{(2)}$, each evolving as

$$
\begin{align*}
& E_{n+1}^{(1)}=E_{n}^{(1)}+\alpha_{n+1}\left[\left(1+\frac{1}{n}\right)\left[E_{n}^{(1)}+E_{n}^{(1)} A^{\top}+A E_{n}^{(1)}\right]+\frac{1}{n} A E_{n}^{(1)} A^{\top}+\frac{1}{n}\left[A \Sigma_{\theta} A^{\top}-\Sigma_{\Delta}\right]\right] \tag{61a}\\
& E_{n+1}^{(2)}=E_{n}^{(2)}+\alpha_{n+1}\left[\left(1+\frac{1}{n}\right)\left[E_{n}^{(2)}+E_{n}^{(2)} A^{\top}+A E_{n}^{(2)}\right]+\frac{1}{n} A E_{n}^{(2)} A^{\top}+\Sigma_{\Delta_{n+2}}-\Sigma_{\Delta}\right] \tag{61b}
\end{align*}
$$

Since $\Sigma_{\Delta_{n+2}}-\Sigma_{\Delta}$ converges to zero geometrically fast, $\left\{E_{n}^{(1)}\right\}$ converges to zero faster than $\left\{E_{n}^{(2)}\right\}$. Multiplying each side of (61a) by $n+1$ gives

$$
\begin{aligned}
(n+1) E_{n+1}^{(1)} & =(n+1) E_{n}^{(1)}+\left(1+\frac{1}{n}\right)\left[E_{n}^{(1)}+E_{n}^{(1)} A^{\top}+A E_{n}^{(1)}\right]+\frac{1}{n}\left[A E_{n}^{(1)} A^{\top}+A \Sigma_{\theta} A^{\top}-\Sigma_{\Delta}\right] \\
& =n E_{n}^{(1)}+\frac{1}{n}\left[\left(1+\frac{1}{n}\right)\left[2 n E_{n}^{(1)}+n E_{n}^{(1)} A^{\top}+A n E_{n}^{(1)}\right]+A \Sigma_{\theta} A^{\top}-\Sigma_{\Delta}+\mathcal{E}_{n}^{\bullet(1)}\right]
\end{aligned}
$$

with the error term $\mathcal{E}_{n}^{\boldsymbol{\bullet}}{ }^{(1)}=A E_{n}^{(1)} A^{\top}-E_{n}$. Note that $A \Sigma_{\theta} A^{\top}-\Sigma_{\Delta}=[A+I] \Sigma_{\theta}[A+I]^{\top}$ is positive definite.
The recursion for $\left\{n E_{n}^{(1)}\right\}$ is treated as in the proof of Prop. A. 3 (i). Consider the matrix ODE,

$$
\begin{equation*}
\frac{d}{d t} \mathcal{X}(t)=\left(1+e^{-t}\right)\left[2 \mathcal{X}(t)+\mathcal{X}(t) A^{\top}+A \mathcal{X}(t)\right]+A \Sigma_{\theta} A^{\top}-\Sigma_{\Delta}+e^{-t}\left[A \mathcal{X}(t) A^{\top}-\mathcal{X}(t)\right] \tag{62}
\end{equation*}
$$

Let $t_{n}=\sum_{k=1}^{n} 1 / k$ and let $\mathcal{X}^{n}(t)$ denote the solution to this ODE on $\left[t_{n}, \infty\right)$ with $\mathcal{X}^{n}\left(t_{n}\right)=n E_{n}^{(1)}$, $t \geq t_{n}$, for any $n \geq 1$. We then obtain as previously,

$$
\sup _{k \geq n}\left\|\mathcal{X}^{n}\left(t_{k}\right)-k E_{k}^{(1)}\right\|=O(1 / n)
$$

Recall that $\Sigma_{\sharp}^{(1)} \geq 0$ is the solution to the Lyapunov equation (57). Exponential convergence of \mathcal{X} to $\Sigma_{\sharp}^{(1)}$ implies convergence of $\left\{n E_{n}^{(1)}\right\}$ at rate $1 / n^{\delta}$ for $\delta=\delta\left(A+I, \Sigma_{\Delta}\right)>0$. Therefore, $n E_{n}=\Sigma_{\sharp}^{(1)}+O\left(n^{-\delta}\right)$. Given $\operatorname{Cov}\left(\theta_{n}^{(1)}\right)=n^{-1} \Sigma_{\theta}+n^{-1} E_{n}$, we have

$$
\operatorname{Cov}\left(\theta_{n}^{(1)}\right)=n^{-1} \Sigma_{\theta}+n^{-2} \Sigma_{\sharp}^{(1)}+O\left(n^{-2-\delta}\right)
$$

Proof of Prop. A. 5 (ii) We focus on $R_{n}^{(2,1),(1)}$ since $R_{n}^{(1),(2,1)}=\left[R_{n}^{(2,1),(1)}\right]^{\top}$. Recall the update forms of $\widetilde{\theta}_{n}^{(1)}$ and $\widetilde{\theta}_{n}^{(2,1)}$ in (29a) and (41a) respectively, where $\widetilde{\theta}_{n}^{(1)}$ is uncorrelated with the martingale difference sequence $\left\{\widehat{\Delta}_{n+k}^{m}\right\}$ for $k \geq 2$ and $\widetilde{\theta}_{n}^{(2,1)}$ is uncorrelated with $\left\{\Delta_{n+k}^{m}\right\}$ for $k \geq 2$. With $R_{n}^{(2,1),(1)}=$ $\mathrm{E}\left[\widetilde{\theta}_{n}^{(2,1)}\left(\widetilde{\theta}_{n}^{(1)}\right)^{\top}\right]$, the following is obtained from these facts:

$$
\begin{aligned}
R_{n+1}^{(2,1),(1)}=R_{n}^{(2,1),(1)}+\alpha_{n+1}\left[R_{n}^{(2,1),(1)} A^{\top}\right. & +A R_{n}^{(2,1),(1)}+\alpha_{n+1} A R_{n}^{(2,1),(1)} A^{\top} \\
& \left.-\alpha_{n} \alpha_{n+1}[I+A] \operatorname{Cov}\left(\widehat{\Delta}_{n+2}^{m}, \Delta_{n+2}^{m}\right)\right]
\end{aligned}
$$

Denote $C_{n}=n R_{n}^{(2,1),(1)}$. Multiplying both sides of the previous equation by $n+1$ gives

$$
C_{n+1}=C_{n}+\alpha_{n+1}\left[\left(1+n^{-1}\right)\left[C_{n}+C_{n} A^{\top}+A C_{n}\right]+\alpha_{n} A C_{n} A^{\top}-\alpha_{n}[I+A] \operatorname{Cov}\left(\widehat{\Delta}_{n+2}^{m}, \Delta_{n+2}^{m}\right)\right]
$$

Multiplying each side of this equation by $n+1$ once more results in

$$
\begin{aligned}
(n+1) C_{n+1} & =(n+1) C_{n}+\left(1+n^{-1}\right)\left[C_{n}+C_{n} A^{\top}+A C_{n}\right]+\alpha_{n} A C_{n} A^{\top}-\alpha_{n}[I+A] \operatorname{Cov}\left(\widehat{\Delta}_{n+2}^{m}, \Delta_{n+2}^{m}\right) \\
& =n C_{n}+\alpha_{n}\left[\left(1+n^{-1}\right)\left[2 n C_{n}+n C_{n} A^{\top}+A n C_{n}\right]-[I+A] \operatorname{Cov}_{\pi}\left(\widehat{\Delta}_{n+2}^{m}, \Delta_{n+2}^{m}\right)+\mathcal{D}_{n+1}^{(2)}\right]
\end{aligned}
$$

where the error term $\mathcal{D}_{n+1}^{(2)}$ consists of two components: $[I+A]\left[\operatorname{Cov}_{\pi}\left(\widehat{\Delta}_{n+2}^{m}, \Delta_{n+2}^{m}\right)-\operatorname{Cov}\left(\widehat{\Delta}_{n+2}^{m}, \Delta_{n+2}^{m}\right)\right]$ that converges to zero at a geometric rate and $A C_{n} A^{\top}-C_{n}$.
As previously, this is approximated by the linear system

$$
\begin{align*}
& \frac{d}{d t} \mathcal{X}(t)=(1+\left.e^{-t}\right)\left[2 \mathcal{X}(t)+\mathcal{X}(t) A^{\top}+A \mathcal{X}(t)\right]+e^{-t}\left[A \mathcal{X}(t) A^{\top}-\mathcal{X}(t)\right] \tag{63}\\
&\left.-[I+A] \operatorname{Cov}_{\pi}\left(\widehat{\Delta}_{n+2}^{m}, \Delta_{n+2}^{m}\right)\right)
\end{align*}
$$

With the same argument used in (i), $\left\{n C_{n}+n C_{n}^{\top}\right\}$ converges to $\Sigma_{\sharp}^{(2)}$ in (58) at rate $1 / n^{\delta}$ for $\delta=$ $\delta(A+I)>0$. Therefore, $n C_{n}+n C_{n}^{\top}=\Sigma_{\sharp}^{(2)}+O\left(n^{-\delta}\right)$ and $R_{n}^{(2,1),(1)}=n^{-2} C_{n}=n^{-2} \Sigma_{\infty, C}+O\left(n^{-2-\delta}\right)$.

Proof of Prop. A. 5 (iii) The third claim in Prop. A. 5 is established through a sequence of lemmas. Start with the representation of $\widetilde{\theta}_{n+1}^{(3)}$ based on (39):

$$
\widetilde{\theta}_{n+1}^{(3)}=-\frac{1}{n+1} Z_{n+2}=-\frac{1}{n+1} \widehat{\Delta}_{n+3}^{m}+\frac{1}{n+1}\left(\widehat{Z}_{n+3}-\widehat{Z}_{n+2}\right)
$$

Since $\widehat{\Delta}_{n+3}^{m}$ is uncorrelated with the sequence $\left\{\widetilde{\theta}_{k}^{(1)}\right\}$ for $k \leq n+1$, we have

$$
\begin{equation*}
\mathrm{E}\left[\widetilde{\theta}_{n+1}^{(1)}\left(\widehat{\Delta}_{n+3}^{m}\right)^{\top}\right]=0 \tag{64}
\end{equation*}
$$

Hence it suffices to consider the correlation between $\widetilde{\theta}_{n+1}^{(1)}$ and $\widehat{Z}_{n+3}-\widehat{Z}_{n+2}$. The formula for $\widetilde{\theta}_{n+1}^{(1)}$ for $n \geq 1$ is

$$
\begin{equation*}
\widetilde{\theta}_{n+1}^{(1)}=\prod_{k=1}^{n+1}\left[I+\alpha_{k} A\right] \widetilde{\theta}_{0}+\sum_{k=1}^{n+1} \alpha_{k} \prod_{l=k+1}^{n+1}\left[I+\alpha_{l} A\right] \Delta_{k+1}^{m} \tag{65}
\end{equation*}
$$

$\widetilde{\theta}_{0} \mathrm{E}\left[\widehat{Z}_{n+3}^{\top}-\widehat{Z}_{n+2}^{\top}\right]$ converges to zero geometrically fast under V-uniform ergodicity of $\boldsymbol{\Phi}$. Then we consider the expectation of the following:

$$
\begin{align*}
& \sum_{k=1}^{n+1} \alpha_{k} \prod_{l=k+1}^{n+1}\left[I+\alpha_{l} A\right] \Delta_{k+1}^{m}\left[\widehat{Z}_{n+3}^{\top}-\widehat{Z}_{n+2}^{\top}\right] \\
= & \sum_{k=1}^{n+1} \alpha_{k} \prod_{l=k+1}^{n+1}\left[I+\alpha_{l} A\right]\left[\Delta_{k+2}^{m} \widehat{Z}_{n+3}^{\top}-\Delta_{k+1}^{m} \widehat{Z}_{n+2}^{\top}\right]+\sum_{k=1}^{n+1} \alpha_{k} \prod_{l=k+1}^{n+1}\left[I+\alpha_{l} A\right]\left[\Delta_{k+1}^{m}-\Delta_{k+2}^{m}\right] \widehat{Z}_{n+3}^{\top} \tag{66}
\end{align*}
$$

The definition of T is now based on the assumption that $I+A$ is Hurwitz: $T>0$ is the unique solution to the Lyapunov equation:

$$
[A+I] T+T[A+I]^{\top}+I=0
$$

As previously, we denote $\|W\|_{T}^{2}=\mathrm{E}\left[W^{\top} T W\right]$ for a random vector W, and denote by $\|M\|_{T}$ the induced operator norm of a matrix $M \in \mathbb{R}^{d \times d}$. In the following result the vector W is taken to be deterministic.
Lemma A.6. Suppose the matrix $I+A$ is Hurwitz. Then there exists constant K such that the following holds for any $k \geq 1$ and all $n \geq k$

$$
\left\|\prod_{l=k+1}^{n+1}\left[I+\alpha_{l} A\right]\right\|_{T} \leq K \frac{k}{n+2}
$$

Proof. For any vector $W \in \mathbb{R}^{d}$ and $l \geq 1$, we have

$$
\begin{aligned}
\left\|\left[I+\alpha_{l} A\right] W\right\|_{T}^{2} & =W^{\top}\left[T-2 \alpha_{l} T-\alpha_{l} I+\alpha_{l}^{2} A^{\top} T A\right] W \\
& \leq W^{\top}\left[T T-2 \alpha_{l} T+\alpha_{l}^{2} A^{\top} T A\right] W \\
& \leq\left(1-2 \alpha_{l}+\alpha_{l}^{2} L^{2}\right)\|W\|_{T}^{2}
\end{aligned}
$$

where $L=\|A\|_{T}$. Hence

$$
\left\|I+\alpha_{l} A\right\|_{T} \leq \sqrt{1-2 \alpha_{l}+\alpha_{l}^{2} L^{2}} \leq 1-\alpha_{l}+\frac{1}{2} \alpha_{l}^{2} L^{2}
$$

Lemma A. 1 completes the proof:

$$
\left\|\prod_{l=k+1}^{n+1}\left[I+\alpha_{l} A\right]\right\|_{T} \leq \prod_{l=k+1}^{n+1}\left\|\left[I+\alpha_{l} A\right]\right\|_{T} \leq \prod_{l=k+1}^{n+1}\left[1-\alpha_{l}+\frac{1}{2} L^{2} \alpha_{l}^{2}\right] \leq K_{A .1} \frac{k}{n+2}
$$

To analyze $\mathrm{E}\left[\Delta_{k+2}^{m} \widehat{Z}_{n+3}^{\top}\right]$, consider the bivariate Markov chain $\Phi_{n}^{*}=\left(\Phi_{n}, \Phi_{n+1}\right), n \geq 0$, with state space $\mathbf{Z}^{*}=\mathbf{Z} \times \mathbf{Z}$. An associated weighting function $V^{*}: \mathbf{Z} \times \mathbf{Z} \rightarrow[1, \infty)$ is defined as $V^{*}\left(z, z^{\prime}\right)=V(z)+V\left(z^{\prime}\right)$. Denote function $h^{k+1, n+2}: Z^{*} \rightarrow \mathbb{R}^{d \times d}$ as $h^{k+1, n+2}\left(z^{\prime}, z^{\prime \prime}\right)=\left(\hat{f}\left(z^{\prime \prime}\right)-\mathrm{E}\left[\hat{f}\left(\Phi_{k+1}\right) \mid \Phi_{k}=z^{\prime}\right]\right) \mathrm{E}\left[\hat{\hat{f}}\left(\Phi_{n+2}\right)^{\top} \mid\right.$ $\left.\Phi_{k+1}=z^{\prime \prime}\right]$ and $h_{i, j}^{k+1, n+2}: \mathbf{Z}^{*} \rightarrow \mathbb{R}$ as the (i, j)-th entry of $h^{k+1, n+2}$ for $1 \leq i, j \leq d$. Note that $h^{k+1, n+2}\left(\Phi_{k}, \Phi_{k+1}\right)=\mathrm{E}\left[\Delta_{k+1}^{m} \widehat{Z}_{n+2} \mid \mathcal{F}_{k+1}\right]$
Lemma A.7. Suppose Assumptions (A1) and (A3) hold. For each $1 \leq i, j \leq d$,
(i) $h_{i, j}^{k+1, n+2} \in L_{\infty}^{V^{*}}$, moreover there exists constant B such that

$$
\left\|h_{i, j}^{k+1, n+2}\right\|_{V^{*}} \leq B\left\|\hat{f}_{i}\right\|_{\sqrt{V}}\left\|\hat{f}_{j}\right\|_{\sqrt{V}} \rho^{n-k+1}
$$

(ii) Consequently, there exists constant B^{\prime} such that

$$
\left|\mathrm{E}\left[h_{i, j}^{k+1, n+2}\left(\Phi_{k}, \Phi_{k+1}\right) \mid \Phi_{0}=z\right]-\pi\left(h_{i, j}^{k+1, n+2}\right)\right| \leq B^{\prime}\left\|\hat{f}_{i}\right\|_{\sqrt{v}}\left\|\hat{\hat{f}}_{j}\right\|_{\sqrt{v}} V(z) \rho^{n+1}
$$

Proof. By the definition of V^{*}-norm,

$$
\begin{aligned}
\left\|h_{i, j}^{k+1, n+2}\right\|_{V^{*}}= & \sup _{z^{\prime}, z^{\prime \prime} \in \mathrm{Z}} \frac{\left|\left[\hat{f}_{i}\left(z^{\prime \prime}\right)+\mathrm{E}\left[\hat{f}_{i}\left(\Phi_{k+1}\right) \mid \Phi_{k}=z^{\prime}\right]\right] \mathrm{E}\left[\hat{f}_{j}\left(\Phi_{n+2}\right) \mid \Phi_{k+1}=z^{\prime \prime}\right]\right|}{V\left(z^{\prime}\right)+V\left(z^{\prime \prime}\right)} \\
\leq & \sup _{z^{\prime \prime} \in \mathrm{Z}} \frac{\left|\hat{f}_{i}\left(z^{\prime \prime}\right) \mathrm{E}\left[\hat{f}_{j}\left(\Phi_{n+2}\right) \mid \Phi_{k+1}=z^{\prime \prime}\right]\right|}{V\left(z^{\prime \prime}\right)} \\
& +\sup _{z^{\prime}, z^{\prime \prime} \in \mathrm{Z}} \frac{\left|\mathrm{E}\left[\hat{f}_{i}\left(\Phi_{k+1}\right) \mid \Phi_{k}=z^{\prime}\right] \mathrm{E}\left[\hat{f}_{j}\left(\Phi_{n+2}\right) \mid \Phi_{k+1}=z^{\prime \prime}\right]\right|}{V\left(z^{\prime}\right)+V\left(z^{\prime \prime}\right)}
\end{aligned}
$$

Given $\hat{f}_{j}^{2} \in L_{\infty}^{V}$ and the \sqrt{V}-uniform ergodicity of $\boldsymbol{\Phi}$ (Meyn and Tweedie, 2009, Lemma 15.2.9), there exists constant $B_{\sqrt{V}}<\infty$ such that

$$
\left|\mathrm{E}\left[\hat{f}_{j}\left(\Phi_{n+2}\right) \mid \Phi_{k+1}=z^{\prime \prime}\right]\right| \leq B_{\sqrt{V}}\left\|\hat{\hat{f}}_{j}\right\|_{\sqrt{v}} \sqrt{V\left(z^{\prime \prime}\right)} \rho^{n+1-k}
$$

Consequently,

$$
\begin{equation*}
\sup _{z^{\prime \prime} \in \mathrm{Z}} \frac{\mid \hat{f}_{i}\left(z^{\prime \prime}\right)\left[\mathrm{E}\left[\hat{f}_{j}\left(\Phi_{n+2}\right) \mid \Phi_{k+1}=z^{\prime \prime}\right] \mid\right.}{V\left(z^{\prime \prime}\right)} \leq\left\|\hat{f}_{i}\right\|_{\sqrt{V}} B_{\sqrt{V}}\left\|\hat{f}_{j}\right\|_{\sqrt{V}} \rho^{n+1-k} \tag{67}
\end{equation*}
$$

By the inequality $V\left(z^{\prime}\right)+V\left(z^{\prime \prime}\right) \geq \sqrt{V\left(z^{\prime}\right) V\left(z^{\prime \prime}\right)}$ and the \sqrt{V}-uniform ergodicity of $\boldsymbol{\Phi}$ once more, we have

$$
\begin{align*}
& \sup _{z^{\prime}, z^{\prime \prime} \in \mathrm{Z}} \frac{\left|\mathrm{E}\left[\hat{f}_{i}\left(\Phi_{k+1}\right) \mid \Phi_{k}=z^{\prime}\right] \mathrm{E}\left[\hat{f}_{j}\left(\Phi_{n+2}\right) \mid \Phi_{k+1}=z^{\prime \prime}\right]\right|}{V\left(z^{\prime}\right)+V\left(z^{\prime \prime}\right)} \\
\leq & \sup _{z^{\prime} \in \mathrm{Z}} \frac{\left|\mathrm{E}\left[\hat{f}_{i}\left(\Phi_{k+1}\right) \mid \Phi_{k}=z^{\prime}\right]\right|}{\sqrt{V\left(z^{\prime}\right)}} \sup _{z^{\prime \prime} \in \mathrm{Z}} \frac{\left|\mathrm{E}\left[\hat{\hat{f}}_{j}\left(\Phi_{n+2}\right) \mid \Phi_{k+1}=z^{\prime \prime}\right]\right|}{\sqrt{V\left(z^{\prime \prime}\right)}} \leq B_{\sqrt{V}}^{2}\left\|\hat{f}_{i}\right\|_{\sqrt{V}}\left\|\hat{\hat{f}}_{j}\right\|_{\sqrt{V}} \rho^{n+2-k} \tag{68}
\end{align*}
$$

Combining (67) and (68) gives

$$
\begin{equation*}
\left\|h_{i, j}^{k+1, n+2}\right\|_{V^{*}} \leq B\left\|\hat{f}_{i}\right\|_{\sqrt{v}}\left\|\hat{\hat{f}}_{j}\right\|_{\sqrt{v}} \rho^{n+1-k} \tag{69}
\end{equation*}
$$

with $B=B_{\sqrt{V}}+B_{\sqrt{V}}^{2}$.
For (ii), denote $g_{i, j}^{k, n+2}: \mathrm{Z} \rightarrow \mathbb{R}$ by the conditional expectation:

$$
g_{i, j}^{k, n+2}(z)=\mathrm{E}\left[h_{i, j}^{k+1, n+2}\left(\Phi_{k}, \Phi_{k+1}\right) \mid \Phi_{k}=z\right]
$$

This is bounded by a constant times V^{*} :

$$
\begin{aligned}
\left|g_{i, j}^{k, n+2}(z)\right|=\left|\int h_{i, j}^{k+1, n+2}\left(z, z^{\prime}\right) P\left(z, d z^{\prime}\right)\right| & \leq\left|\int \frac{h_{i, j}^{k+1, n+2}\left(z, z^{\prime}\right)}{V^{*}\left(z, z^{\prime}\right)} V^{*}\left(z, z^{\prime}\right) P\left(z, d z^{\prime}\right)\right| \\
& \leq\left\|h_{i, j}^{k+1, n+2}\right\|_{V^{*}}[V(z)+P V(z)]
\end{aligned}
$$

V-uniform ergodicity of $\boldsymbol{\Phi}$ is equivalent to the following drift condition (Meyn and Tweedie, 2009, Theorem 16.0.2): for some $\beta>0, b<\infty$, and some "petite set" C,

$$
P V(z)-V(z) \leq-\beta V(z)+b \mathbb{I}_{C}(z), \quad z \in \mathbf{Z}
$$

Consequently,

$$
[V(z)+P V(z)] \leq[2 V(z)+b] \leq[2+|b|] V(z)
$$

Therefore,

$$
\begin{equation*}
\left\|g_{i, j}^{k, n+2}\right\|_{V} \leq[2+|b|]\left\|h_{i, j}^{k+1, n+2}\right\|_{V^{*}} \leq[2+|b|] B\left\|\hat{f}_{i}\right\|_{\sqrt{V}}\left\|\hat{f}_{j}\right\|_{\sqrt{V}} \rho^{n+1-k} \tag{70}
\end{equation*}
$$

Thus $g_{i, j}^{k, n+2} \in L_{\infty}^{V}$. By V-uniform ergodicity of $\boldsymbol{\Phi}$ again,

$$
\begin{aligned}
\left|\mathrm{E}\left[g_{i, j}^{k, n+2}\left(\Phi_{k}\right) \mid \Phi_{0}=z\right]-\pi\left(g_{i, j}^{k, n+2}\right)\right| & \leq B_{V}\left\|g_{i, j}^{k, n+2}\right\|_{V} V(z) \rho^{k} \\
& \leq B^{\prime}\left\|\hat{f}_{i}\right\|_{\sqrt{V}}\left\|\hat{\hat{f}}_{j}\right\|_{\sqrt{V}} V(z) \rho^{n+1}
\end{aligned}
$$

with $B^{\prime}=[2+|b|] B_{V} B$. The proof is then completed by applying the smoothing property of conditional expectation.

Lemma A.8. Under Assumptions (A1) and (A3), there exists $K<\infty$ such that the following hold

$$
\begin{align*}
\left\|\mathrm{E}\left[\Delta_{k+1}^{m} \widehat{Z}_{n+3}^{\top}\right]\right\|_{T} & \leq K \rho^{n+1-k} \tag{71a}\\
\left\|\mathrm{E}\left[\Delta_{k+1}^{m} \widehat{Z}_{n+2}^{\top}\right]-\mathrm{E}\left[\Delta_{k+2}^{m} \widehat{Z}_{n+3}^{\top}\right]\right\|_{T} & \leq K(1+\rho) \rho^{n+1} \tag{71b}
\end{align*}
$$

Proof. By the triangle inequality,

$$
\left\|\mathrm{E}\left[\Delta_{k+1}^{m} \widehat{Z}_{n+2}^{\top}\right]\right\|_{T} \leq\left\|\mathrm{E}\left[Z_{k+1} \widehat{Z}_{n+2}^{\top}\right]\right\|_{T}+\left\|\mathrm{E}\left[\mathrm{E}\left[Z_{k+1} \mid \mathcal{F}_{k}\right] \widehat{Z}_{n+2}^{\top}\right]\right\|_{T}
$$

where both terms admit the geometric bound in (71a) following directly from the V-geometric mixing of $\boldsymbol{\Phi}$ (Meyn and Tweedie, 2009, Theorem 16.1.5).

For (71b), first notice that

$$
\mathrm{E}\left[\Delta_{k+1}^{m} \widehat{Z}_{n+2}^{\top}\right]=\mathrm{E}\left[\mathrm{E}\left[\Delta_{k+1}^{m} \widehat{Z}_{n+2}^{\top} \mid \mathcal{F}_{k+1}\right]\right]=\mathrm{E}\left[h^{k+1, n+2}\left(\Phi_{k}, \Phi_{k+1}\right)\right]
$$

With Lemma A.7, we have for each (i, j)-th entry,

$$
\left|\mathrm{E}\left[h_{i, j}^{k+1, n+2}\left(\Phi_{k}, \Phi_{k+1}\right) \mid \Phi_{0}=z\right]-\pi\left(h_{i, j}^{k+1, n+2}\right)\right| \leq B^{\prime}\left\|\hat{f}_{i}\right\|_{\sqrt{V}}\left\|\hat{f}_{j}\right\|_{\sqrt{V}} V(z) \rho^{n+1}
$$

With fixed initial condition $\Phi_{0}=z$, by equivalence of matrix norms, there exists a constant K such that

$$
\left\|\mathrm{E}\left[h^{k+1, n+2}\left(\Phi_{k}, \Phi_{k+1}\right)\right]-\pi\left(h_{i, j}^{k+1, n+2}\right)\right\|_{T} \leq K \rho^{n+1}
$$

(71b) then follows from the triangle inequality:

$$
\left\|\mathrm{E}\left[\Delta_{k+1}^{m} \widehat{Z}_{n+2}^{\top}\right]-\mathrm{E}\left[\Delta_{k+2}^{m} \widehat{Z}_{n+3}^{\top}\right]\right\|_{T} \leq K \rho^{n+1}+K \rho^{n+2}=K(1+\rho) \rho^{n+1}
$$

Lemma A.9. For fixed $\rho \in(0,1)$, there exists $K<\infty$ such that for all $n \geq 2$,

$$
\sum_{k=1}^{n-1} \frac{1}{k} \rho^{-k} \leq K \frac{\rho^{-n}}{n}
$$

Proof. Denote $\gamma=-\log \rho>0$ and observe that the function $t^{-1} \exp (\gamma t)$ is increasing over $[1, \infty)$. The following holds for $n \geq 2$

$$
\sum_{k=1}^{n-1} \frac{1}{k} \rho^{-k}=\sum_{k=1}^{n-1} \frac{1}{k} \exp (\gamma k) \leq \int_{1}^{n} t^{-1} \exp (\gamma t) d t
$$

Now consider the integral: for any $t_{0} \in(1, n)$,

$$
\begin{aligned}
\int_{1}^{n} t^{-1} \exp (\gamma t) d t & \leq \int_{1}^{t_{0}} \exp (\gamma t) d t+\int_{t_{0}}^{n} t_{0}^{-1} \exp (\gamma t) d t \\
& \leq \gamma^{-1}\left[\exp \left(\gamma t_{0}\right)-\exp (\gamma)+\frac{\exp (\gamma n)-\exp \left(\gamma t_{0}\right)}{t_{0}}\right]
\end{aligned}
$$

Take $t_{0}=n-\sqrt{n}$.

$$
\begin{aligned}
\exp \left(\gamma t_{0}\right)-\exp (\gamma)+\frac{\exp (\gamma n)-\exp \left(\gamma t_{0}\right)}{t_{0}} & =\exp (\gamma(n-\sqrt{n}))-\exp (\gamma)+\frac{\exp (\gamma n)-\exp (\gamma(n-\sqrt{n}))}{n-\sqrt{n}} \\
& \leq K^{\prime} n^{-1} \exp (\gamma n)
\end{aligned}
$$

where $K^{\prime}=\sup _{t \geq 2} t \exp (-\gamma \sqrt{t})-t \exp (\gamma-\gamma t)+[1-\exp (-\gamma \sqrt{t})] /[1-1 / \sqrt{t}]$. The proof is completed by setting $K=\gamma^{-1} K^{\prime}$.

Proof of Prop. A. 5 (iii). Following (64), we have

$$
\begin{equation*}
R_{n+1}^{(1),(3)}=\mathrm{E}\left[\widetilde{\theta}_{n+1}^{(1)}\left(\widetilde{\theta}_{n+1}^{(3)}\right)^{\top}\right]=\frac{1}{n+1} \mathrm{E}\left[\widetilde{\theta}_{n+1}^{(1)}\left[\widehat{Z}_{n+3}-\widehat{Z}_{n+2}\right]^{\top}\right] \tag{72}
\end{equation*}
$$

This is bounded based on (66): Lemma A. 6 and (71b) indicate that there exists some constant K such that

$$
\begin{equation*}
\sum_{k=1}^{n+1} \alpha_{k}\left\|\prod_{l=k+1}^{n+1}\left[I+\alpha_{l} A\right]\right\|_{T}\left\|\mathrm{E}\left[\Delta_{k+2}^{m} \widehat{Z}_{n+3}^{\top}-\Delta_{k+1}^{m} \widehat{Z}_{n+2}^{\top}\right]\right\|_{T} \leq K \rho^{n+1} \tag{73}
\end{equation*}
$$

For the second term in (66), it admits a simpler form

$$
\begin{aligned}
\sum_{k=1}^{n+1} \alpha_{k} \prod_{l=k+1}^{n+1}\left[I+\alpha_{l} A\right]\left[\Delta_{k+1}^{m}-\Delta_{k+2}^{m}\right] \widehat{Z}_{n+3}^{\top}= & \prod_{l=2}^{n+1}\left[I+\alpha_{l} A\right] \Delta_{2}^{m} \widehat{Z}_{n+3}^{\top}-\frac{1}{n+1} \Delta_{n+3}^{m} \widehat{Z}_{n+3}^{\top} \\
& -\sum_{k=2}^{n+1} \alpha_{k-1} \alpha_{k} \prod_{l=k+1}^{n+1}\left[I+\alpha_{l} A\right][I+A] \Delta_{k+1}^{m} \widehat{Z}_{n+3}^{\top}
\end{aligned}
$$

where $\prod_{l=2}^{n+1}\left[I+\alpha_{l} A\right] \mathrm{E}\left[\Delta_{2} \widehat{Z}_{n+3}^{\top}\right]=O\left(\rho^{n}\right)$ and $\mathrm{E}\left[\Delta_{n+3}^{m} \widehat{Z}_{n+3}^{\top}\right]$ converges to its steady-state mean. For the remaining part, Lemma A. 6 and (71a) together imply that

$$
\begin{aligned}
& \left\|\sum_{k=2}^{n+1} \alpha_{k-1} \alpha_{k} \prod_{l=k+1}^{n+1}\left[I+\alpha_{l} A\right][I+A] \mathrm{E}\left[\Delta_{k+1}^{m} \widehat{Z}_{n+3}^{\top}\right]\right\|_{T} \\
& \leq \sum_{k=2}^{n+1} \alpha_{k-1} \alpha_{k} \prod_{l=k+1}^{n+1}\left\|I+\alpha_{l} A\right\|_{T}\|I+A\|_{T}\left\|\mathrm{E}\left[\Delta_{k+1}^{m} \widehat{Z}_{n+3}^{\top}\right]\right\|_{T} \\
& \leq \frac{K^{\prime}}{n+2} \sum_{k=2}^{n+1} \alpha_{k-1} \rho^{n+1-k}
\end{aligned}
$$

for some constant K^{\prime}. By Lemma A.9, there exists another constant $K^{\prime \prime}$ such that

$$
\frac{K^{\prime}}{n+2} \sum_{k=2}^{n+1} \alpha_{k-1} \rho^{n-k}=\frac{K^{\prime} \rho^{n}}{n+2} \sum_{k=1}^{n} \alpha_{k} \rho^{-k} \leq \frac{K^{\prime} K^{\prime \prime} \rho}{(n+1)(n+2)}
$$

This combined with (73) shows that

$$
\mathrm{E}\left[\widehat{\theta}_{n+1}^{(1)}\left[\widehat{Z}_{n+3}-\widehat{Z}_{n+2}\right]^{\top}\right]=-(n+1)^{-1} \mathrm{E}_{\pi}\left[\Delta_{n}^{m} \widehat{Z}_{n}^{\top}\right]+O\left(\rho^{n+1}\right)
$$

Following (72), we obtain the desired result:

$$
\mathrm{E}\left[\widetilde{\theta}_{n+1}^{(1)}\left(\widetilde{\theta}_{n+1}^{(3)}\right)^{\mathrm{\top}}\right]=-\frac{1}{(n+1)^{2}} \mathrm{E}_{\pi}\left[\Delta_{n}^{m} \widehat{Z}_{n}^{\mathrm{\top}}\right]+O\left((n+1)^{-3}\right)
$$

Proof of Thm. 2.8 With the decomposition in (42), we have

$$
\begin{aligned}
\operatorname{Cov}\left(\theta_{n}\right)=\operatorname{Cov}\left(\theta_{n}^{(1)}\right) & +\sum_{j=1}^{3} \operatorname{Cov}\left(\theta_{n}^{(2, j)}\right)+\operatorname{Cov}\left(\theta_{n}^{(3)}\right)+R_{n}^{(1),(3)}+R_{n}^{(3),(1)} \\
& +\sum_{i \in\{1,3\}} \sum_{j=1}^{3}\left[R_{n}^{(2, j),(i)}+R_{n}^{(i),(2, j)}\right]+\sum_{j=1}^{3} \sum_{k=1, k \neq j}^{3}\left[R_{n}^{(2, j),(2, k)}+R_{n}^{(2, k),(2, j)}\right]
\end{aligned}
$$

$\operatorname{Cov}\left(\theta_{n}^{(2,1)}\right)=O\left(n^{-3}\right), \operatorname{Cov}\left(\theta_{n}^{(2,2)}\right)=O\left(n^{-5}\right)$ and $\operatorname{Cov}\left(\theta_{n}^{(2,3)}\right)=O\left(n^{-4}\right)$ by Thm. 2.4 (i). By the Cauchy-Schwarz inequality, the correlation terms involving $\widetilde{\theta}_{n}^{(2,2)}$ and $\widetilde{\theta}_{n}^{(2,3)}$ are $O\left(n^{-2.5}\right)$, and $R_{n}^{(2,1),(3)}=$ $O\left(n^{-2.5}\right)$ is also $O\left(n^{-2.5}\right)$. Prop. A. 5 (ii) shows that $R_{n}^{(2,1),(3)}=O\left(n^{-3}\right)$. Hence the covariance can be approximated as follows:

$$
\operatorname{Cov}\left(\theta_{n}\right)=\operatorname{Cov}\left(\theta_{n}^{(1)}\right)+\operatorname{Cov}\left(\theta_{n}^{(3)}\right)+R_{n}^{(1),(3)}+R_{n}^{(3),(1)}+R_{n}^{(2,1),(1)}+R_{n}^{(1),(2,1)}+O\left(n^{-2.5}\right)
$$

By Prop. A.5, there exist $\delta\left(I+A, \Sigma_{\Delta}\right)>0$ and $\delta(I+A)>0$ such that

$$
\begin{aligned}
\operatorname{Cov}\left(\theta_{n}^{(1)}\right) & =n^{-1} \Sigma_{\theta}+n^{-2} \Sigma_{\sharp}^{(1)}+O\left(n^{-2-\delta}\right) \\
\operatorname{Cov}\left(\theta_{n}^{(3)}\right) & =n^{-2} \Sigma_{Z}+O\left(\rho^{n}\right) \\
R_{n}^{(1),(3)} & =-n^{-2} \mathrm{E}_{\pi}\left[\Delta_{n}^{m} \widehat{Z}_{n}^{\top}\right]+O\left(n^{-3}\right) \\
R_{n}^{(2,1),(1)}+R_{n}^{(1),(2,1)} & =n^{-2} \Sigma_{\sharp}^{(2)}+O\left(n^{-2-\delta}\right)
\end{aligned}
$$

Putting those results together gives

$$
\operatorname{Cov}\left(\theta_{n}\right)=n^{-1} \Sigma_{\theta}+n^{-2}\left(\Sigma_{\sharp}^{(1)}+\Sigma_{\sharp}^{(2)}+\Sigma_{Z}-\mathrm{E}_{\pi}\left[\Delta_{n}^{m} \widehat{Z}_{n}^{\top}\right]-\mathrm{E}_{\pi}\left[\widehat{Z}_{n}\left(\Delta_{n}^{m}\right)^{\top}\right]\right)+O\left(n^{-2-\delta}\right)
$$

for some $\delta>0$, where $\Sigma_{\sharp}:=\Sigma_{\sharp}^{(1)}+\Sigma_{\sharp}^{(2)}$ solves the Lyapunov equation (43).

A. 4 Unbounded moments

This section is devoted to the proof that $\lim _{n \rightarrow \infty} \mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n}^{\varrho}\right|^{2}\right]=\infty$ for $\varrho>\varrho_{0}$ (see Thm. 2.4 (ii)). Since it suffices to show the result holds for $\varrho_{0}<\varrho<\frac{1}{2}$, we assume $\varrho<\frac{1}{2}$ throughout. Recall that $\lambda=-\varrho_{0}+u i$. Consider the update of $\widetilde{\theta}_{n}^{\varrho}$ in (32). With $v^{\top}[\lambda I-A]=0$, we have $v^{\top}\left[\varrho_{n} I+A_{n}\right]=v^{\top}\left[\varrho-\varrho_{0}+\varepsilon_{v}(n, \varrho)+u i\right]$. Multiplying each side of (32) by v^{\top} gives

$$
\begin{aligned}
v^{\top} \widetilde{\theta}_{n+1}^{\varrho} & =v^{\top} \widetilde{\theta}_{n}^{\varrho}+\alpha_{n+1}\left[\left[\varrho-\varrho_{0}+\varepsilon_{v}(n, \varrho)+u i\right] v^{\top} \widetilde{\theta}_{n}^{\varrho}+(n+1)^{\varrho} v^{\top} \Delta_{n+1}\right] \\
& =\left[1+\alpha_{n+1} \tilde{\varrho}_{n+1}+\alpha_{n+1} u i\right] v^{\top} \widetilde{\theta}_{n}^{\varrho}+(n+1)^{\varrho-1} v^{\top} \Delta_{n+1}
\end{aligned}
$$

with $\varrho_{n+1}=\varrho-\varrho_{0}+\varepsilon_{v}(n, \varrho)$. Note that ϱ_{n+1} is strictly positive for sufficiently large n.
For a fixed but arbitrary n_{0} and each $n \geq n_{0}$, we have

$$
\begin{align*}
v^{\top} \widetilde{\theta}_{n+1}^{\varrho} & =v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho} \prod_{k=n_{0}+1}^{n+1}\left[1+\alpha_{k} \tilde{\varrho}_{k}+\alpha_{k} u i\right]+\sum_{k=n_{0}+1}^{n+1} k^{\varrho-1} v^{\top} \Delta_{k} \prod_{l=k+1}^{n+1}\left[1+\alpha_{l} \tilde{\varrho}_{l}+\alpha_{l} u i\right] \\
& =\left[\prod_{k=n_{0}+1}^{n+1}\left[1+\alpha_{k} \tilde{\varrho}_{k}+\alpha_{k} u i\right]\right] \cdot\left[v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho}+\sum_{k=n_{0}+1}^{n+1} \frac{k^{\varrho-1}}{\prod_{l=n_{0}+1}^{k}\left[1+\alpha_{l} \tilde{\varrho}_{l}+\alpha_{l} u i\right]} v^{\top} \Delta_{k}\right] \tag{74}\\
& =\left[\prod_{k=n_{0}+1}^{n+1}\left[1+\alpha_{k} \tilde{\varrho}_{k}+\alpha_{k} u i\right]\right] \cdot\left[v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho}+\sum_{k=n_{0}+1}^{n+1} \beta_{k} v^{\top} \Delta_{k}\right]
\end{align*}
$$

with $\beta_{n}=n^{\varrho-1} / \prod_{l=n_{0}+1}^{n}\left[1+\alpha_{l} \tilde{\varrho}_{l}+\alpha_{l} u i\right]$.
The analysis of $\left\{v^{\top} \widetilde{\theta}_{n}^{\varrho}\right\}$ is mainly based on the random series appearing in (74), which requires the following three preliminary results:
Lemma A.10. There exists some n_{0} such that for each $n>n_{0}$,

$$
\left|\beta_{n}-\beta_{n+1}\right|^{2} \leq 4\left|\beta_{n+1}\right|^{2} \alpha_{n}^{2}\left(1+u^{2}\right)
$$

Proof. Note that $\left|\beta_{n}-\beta_{n+1}\right|^{2}=\left|\beta_{n+1}\right|^{2}\left|\beta_{n} / \beta_{n+1}-1\right|^{2}$, so it is sufficient to bound the second factor:

$$
\begin{align*}
\left|\beta_{n} / \beta_{n+1}-1\right|^{2} & =\left|\left(1+n^{-1}\right)^{1-\varrho}\left[1+\alpha_{n+1} \tilde{\varrho}_{n+1}+\alpha_{n+1} u i\right]-1\right|^{2} \\
& =\left|\left(1+n^{-1}\right)^{1-\varrho}\left[1+\alpha_{n+1} \tilde{\varrho}_{n+1}\right]-1+\left(1+n^{-1}\right)^{1-\varrho} \alpha_{n+1} u i\right|^{2} \tag{75}
\end{align*}
$$

Consider the real part in (75): since $\varepsilon_{v}(n, \varrho)=O\left(n^{-1}\right)$, there exists n_{0} such that $\left|\varepsilon_{v}(n, \varrho)\right| \leq \varrho-\varrho_{0}$ and $\varrho_{n+1}=\varrho-\varrho_{0}+\varepsilon_{v}(n, \varrho)>0$ for $n \geq n_{0}$. Consequently,

$$
\begin{aligned}
0 \leq\left(1+n^{-1}\right)^{1-\varrho}\left[1+\alpha_{n+1} \tilde{\varrho}_{n+1}\right]-1 & <\left(1+n^{-1}\right)\left[1+\alpha_{n+1} \tilde{\varrho}_{n+1}\right]-1 \\
& \leq n^{-1}\left(1+\tilde{\varrho}_{n+1}+\alpha_{n+1} \tilde{\varrho}_{n+1}\right)
\end{aligned}
$$

Given $0<\varrho-\varrho_{0}<\frac{1}{2}$, we can increase n_{0} if necessary, such that $1+\tilde{\varrho}_{n+1}+\alpha_{n+1} \tilde{\varrho}_{n+1} \leq 2$ for $n \geq n_{0}$. Then we have

$$
\left(1+n^{-1}\right)^{1-\varrho}\left[1+\alpha_{n+1} \tilde{\varrho}_{n+1}\right]-1 \leq 2 \alpha_{n}
$$

For the imaginary part, observe that

$$
\left(1+n^{-1}\right)^{1-\varrho} \alpha_{n+1} u=\alpha_{n} \frac{n^{\varrho}}{(n+1)^{\varrho}} u \leq 2 u \alpha_{n}
$$

The proof is completed by summing the bounds for the real and imaginary parts.
Lemma A.11. Suppose Assumptions $A 1$ and $A 3$ hold. With each $n_{0} \geq 1$, the random series $\sum_{k=n_{0}+1}^{\infty} \beta_{k} v^{\top} \Delta_{k}$ converges a.s..

Proof. Decompose the series into the sum of a martingale difference and telescoping sequence. The martingale difference sequence converges almost surely given $\left\{\beta_{n}\right\} \in \ell_{2}$; the telescoping series is absolutely convergent by Lemma A. 10 .

Lemma A.12. Suppose Assumptions A1 and A3 hold. Denote $Z_{n}^{v}=v^{\top} Z_{n}=v^{\top} \hat{f}\left(\Phi_{n}\right)$. There exists a deterministic constant $K>0$, such that for all n_{0} and each sequence $\gamma \in \ell_{1} \subseteq \ell_{2}$,

$$
\begin{equation*}
\mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+2}^{\infty} \gamma_{k-n_{0}-1} Z_{k}^{v} \mid \mathcal{F}_{n_{0}+1}\right)\right] \leq K \sum_{k=1}^{\infty}\left|\gamma_{k}\right|^{2} \tag{76}
\end{equation*}
$$

Proof. First recall that $\operatorname{Var}\left(\sum_{k=n_{0}+2}^{\infty} \gamma_{k-n_{0}-1} Z_{k}^{v} \mid \mathcal{F}_{n_{0}+1}\right) \leq \mathrm{E}\left[\left|\sum_{k=n_{0}+2}^{\infty} \gamma_{k-n_{0}-1} Z_{k}^{v}\right|^{2} \mid \mathcal{F}_{n_{0}+1}\right]$, and hence by the Markov property,

$$
\mathrm{E}\left[\left|\sum_{k=n_{0}+2}^{\infty} \gamma_{k-n_{0}-1} Z_{k}^{v}\right|^{2} \mid \mathcal{F}_{n_{0}+1}\right]=\mathrm{E}_{z^{\prime}}\left[\left|\sum_{k=1}^{\infty} \gamma_{k} Z_{k}^{v}\right|^{2}\right]=\lim _{n \rightarrow \infty} \mathrm{E}_{z^{\prime}}\left[\left|\sum_{k=1}^{n} \gamma_{k} Z_{k}^{v}\right|^{2}\right]
$$

where $z^{\prime}=\Phi_{n}$, and the last equality holds by the assumption $\gamma \in \ell_{1}$ and dominated convergence. For each n, letting $\lceil\gamma\rceil^{n}=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ denote γ truncated at index n, we have

$$
\begin{equation*}
\mathrm{E}_{z^{\prime}}\left[\left|\sum_{k=1}^{n} \gamma_{k} Z_{k}^{v}\right|^{2}\right]=\sum_{k=1}^{n}\left|\gamma_{k}\right|^{2} \mathrm{E}_{z^{\prime}}\left[\left|Z_{k}^{v}\right|^{2}\right]+\sum_{i=1}^{n} \sum_{j \neq i}^{n} \gamma_{i}^{\dagger} \gamma_{j} \mathrm{E}_{z^{\prime}}\left[\left(Z_{i}^{v}\right)^{\dagger} Z_{j}^{v}\right]=\left(\lceil\gamma\rceil^{n}\right)^{\dagger}[R]_{n}[\gamma\rceil^{n} \tag{77}
\end{equation*}
$$

where $[R]_{n} \in \mathbb{C}^{n \times n}$ is the covariance matrix with each entry defined as $R(i, j)=\mathrm{E}_{z^{\prime}}\left[\left(Z_{i}^{v}\right)^{\dagger} Z_{j}^{v}\right], 1 \leq$ $i, j \leq n ;[R]_{n}$ is Hermitian and positive semi-definite. With $\lambda_{n} \geq 0$ denoting the largest eigenvalue of $[R]_{n}$, we have

$$
\begin{equation*}
\left(\lceil\gamma\rceil^{n}\right)^{\dagger}[R]_{n}\lceil\gamma\rceil^{n} \leq \lambda_{n} \sum_{k=1}^{n}\left|\gamma_{k}\right|^{2} \leq \lambda_{n} \sum_{k=1}^{\infty}\left|\gamma_{k}\right|^{2} \tag{78}
\end{equation*}
$$

By the Gershgorin circle theorem (Golub and Van Loan, 1996), the maximal eigenvalue is upper bounded by the maximum row sum of absolute values of entries:

$$
\lambda_{n} \leq \max _{i \in\{1, \ldots, n\}} \sum_{j=1}^{n}|R(i, j)| \leq \sup _{i \in \mathbb{Z}_{+}} \sum_{j=1}^{\infty}|R(i, j)|
$$

For any i, observe that

$$
\sum_{j=1}^{\infty}|R(i, j)|=\mathrm{E}_{z^{\prime}}\left[\left|Z_{i}^{v}\right|^{2}\right]+\sum_{i<j}|R(i, j)|+\sum_{i>j}|R(i, j)|
$$

Since V-uniform ergodicity of the Markov chain $\boldsymbol{\Phi}$ implies V-geometric mixing (Meyn and Tweedie, 2009, Theorem 16.1.5) and $\left|v^{\top} \hat{f}\right|^{2} \in L_{\infty}^{V}$, there exist $B<\infty$ and $r \in(0,1)$ such that for each $i, k \in \mathbb{Z}_{+}$,

$$
\left|R(i, i+k)-\mathrm{E}_{z^{\prime}}\left[\left(Z_{i}^{v}\right)^{\dagger}\right] \mathrm{E}_{z^{\prime}}\left[Z_{i+k}^{v}\right]\right| \leq B r^{k}\left[1+r^{i} V\left(z^{\prime}\right)\right]
$$

Consequently,

$$
\begin{align*}
\sum_{j=1}^{\infty}|R(i, j)| \leq & \mathrm{E}_{z^{\prime}}\left[\left|Z_{i}^{v}\right|^{2}\right]+\left|\mathrm{E}_{z^{\prime}}\left[\left(Z_{i}^{v}\right)^{\dagger}\right]\right| \sum_{j=1}^{\infty}\left|\mathrm{E}_{z^{\prime}}\left[Z_{j}^{v}\right]\right| \tag{79}\\
& +\sum_{i<j} B r^{j-i}\left[1+r^{i} V\left(z^{\prime}\right)\right]+\sum_{i>j} B r^{i-j}\left[1+r^{j} V\left(z^{\prime}\right)\right]
\end{align*}
$$

Given $\left|v^{\top} \hat{f}\right|^{2} \in L_{\infty}^{V}$, by (23),

$$
\mathrm{E}_{z^{\prime}}\left[\left|Z_{n}^{v}\right|^{2}\right] \leq \mathrm{E}_{\pi}\left[\left|Z_{n}^{v}\right|^{2}\right]+B_{V}\left\|\left|v^{\top} \hat{f}\right|^{2}\right\|_{V} V\left(z^{\prime}\right)
$$

The Markov chain $\boldsymbol{\Phi}$ is also \sqrt{V}-uniformly ergodic. By (23) for \sqrt{V} and $\left|v^{\top} \hat{f}\right|^{2} \in L_{\infty}^{V}$ once more,

$$
\left|\mathrm{E}_{z^{\prime}}\left[\left(Z_{i}^{v}\right)^{\dagger}\right]\right| \leq B_{\sqrt{V}}\left\|v^{\top} \hat{f}\right\|_{\sqrt{V}} \sqrt{V\left(z^{\prime}\right)} \rho^{j}
$$

Hence

$$
\left|\mathrm{E}_{z^{\prime}}\left[\left(Z_{i}^{v}\right)^{\dagger}\right]\right| \sum_{j=1}^{\infty}\left|\mathrm{E}_{z^{\prime}}\left[Z_{j}^{v}\right]\right| \leq B_{\sqrt{V}}^{2}\left\|v^{\top} \hat{f}\right\|_{\sqrt{V}}^{2} V\left(z^{\prime}\right) \rho^{i} \sum_{j=1}^{\infty} \rho^{j} \leq B_{\sqrt{V}}^{2}\left\|v^{\top} \hat{f}\right\|_{\sqrt{V}}^{2} \frac{\rho}{1-\rho} V\left(z^{\prime}\right)
$$

The other two terms on the right hand side of (79) are bounded as follows:

$$
\begin{aligned}
& \sum_{j>i} B r^{j-i}\left[1+r^{i} V\left(z^{\prime}\right)\right]=\sum_{j>i} B\left[r^{j-i}+r^{j} V\left(z^{\prime}\right)\right] \leq \frac{B r}{1-r}\left(1+V\left(z^{\prime}\right)\right) \\
& \sum_{j<i} B r^{i-j}\left[1+r^{j} V\left(z^{\prime}\right)\right]=\left[\sum_{j<i} B\left[r^{i-j}\right]\right]+B V\left(z^{\prime}\right)(i-1) r^{i} \leq \frac{B r}{1-r}+B V\left(z^{\prime}\right) \sup _{i} i r^{i}
\end{aligned}
$$

where $\sup _{i} i r^{i}$ exists since $\lim _{n \rightarrow \infty} n r^{n}=0$.
Consequently, there exists some deterministic constant K^{\prime} independent of z^{\prime} such that, the largest eigenvalues $\left\{\lambda_{n}\right\}$ are uniformly bounded

$$
\sup _{n} \lambda_{n} \leq K^{\prime} V\left(z^{\prime}\right)
$$

Combining this with (77) and (78) gives

$$
\mathrm{E}_{z^{\prime}}\left[\left|\sum_{k=1}^{\infty} Z_{k}^{v}\right|^{2}\right] \leq K^{\prime} V\left(z^{\prime}\right) \sum_{k=1}^{\infty}\left|\gamma_{k}\right|^{2}
$$

Therefore,

$$
\mathrm{E}\left[\mathrm{E}\left[\left|\sum_{k=n_{0}+2}^{\infty} \gamma_{k-n_{0}-1} Z_{k}^{v}\right|^{2} \mid \mathcal{F}_{n_{0}+1}\right] \mid \Phi_{0}=z\right] \leq K^{\prime} \mathrm{E}\left[V\left(\Phi_{n_{0}+1}\right) \mid \Phi_{0}=z\right] \sum_{k=1}^{\infty}\left|\gamma_{k}\right|^{2}
$$

By $V \in L_{\infty}^{V}$ and (23) again, $\mathrm{E}\left[V\left(\Phi_{n_{0}+1}\right) \mid \Phi_{0}=z\right] \leq \pi(V)+B_{V} V(z)$. The desired conclusion then follows by setting $K=K^{\prime}\left(B_{V} V(z)+\pi(V)\right)$.

Lemma A.13. Suppose Assumptions A1-A3 hold and $\Sigma_{\Delta} v \neq 0$. With $\left\{\widetilde{\theta}_{n}^{o}\right\}$ updated via (32),

$$
\liminf _{n \rightarrow \infty} \mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n}^{\varrho}\right|^{2}\right]=\infty, \quad \varrho>\varrho_{0}
$$

Proof. With fixed n_{0}, equation (74) gives a representation for $v^{\top} \widetilde{\theta}_{n+1}^{o}$ for each $n \geq n_{0}$. It is obvious that $\liminf _{n \rightarrow \infty} \prod_{k=n_{0}+1}^{n}\left|1+\tilde{\varrho}_{k} \alpha_{k}+\alpha_{k} u i\right|^{2}=\infty$. Hence it suffices to show that $\liminf _{n \rightarrow \infty} \mathrm{E}\left[\mid v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho}+\right.$ $\left.\sum_{k=n_{0}+1}^{n+1} \beta_{k} v^{\top} \Delta_{k}\right|^{2}$] is strictly greater than zero.
By Fatou's lemma,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho}+\sum_{k=n_{0}+1}^{n+1} \beta_{k} v^{\top} \Delta_{k}\right|^{2}\right] & \geq \mathrm{E}\left[\liminf _{n \rightarrow \infty}\left|v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho}+\sum_{k=n_{0}+1}^{n+1} \beta_{k} v^{\top} \Delta_{k}\right|^{2}\right] \\
& =\mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho}+\sum_{k=n_{0}+1}^{\infty} \beta_{k} v^{\top} \Delta_{k}\right|^{2}\right] \\
& \geq \operatorname{Var}\left(v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho}+\sum_{k=n_{0}+1}^{\infty} \beta_{k} v^{\top} \Delta_{k}\right)
\end{aligned}
$$

where the equality holds by Lemma A.11. By the law of total variance,

$$
\begin{aligned}
\operatorname{Var}\left(v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho}+\sum_{k=n_{0}+1}^{\infty} \beta_{k} v^{\top} \Delta_{k}\right) & \geq \mathrm{E}\left[\operatorname{Var}\left(v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho}+\sum_{k=n_{0}+1}^{\infty} \beta_{k} v^{\top} \Delta_{k} \mid \mathcal{F}_{n_{0}+1}\right)\right] \\
& =\mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k} v^{\top} \Delta_{k} \mid \mathcal{F}_{n_{0}+1}\right)\right]
\end{aligned}
$$

Apply once more the decomposition based on Poisson's equation:

$$
v^{\top} \Delta_{n}=\Delta_{n+1}^{v m}+Z_{n}^{v}-Z_{n+1}^{v}, \quad n \geq 1,
$$

where $Z_{n}^{v}=v^{\top} \hat{f}\left(\Phi_{n}\right)$ and $\Delta_{n+1}^{v m}=Z_{n+1}^{v}-\mathrm{E}\left[Z_{n+1}^{v} \mid \mathcal{F}_{n}\right]$ is a martingale difference. By the variance inequality $\operatorname{Var}\left(X+Y \mid \mathcal{F}_{n_{0}+1}\right) \leq 2 \operatorname{Var}\left(X \mid \mathcal{F}_{n_{0}+1}\right)+2 \operatorname{Var}\left(Y \mid \mathcal{F}_{n_{0}+1}\right)$, we have

$$
\begin{align*}
& \mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k} v^{\top} \Delta_{k} \mid \mathcal{F}_{n_{0}+1}\right)\right] \tag{80}\\
& \quad \geq \frac{1}{2} \mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k} \Delta_{k+1}^{v m} \mid \mathcal{F}_{n_{0}+1}\right)\right]-\mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k}\left(Z_{k}^{v}-Z_{k+1}^{v}\right) \mid \mathcal{F}_{n_{0}+1}\right)\right]
\end{align*}
$$

By the law of total variance once more,

$$
\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k} \Delta_{k+1}^{v m}\right)=\mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k} \Delta_{k+1}^{v m} \mid \mathcal{F}_{n_{0}+1}\right)\right]+\operatorname{Var}\left(\mathrm{E}\left[\sum_{k=n_{0}+1}^{\infty} \beta_{k} \Delta_{k+1}^{v m} \mid \mathcal{F}_{n_{0}+1}\right]\right)
$$

Note that $\lim _{n \rightarrow \infty} \mathbb{E}\left[\sum_{k=n_{0}+1}^{n} \beta_{k} \Delta_{k+1}^{v m} \mid \mathcal{F}_{n_{0}+1}\right]$ converges to zero almost surely. With $\left\{\beta_{n}\right\} \in \ell_{2}$ and the Jensen's inequality, we have for all n,

$$
\left|\mathrm{E}\left[\sum_{k=n_{0}+1}^{n} \beta_{k} \Delta_{k+1}^{v m} \mid \mathcal{F}_{n_{0}+1}\right]\right|^{2} \leq \sum_{k=n_{0}+1}^{\infty}\left|\beta_{k}\right|^{2} \mathrm{E}\left[\left|\Delta_{k+1}^{v m}\right|^{2} \mid \mathcal{F}_{n_{0}+1}\right]<\infty
$$

Then by the dominated convergence theorem, $\mathbb{E}\left[\left|\mathrm{E}\left[\sum_{k=n_{0}+1}^{\infty} \beta_{k} \Delta_{k+1}^{v m} \mid \mathcal{F}_{n_{0}+1}\right]\right|^{2}\right]=0$. Therefore,

$$
\operatorname{Var}\left(\mathrm{E}\left[\sum_{k=n_{0}+1}^{\infty} \beta_{k} \Delta_{k+1}^{v m} \mid \mathcal{F}_{n_{0}+1}\right]\right) \leq \mathrm{E}\left[\left|\mathrm{E}\left[\sum_{k=n_{0}+1}^{\infty} \beta_{k} \Delta_{k+1}^{v m} \mid \mathcal{F}_{n_{0}+1}\right]\right|^{2}\right]=0
$$

Hence,

$$
\begin{equation*}
\mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k} \Delta_{k+1}^{v m} \mid \mathcal{F}_{n_{0}+1}\right)\right]=\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k} \Delta_{k+1}^{v m}\right)=\sum_{k=n_{0}+1}^{\infty}\left|\beta_{k}\right|^{2} \sigma_{k+1}^{2} \tag{81}
\end{equation*}
$$

where $\sigma_{n}^{2}=\operatorname{Var}\left(\Delta_{n}^{v m}\right)$.
For the telescoping term on the right hand side of (80), we have

$$
\begin{align*}
\mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k}\left(Z_{k}^{v}-Z_{k+1}^{v}\right) \mid \mathcal{F}_{n_{0}+1}\right)\right] & =\mathrm{E}\left[\operatorname{Var}\left(\beta_{n_{0}+1} Z_{n_{0}+1}^{v}-\sum_{k=n_{0}+2}^{\infty}\left(\beta_{k}-\beta_{k+1}\right) Z_{k}^{v} \mid \mathcal{F}_{n_{0}+1}\right)\right] \\
& =\mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+2}^{\infty}\left(\beta_{k}-\beta_{k+1}\right) Z_{k}^{v} \mid \mathcal{F}_{n_{0}+1}\right)\right] \tag{82}
\end{align*}
$$

Given $\left\{\beta_{n}-\beta_{n+1}\right\} \in \ell_{1}$ by Lemma A.10, Lemma A. 12 indicates that there exists some constant K independent of n_{0} such that,

$$
\mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+2}^{\infty}\left(\beta_{k}-\beta_{k+1}\right) \hat{Z}_{k} \mid \mathcal{F}_{n_{0}+1}\right)\right] \leq K \sum_{k=n_{0}+2}^{\infty}\left|\beta_{k}-\beta_{k+1}\right|^{2}
$$

Combining (81) and (82) gives

$$
\mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k} v^{\top} \Delta_{k} \mid \mathcal{F}_{n_{0}+1}\right)\right] \geq \frac{1}{2} \sum_{k=n_{0}+1}^{\infty}\left|\beta_{k}\right|^{2} \sigma_{k+1}^{2}-K \sum_{k=n_{0}+2}^{\infty}\left|\beta_{k}-\beta_{k+1}\right|^{2}
$$

Since $\left|v^{\top} \hat{f}\right|^{2} \in L_{\infty}^{V}$ and $\sigma_{n}^{2} \rightarrow \sigma^{2}=v^{\top} \Sigma_{\Delta} \bar{v}>0$ at a geometric rate, we set n_{0} sufficiently large such that Lemma A. 10 holds and moreover for all $n \geq n_{0}$,

$$
\sigma_{n}^{2} \geq \frac{1}{2} \sigma^{2}, \quad \frac{1}{4} \sigma^{2}-4 K \alpha_{n}^{2}\left(1+u^{2}\right) \geq \frac{1}{8} \sigma^{2},
$$

Then,

$$
\mathrm{E}\left[\operatorname{Var}\left(\sum_{k=n_{0}+1}^{\infty} \beta_{k} v^{\top} \Delta_{k} \mid \mathcal{F}_{n_{0}+1}\right)\right] \geq \frac{1}{8} \sigma^{2} \sum_{k=n_{0}+1}^{\infty}\left|\beta_{k}\right|^{2}
$$

Therefore,

$$
\liminf _{n \rightarrow \infty} \mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n_{0}}^{\varrho}+\sum_{k=n_{0}+1}^{n} \beta_{k} v^{\top} \Delta_{k}\right|^{2}\right] \geq \frac{1}{8} \sigma^{2} \sum_{k=n_{0}+1}^{\infty}\left|\beta_{k}\right|^{2}>0
$$

The desired conclusion then follows from (74):

$$
\liminf _{n \rightarrow \infty} \mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n+1}^{\varrho}\right|^{2}\right] \geq \liminf _{n \rightarrow \infty} \prod_{k=n_{0}+1}^{n}\left|1+\tilde{\varrho}_{k} \alpha_{k}+\alpha_{k} u i\right|^{2} \cdot \liminf _{n \rightarrow \infty} \mathrm{E}\left[\left|v^{\top} \widetilde{\theta}_{n_{0}}^{o}+\sum_{k=n_{0}+1}^{n} \beta_{k} v^{\top} \Delta_{k}\right|^{2}\right]=\infty
$$

A. 5 Coupling of Deterministic and Random Linear SA

Let $\widehat{\mathcal{A}}: \mathrm{Z} \rightarrow \mathbb{R}^{d \times d}$ denote the zero-mean solution to the following Poisson equation:

$$
\mathrm{E}\left[\widehat{\mathcal{A}}\left(\Phi_{n+1}\right) \mid \Phi_{n}=z\right]=\widehat{\mathcal{A}}(z)-\mathcal{A}(z)+A, \quad z \in \mathrm{Z}
$$

which is a matrix version of (25). Denote $\Delta_{n+1}^{\mathcal{A}}=\widehat{\mathcal{A}}\left(\Phi_{n+1}\right)-\mathrm{E}\left[\widehat{\mathcal{A}}\left(\Phi_{n+1}\right) \mid \mathcal{F}_{n}\right]$ (a martingale difference sequence), and $\mathcal{A}_{n}=\widehat{\mathcal{A}}\left(\Phi_{n}\right)$. Then, from (35),

$$
\begin{aligned}
\left(A_{n+1}-A\right) \widetilde{\theta}_{n}^{\circ} & =\left[\Delta_{n+2}^{\mathcal{A}}+\mathcal{A}_{n+1}-\mathcal{A}_{n+2}\right] \widetilde{\theta}_{n}^{\circ} \\
& =\Delta_{n+2}^{\mathcal{A}} \widetilde{\theta}_{n}^{\circ}+\mathcal{A}_{n+1} \widetilde{\theta}_{n}^{\circ}-\mathcal{A}_{n+2} \widetilde{\theta}_{n+1}^{\circ}+\mathcal{A}_{n+2}\left(\widetilde{\theta}_{n+1}^{\circ}-\widetilde{\theta}_{n}^{\circ}\right) \\
& =\Delta_{n+2}^{\mathcal{A}} \widetilde{\theta}_{n}^{\circ}+\left[\mathcal{A}_{n+1} \widetilde{\theta}_{n}^{\circ}-\mathcal{A}_{n+2} \widetilde{\theta}_{n+1}^{\circ}\right]+\alpha_{n+1} \mathcal{A}_{n+2}\left(A_{n+1} \widetilde{\theta}_{n}^{\circ}+\Delta_{n+1}\right)
\end{aligned}
$$

The sequence $\left\{\mathcal{E}_{n}\right\}$ from (37) can be expressed as the sum

$$
\mathcal{E}_{n}=\mathcal{E}_{n}^{(1)}+\mathcal{E}_{n}^{(2)}+\mathcal{E}_{n}^{(3)}+\mathcal{E}_{n}^{(4)}
$$

where $\mathcal{E}_{n}^{(4)}=-\alpha_{n} \mathcal{A}_{n+1} \widetilde{\theta}_{n}^{\circ}$, and the first three sequences are solutions to the following linear systems:

$$
\begin{array}{ll}
\mathcal{E}_{n+1}^{(1)}=\mathcal{E}_{n}^{(1)}+\alpha_{n+1}\left[A \mathcal{E}_{n}^{(1)}+\Delta_{n+2}^{\mathcal{A}} \widetilde{\theta}_{n}^{\circ}\right], & \mathcal{E}_{0}^{(1)}=0 \\
\mathcal{E}_{n+1}^{(2)}=\mathcal{E}_{n}^{(2)}+\alpha_{n+1}\left[A \mathcal{E}_{n}^{(2)}-\alpha_{n}[I+A] \mathcal{A}_{n+1} \widetilde{\theta}_{n}^{\circ}\right], & \mathcal{E}_{1}^{(2)}=\mathcal{A}_{1} \widetilde{\theta}_{0}^{\circ} \\
\mathcal{E}_{n+1}^{(3)}=\mathcal{E}_{n}^{(3)}+\alpha_{n+1}\left[A \mathcal{E}_{n}^{(3)}+\alpha_{n+1} \mathcal{A}_{n+2}\left(A_{n+1} \widetilde{\theta}_{n}^{\circ}+\Delta_{n+1}\right)\right], & \mathcal{E}_{0}^{(3)}=0 \tag{83c}
\end{array}
$$

The second recursion arises through the arguments used in the proof of Lemma 2.2.
Recall that $\lambda=-\varrho_{0}+u i$ is an eigenvalue of the matrix A with largest real part. For fixed $0<\varrho<\varrho_{0}$, let $T \geq 0$ denote the unique solution to the Lyapunov equation

$$
\begin{equation*}
[\varrho I+A] T+T[\varrho I+A]^{\top}+I=0 \tag{84}
\end{equation*}
$$

As previously, the norm of random vector $E \in \mathbb{R}^{d}$ is defined as: $\|E\|_{T}=\sqrt{E[E T T E]}$.
Lemma A.14. Under Assumptions (A1)-(A4), there exist constants $L_{A .14}$ and $K_{A .14}$ such that, for all $n \geq 1$,
(i) The following holds for each $1 \leq i \leq 3$,

$$
\left\|\mathcal{E}_{n+1}^{(i)}\right\|_{T}^{2} \leq\left(1-2 \varrho \alpha_{n+1}+L_{A .14}^{2} \alpha_{n+1}^{2}\right)\left\|\mathcal{E}_{n}^{(i)}\right\|_{T}^{2}+K_{A .14} \alpha_{n+1}^{2}\left(\left\|\mathcal{E}_{n}\right\|_{T}^{2}+\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}+1\right)
$$

(ii) The following holds for $\mathcal{E}_{n}^{(4)}$,

$$
\left\|\mathcal{E}_{n+1}^{(4)}\right\|_{T}^{2} \leq K_{A .14} \alpha_{n+1}^{2}\left(\left\|\mathcal{E}_{n}\right\|_{T}^{2}+\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}+1\right)
$$

The inequality below will be useful in proving Lemma A.14.
Lemma A.15. For any real numbers a, b and all $c>0$,

$$
(a+b)^{2} \leq\left(1+c^{-1}\right) a^{2}+(1+c) b^{2}
$$

Proof. With $(a+b)^{2}=a^{2}+b^{2}+2 a b$, the result follows directly from the inequality

$$
2 a b=2(a / \sqrt{c})(\sqrt{c} b) \leq a^{2} / c+c b^{2}
$$

Proof of Lemma A.14. First consider $\left\{\mathcal{E}_{n}^{(1)}\right\}$ updated via (83a). Since the martingale difference sequence $\Delta_{n+2}^{\mathcal{A}}$ is uncorrelated with $\widetilde{\theta}_{n}^{\circ}$ or $\mathcal{E}_{n}^{(1)}$, we have

$$
\left\|\mathcal{E}_{n+1}^{(1)}\right\|_{T}^{2}=\left\|\left[I+\alpha_{n+1} A\right] \mathcal{E}_{n}^{(1)}\right\|_{T}^{2}+\alpha_{n+1}^{2}\left\|\Delta_{n+2}^{\mathcal{A}} \widetilde{\theta}_{n}^{\circ}\right\|_{T}^{2}
$$

Using the fact that $T \geq 0$ solves the Lyapunov equation (84) gives

$$
\left\|\mathcal{E}_{n+1}^{(1)}\right\|_{T}^{2} \leq\left(1-2 \varrho \alpha_{n+1}+L_{1}^{2} \alpha_{n+1}^{2}\right)\left\|\mathcal{E}_{n}^{(1)}\right\|_{T}^{2}+\alpha_{n+1}^{2}\left\|\Delta_{n+2}^{\mathcal{A}} \widetilde{\theta}_{n}^{\circ}\right\|_{T}^{2}
$$

where $L_{1}=\|A\|_{T}$ (the induced operator norm). With $\widetilde{\theta}_{n}^{\circ}=\mathcal{E}_{n}+\widetilde{\theta}_{n}^{\bullet}$,

$$
\left\|\Delta_{n+2}^{\mathcal{A}} \widetilde{\theta}_{n}^{\circ}\right\|_{T}^{2} \leq 2\left\|\Delta_{n+2}^{\mathcal{A}}\right\|_{T}^{2}\left(\left\|\mathcal{E}_{n}\right\|_{T}^{2}+\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}\right)
$$

Consequently,

$$
\begin{equation*}
\left\|\mathcal{E}_{n+1}^{(1)}\right\|_{T}^{2} \leq\left(1-2 \varrho \alpha_{n+1}+L_{1}^{2} \alpha_{n+1}^{2}\right)\left\|\mathcal{E}_{n}^{(1)}\right\|_{T}^{2}+K_{1} \alpha_{n+1}^{2}\left(\left\|\mathcal{E}_{n}\right\|_{T}^{2}+\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}\right) \tag{85}
\end{equation*}
$$

where $K_{1}=\sup _{n} 2\left\|\Delta_{n+2}^{\mathcal{A}}\right\|_{T}^{2}$ is finite by the V-uniform ergodicity of $\boldsymbol{\Phi}$ applied to $\widehat{\mathcal{A}}_{i, j}^{2}$ (recall Thm. 2.1).
For $\left\{\mathcal{E}_{n}^{(2)}\right\}$ updated by (83b), using Lemma A. 15 with $c=n(n+1)$ gives

$$
\begin{aligned}
\left\|\mathcal{E}_{n+1}^{(2)}\right\|_{T}^{2} \leq & \left(1+\alpha_{n} \alpha_{n+1}\right)\left(1-2 \varrho \alpha_{n+1}+L_{1}^{2} \alpha_{n+1}^{2}\right)\left\|\mathcal{E}_{n}^{(2)}\right\|_{T}^{2} \\
& +2\left(\alpha_{n} \alpha_{n+1}+\alpha_{n}^{2} \alpha_{n+1}^{2}\right)\left\|[I+A] \mathcal{A}_{n+1}\right\|_{T}^{2}\left(\left\|\mathcal{E}_{n}\right\|_{T}^{2}+\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}\right)
\end{aligned}
$$

We can find L_{2} and K_{2} such that for all $n \geq 1$,

$$
\begin{aligned}
\alpha_{n+1}^{2} L_{1}^{2}+\alpha_{n} \alpha_{n+1}\left(1-2 \varrho \alpha_{n+1}+L_{1}^{2} \alpha_{n+1}^{2}\right) & \leq L_{2}^{2} \alpha_{n+1}^{2} \\
2\left(\alpha_{n} \alpha_{n+1}+\alpha_{n}^{2} \alpha_{n+1}^{2}\right)\left\|[I+A] \mathcal{A}_{n+1}\right\|_{T}^{2} & \leq K_{2} \alpha_{n+1}^{2}
\end{aligned}
$$

We then obtain the desired form for the sequence $\left\{\mathcal{E}_{n}^{(2)}\right\}$

$$
\begin{equation*}
\left\|\mathcal{E}_{n+1}^{(2)}\right\|_{T}^{2} \leq\left(1-2 \varrho \alpha_{n+1}+L_{2}^{2} \alpha_{n+1}^{2}\right)\left\|\mathcal{E}_{n}^{(2)}\right\|_{T}^{2}+K_{2} \alpha_{n+1}^{2}\left(\left\|\mathcal{E}_{n}\right\|_{T}^{2}+\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}\right) \tag{86}
\end{equation*}
$$

The same argument applies to $\left\{\mathcal{E}_{n}^{(3)}\right\}$ in (83c). Therefore, for some constants L_{3} and K_{3},

$$
\begin{equation*}
\left\|\mathcal{E}_{n+1}^{(3)}\right\|_{T}^{2} \leq\left(1-2 \varrho \alpha_{n+1}+L_{3}^{2} \alpha_{n+1}^{2}\right)\left\|\mathcal{E}_{n}^{(3)}\right\|_{T}^{2}+K_{3} \alpha_{n+1}^{2}\left(\left\|\mathcal{E}_{n}\right\|_{T}^{2}+\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}+1\right) \tag{87}
\end{equation*}
$$

A bound on the final term $\mathcal{E}_{n+1}^{(4)}=-\alpha_{n+1} \mathcal{A}_{n+2} \widetilde{\theta}_{n+1}^{\circ}$ is relatively easy.

$$
\begin{aligned}
\left\|\mathcal{E}_{n+1}^{(4)}\right\|_{T}^{2} & =\left\|\alpha_{n+1} \mathcal{A}_{n+2}\left[\widetilde{\theta}_{n}^{\circ}+\alpha_{n+1}\left(A_{n+1} \widetilde{\theta}_{n}^{\circ}+\Delta_{n+1}\right)\right]\right\|_{T}^{2} \\
& \leq 2 \alpha_{n+1}^{2}\left\|\mathcal{A}_{n+2}\right\|_{T}^{2}\left(\left\|I+\alpha_{n+1} A_{n+1}\right\|_{T}^{2}\left\|\widetilde{\theta}_{n}^{\circ}\right\|_{T}^{2}+\alpha_{n+1}^{2}\left\|\Delta_{n+1}\right\|_{T}^{2}\right)
\end{aligned}
$$

Hence there exists some constant K_{4} such that

$$
\left\|\mathcal{E}_{n+1}^{(4)}\right\|_{T}^{2} \leq K_{4} \alpha_{n+1}^{2}\left(\left\|\mathcal{E}_{n}\right\|_{T}^{2}+\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}+1\right)
$$

The results in Lemma A. 14 lead to a rough bound on $\left\|\widetilde{\theta}_{n}^{\circ}\right\|_{T}^{2}$ presented in the following. This intermediate result will be used later to establish the refined bound in Thm. 2.6.
Lemma A.16. Under Assumptions (A1)-(A4),

$$
\limsup _{n \rightarrow \infty} n^{\varrho}\left\|\widetilde{\theta}_{n}^{\circ}\right\|_{T}^{2}<\infty, \quad \text { for } \varrho<\varrho_{0} \text { and } \varrho \leq 1
$$

Proof. Denote $\mathcal{E}_{n}^{\text {tot }}=\sum_{i=1}^{4}\left\|\mathcal{E}_{n}^{(i)}\right\|_{T}^{2}$. By Lemma A.14, we can find $n_{0} \geq 1$ such that $1-2 \varrho \alpha_{n+1}+$ $L_{A .14}^{2} \alpha_{n+1}^{2}>0$ for $n \geq n_{0}$ and

$$
\begin{aligned}
\mathcal{E}_{n+1}^{\mathrm{tot}} & \leq\left(1-2 \varrho \alpha_{n+1}+L_{A .14}^{2} \alpha_{n+1}^{2}\right) \mathcal{E}_{n}^{\mathrm{tot}}+4 K_{A .14} \alpha_{n+1}^{2}\left(\left\|\mathcal{E}_{n}\right\|_{T}^{2}+\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}+1\right) \\
& \leq\left(1-2 \varrho \alpha_{n+1}+L_{A .14}^{2} \alpha_{n+1}^{2}\right) \mathcal{E}_{n}^{\text {tot }}+4 K_{A .14} \alpha_{n+1}^{2}\left(4 \mathcal{E}_{n}^{\text {tot }}+\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}+1\right) \\
& \leq\left(1-2 \varrho \alpha_{n+1}+L_{\mathrm{tot}}^{2} \alpha_{n+1}^{2}\right) \mathcal{E}_{n}^{\text {tot }}+K_{\text {tot }} \alpha_{n+1}^{2}
\end{aligned}
$$

with $L_{\text {tot }}^{2}=L_{A .14}^{2}+16 K_{A .14}$ and $K_{\text {tot }}=\sup _{n} 4 K_{A .14}\left(\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}+1\right)$, which are finite by Lemma A. 2 combined with Lemma A.14. Iterating this inequality gives, for $n \geq n_{0}$,

$$
\mathcal{E}_{n+1}^{\mathrm{tot}} \leq \mathcal{E}_{n_{0}}^{\mathrm{tot}} \prod_{k=n_{0}+1}^{n+1}\left(1-2 \varrho \alpha_{k}+L_{\mathrm{tot}}^{2} \alpha_{k}^{2}\right)+K_{\mathrm{tot}} \sum_{k=n_{0}+1}^{n+1} \alpha_{k}^{2} \prod_{l=k+1}^{n+1}\left(1-2 \varrho \alpha_{l}+L_{\mathrm{tot}}^{2} \alpha_{l}^{2}\right)
$$

By Lemma A.1,

$$
\mathcal{E}_{n+1}^{\mathrm{tot}} \leq \mathcal{E}_{n_{0}}^{\mathrm{tot}} \frac{K_{A .1} n_{0}^{2 \varrho}}{(n+2)^{2 \varrho}}+\frac{K_{A .1} K_{\mathrm{tot}}}{(n+2)^{2 \varrho}} \sum_{k=n_{0}+1}^{n+1} k^{2 \varrho-2}
$$

The partial sum can be estimated by an integral: with $2 \varrho-2 \leq 0$,

$$
\sum_{k=n_{0}}^{n+1} k^{2 \varrho-2} \leq 1+\int_{n_{0}}^{n+1} r^{2 \varrho-2} d r= \begin{cases}1+\left[(n+1)^{2 \varrho-1}-n_{0}^{2 \varrho-1}\right] /(2 \varrho-1), & \text { if } \varrho \neq \frac{1}{2} \tag{88}\\ 1+\ln (n+1)-\ln \left(n_{0}\right), & \text { if } \varrho=\frac{1}{2}\end{cases}
$$

Given $\varrho \leq 1$,

$$
n^{\varrho} \mathcal{E}_{n}^{\mathrm{tot}} \leq \mathcal{E}_{n_{0}}^{\mathrm{tot}} \frac{K_{A .1} n_{0}^{2 \varrho}}{(n+2)^{\varrho}}+\frac{K_{A .1} K_{\mathrm{tot}}}{(n+2)^{\varrho}} \sum_{k=n_{0}+1}^{n+1} k^{2 \varrho-2}<\infty
$$

Consequently, $\lim \sup _{n \rightarrow \infty} n^{\varrho}\left\|\mathcal{E}_{n}\right\|_{T}^{2}<\infty$ by the inequality $n^{\varrho}\left\|\mathcal{E}_{n}\right\|_{T}^{2} \leq 4 n^{\varrho} \mathcal{E}_{n}^{\text {tot }}$. Then we have

$$
n^{\varrho}\left\|\widetilde{\theta}_{n}^{\circ}\right\|_{T}^{2} \leq 2 n^{\varrho}\left\|\mathcal{E}_{n}\right\|_{T}^{2}+2 n^{\varrho}\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}
$$

where $n^{\varrho}\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2} \rightarrow 0$ as n goes to infinity by Lemma A.2. Hence $\lim \sup _{n \rightarrow \infty} n^{\varrho}\left\|\widetilde{\theta}_{n}^{\circ}\right\|_{T}^{2}<\infty$.
Proof of Thm. 2.6. First consider $\left\{\mathcal{E}_{n}^{(2)}\right\}$ updated via (83b). By the triangle inequality and the inequality $\sqrt{1-x} \leq \frac{1}{2} x$,

$$
\begin{aligned}
\left\|\mathcal{E}_{n+1}^{(2)}\right\|_{T} & \leq\left\|\left[I+\alpha_{n+1} A\right] \mathcal{E}_{n}^{(2)}\right\|_{T}+\alpha_{n} \alpha_{n+1}\left\|[I+A] \mathcal{A}_{n+1} \widetilde{\theta}_{n}^{\circ}\right\|_{T} \\
& \leq\left(1-\varrho \alpha_{n+1}+\frac{1}{2} L^{2} \alpha_{n+1}^{2}\right)\left\|\mathcal{E}_{n}^{(2)}\right\|_{T}+\alpha_{n+1}^{2+\varrho / 2} K
\end{aligned}
$$

where $L=\|A\|_{T}$ and $K=\sup _{n} 2\left\|[I+A] \mathcal{A}_{n+1}\right\|_{T}\left\|\widetilde{\theta}_{n}^{\circ}\right\| /(n+1)^{\varrho / 2}$, which is finite thanks to Lemma A.16. Hence, by Lemma A. 1 once more,

$$
\begin{aligned}
\left\|\mathcal{E}_{n+1}^{(2)}\right\|_{T} & \leq\left\|\mathcal{E}_{1}^{(2)}\right\|_{T} \prod_{k=2}^{n+1}\left[1-\varrho \alpha_{k}+\frac{1}{2} L^{2} \alpha_{k}^{2}\right]+K \sum_{k=2}^{n+1} \alpha_{k}^{2+\varrho / 2} \prod_{l=k+1}^{n+1}\left[1-\varrho \alpha_{k}+\frac{1}{2} L^{2} \alpha_{k}^{2}\right] \\
& \leq\left\|\mathcal{E}_{1}^{(2)}\right\|_{T} \frac{K_{A .1}}{(n+2)^{\varrho}}+\frac{K K_{A .1}}{(n+2)^{\varrho}} \sum_{k=2}^{n+1} k^{\varrho / 2-2}
\end{aligned}
$$

With $\varrho \leq 1$, we have $\sum_{k=1}^{\infty} k^{\varrho / 2-2} \leq \sum_{k=1}^{\infty} k^{-3 / 2}<\infty$. Hence $\lim \sup _{n \rightarrow \infty} n^{\varrho}\left\|\mathcal{E}_{n}^{(2)}\right\|_{T}<\infty$. Replacing $A_{n+1} \widetilde{\theta}_{n}^{\circ}+\Delta_{n+1}$ with $\widetilde{\theta}_{n+1}^{\circ}-\widetilde{\theta}_{n}^{\circ}$ in (83c), the same argument applies to $\left\{\mathcal{E}_{n}^{(3)}\right\}$ and we get $\lim \sup _{n \rightarrow \infty} n^{\varrho}\left\|\mathcal{E}_{n}^{(3)}\right\|_{T}<\infty$. The fact that $\lim _{\sup _{n \rightarrow \infty} n\left\|\mathcal{E}_{n+1}^{(4)}\right\|_{T}<\infty \text { follows directly from definition }}$ $\mathcal{E}_{n}^{(4)}=-\alpha_{n} \mathcal{A}_{n+1} \widetilde{\theta}_{n}^{\circ}$ and Lemma A.16. Then we have, for each $2 \leq i \leq 4$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n^{\varrho}\left\|\mathcal{E}_{n}^{(i)}\right\|_{T}<\infty, \quad \text { for } \varrho<\varrho_{0} \text { and } \varrho \leq 1 \tag{89}
\end{equation*}
$$

Now consider the martingale difference part $\left\{\mathcal{E}_{n}^{(1)}\right\}$. The following is directly obtained from (83a):

$$
\begin{aligned}
\left\|\mathcal{E}_{n+1}^{(1)}\right\|_{T}^{2} & \leq\left(1-2 \varrho \alpha_{n+1}+L^{2} \alpha_{n+1}^{2}\right)\left\|\mathcal{E}_{n}^{(1)}\right\|_{T}^{2}+\alpha_{n+1}^{2}\left\|\Delta_{n+2}^{\mathcal{A}}\right\|_{T}^{2}\left\|\widetilde{\theta}_{n}^{\circ}\right\|_{T}^{2} \\
& \leq\left(1-2 \varrho \alpha_{n+1}+L^{2} \alpha_{n+1}^{2}\right)\left\|\mathcal{E}_{n}^{(1)}\right\|_{T}^{2}+\alpha_{n+1}^{2}\left\|\Delta_{n+2}^{\mathcal{A}}\right\|_{T}^{2}\left[8 \sum_{i=1}^{4}\left\|\mathcal{E}_{n}^{(i)}\right\|_{T}^{2}+2\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}\right]
\end{aligned}
$$

From Lemma A. 2 we have $\sup _{n} n^{\delta}\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}<\infty$ for $\delta=\min (1,2 \varrho)$. Combining this with (89) implies that there exists some constant $K_{\mathcal{M}}$ such that for $\delta=\min (1,2 \varrho)$,

$$
\left\|\Delta_{n+2}^{\mathcal{A}}\right\|_{T}^{2}\left[8 \sum_{i=2}^{4}\left\|\mathcal{E}_{n}^{(i)}\right\|_{T}^{2}+2\left\|\widetilde{\theta}_{n}^{\bullet}\right\|_{T}^{2}\right] \leq K_{\mathcal{M}} \frac{1}{(n+1)^{\delta}}
$$

Consequently,

$$
\left\|\mathcal{E}_{n+1}^{(1)}\right\|_{T}^{2} \leq\left(1-2 \varrho \alpha_{n+1}+L_{\mathcal{M}}^{2} \alpha_{n+1}^{2}\right)\left\|\mathcal{E}_{n}^{(1)}\right\|_{T}^{2}+K_{\mathcal{M}} \alpha_{n+1}^{2+\delta}
$$

where $L_{\mathcal{M}}^{2}=\sup _{n} L^{2}+8\left\|\Delta_{n+2}^{\mathcal{A}}\right\|_{T}^{2}$. With initial condition $\mathcal{E}_{0}=0$, iterating this inequality gives

$$
\left\|\mathcal{E}_{n+1}^{(1)}\right\|_{T}^{2} \leq K_{\mathcal{M}} \sum_{k=1}^{n+1} \alpha_{k}^{2+\delta} \prod_{l=k+1}^{n+1}\left[1-2 \varrho \alpha_{l}+L_{\mathcal{M}}^{2} \alpha_{l}^{2}\right] \leq \frac{K_{\mathcal{M}} K_{A .1}}{(n+2)^{2 \varrho}} \sum_{k=1}^{n+1} k^{-(2+\delta-2 \varrho)}
$$

With $2+\delta-2 \varrho>0$, the partial sum is bounded by an integral similar as (88):

$$
\frac{1}{(n+2)^{2 \varrho}} \sum_{k=1}^{n+1} k^{-(2+\delta-2 \varrho)}= \begin{cases}O\left((n+1)^{-2 \varrho}\right), & \text { if } \varrho \leq \frac{1}{2} \text { and } \delta=2 \varrho \\ O\left((n+1)^{-2 \varrho}\right), & \text { if } \frac{1}{2}<\varrho<1 \text { and } \delta=1 \\ O\left((n+1)^{-2}\right), & \text { if } \varrho>1 \text { and } \delta=1\end{cases}
$$

Therefore,
(i) If $\varrho_{0} \leq 1$, then $\lim \sup _{n \rightarrow \infty}(n+1)^{2 \varrho}\left\|\mathcal{E}_{n+1}^{(1)}\right\|_{T}^{2}<\infty$ for $\varrho<\varrho_{0}$.
(ii) If $\varrho_{0}>1$, then $\lim \sup _{n \rightarrow \infty}(n+1)^{2}\left\|\mathcal{E}_{n+1}^{(1)}\right\|_{T}^{2}<\infty$.

Given that the same convergence rates hold for the other components in (89), the conclusion then follows.

