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A Appendices

A.1 Proofs for decomposition and scaling

Proof of Lemma 2.2. Recall the summation by parts formula: for scalar sequences {ay, by},

N N
D arslbrsn — br] = agrabrin — arbo — Y ars1 — axlby (44)
k=0 k=1

This is applied to (29b), beginning with

N N
9]7V’+1 = Z O‘n-l—lAez; + Z an-l—l[Zn—l-l - Zn+2]
n=0 n=0

Hence with a; = ay and by, = Z41, the identity (44) implies

N N
Z Ont1[Zn1 — Znt2l = Z1 — any1Zn42 + Z[Oén+1 — o) Znt
n=0 n=1
N
=Z1 —aNy1Z4Ny2 — Zan+1anzn+1
n=1

By substitution, and using 53' =0,

N
01 =71 —an1Zn12+ D ani1[AG) — anZnii]

n=1

With =, := 577; 4+ anZnt1 for n > 1 we finally obtain for N > 1,

N
E'N—‘,-l = Zl + Z Qnt1 [AEn - an[I + A]Zn+1]

n=1

which is equivalent to (30). O

Proof of Lemma 2.5. Consider the Taylor series expansion:

(n+1)°

o =+n =1+ = Jo(1—n*+O(n7?)

=1+on+1) "+t n+1)—Lo(l -0+ 0(n7?)

where the second equation uses n=! — (n+1)~! = n~1(n +1)~1. With a,, = 1/n, the following bound
follows:
(n+1)? =nf[l+ant1(e+e(n, )]

where g(n, 0) = O(n™1), and &(n, ) > 0 for all n.
Multiplying both sides of (3) by (n + 1)¢, we obtain
O = 04 + s [0n08 + A(n, 0)0F + (n +1)°An11]

where 0, = 0+ &(n, 0) and A(n, 0) = (1 +n~1)2A. O
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Lemma A.1. Let g9 > 0,L > 0 be fixed real numbers. Then the following holds for each n > 1 and
1 <ng<n:

o 2 2 ”80
| | 1—poap + Lo | < Kp|————
k:no[ o k] B A'l (n + 1)90

where K 41 = exp(oo + L* > 52, az).

Proof. By the inequality 1 — z < exp(—x),

n n

n n
[T 12— cocn + L%a3] < exp(—a0 3 aw)exp(L® 3 af) < exp(—20)K exp(—a0 3 )

k=ng k=ng k=ng k=ng

The remainder of the proof involves establishing the bound

Q0
4N

T (45)

exp(—oo0 »  ax) < exp(go)

k=ng

For ng = 1 this follows from the bound > }_; @ > In(n + 1), and for ng > 2 the bound (45) follows
from Y ), ar >1In(n+1) —In(ng — 1) — 1. O

Lemma A.2. Under Assumptions A1-A3, let A = —og +ui denote an eigenvalue of the matriz A with
largest real part. Then L
lim n?¢E[6T6,] =0, 0< 09 and o <

n—oo

N[ =

Proof. Recall the decomposition of 571 in (31): gn = 5,(11) + 57(12) + 57(13), with 57(11), 5%2) evolving as

5511_,')_1 = gr(zl) + Q41 [Agrgl) + AZZ_Q] , g(()l) = 50 (46&)
02 =02 4 0,1 [ADD) — [T+ A Zoya], 6 =2, (46b)

For fixed ¢ < pg and ¢ < %, Let T' > 0 solve the Lyapunov equation [A + oI]T + T[A+ oI|T+1 =0,
which exists since A 4 oI is Hurwitz. Define the norm of 6, by |0, |7 := \/E[61T6,).

First consider 6. Since the martingale difference AT, , is uncorrelated with 57(11), denoting e, =

H%UH%, bnta = ||A”,||3, we obtain the following from (46a):

eny1 = || + an+1A]§£L1)H% + bnt2 (47)

Letting Ao > 0 denote the largest eigenvalue of T, we arrive at the following simplification of the first
term in (47)

1[I+ a1 APV 17 = E[(0)TT — 2004107 — a1 I + a2 ATATIOLV]
< E[(0D)T[T — 2004107 — %QHHT +a2, AT ATIV] (48)

< [1 — 20410 — CEn+1/)\o + 04721+1L2]H9~nH%“

where L denotes the induced operator norm of A with respect to the norm || - ||7. We then obtain
the following recursive bound from (47) and (48)

ent1 <[1— (204 1/Ao)ns1 + LQaiH]en + 0431+1K
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where K = sup,,~; b,. K is finite since b, converges to E;[(A7")TTA}'] geometrically fast.

Consequently, for each n > 1,

n+1 n+1 n+1
ent1 < € H[l — (20 + 1/X\o)ay + L2a}] + KZ o H [1—(20+1/Xo)y + L2a?]
k=1 k=1 I=k+1
By Lemma A.1,
1
1 KKii = 2-90-1/n

<
ent1 < €K (n + 2)2e+1/% + (n + 2)2et1/* A

Therefore, e,1 — 0 at rate at least n =22
For 57(12), we use similar arguments. We obtain the following from (46b) by the triangle inequality.
162 e < I + ans1 A0 | + aman 1 [+ A) Znsa |17

Using the same argument as in (48), along with the inequality v/1 4+ 2 <1+ %:c,

R HT\/l — 205410 = Q1 /Ao + 074 L2
Dlr(l = anp10 = ans1/(20e) + a7 L?)

3/\

I+ 14102 |17 < |16
< He

/—\

3

Denote K = sup,,>1 ||[I + Al Zp 1| 7
1021l < [1 = (e + 1/ ant1 + 302t L0217 + ananyr K
Then by the same argument for the martingale difference term, we can show that H@(?)HT — 0 at rate

at least n™9.

Given ‘|§7(13)HT = ap||Zp+1||7 converges to zero at rate 1/n, the proof is completed by the triangle
inequality. O

A.2 Proof of Thm. 2.4

Denote Cov (9,@) = E[gg)(@(f))T] and 22 = E[02(® (62D)T] = n2eCov (97(5)) for each ¢ in (33). The
proof proceeds by establishing the convergence rate for each Cov (eﬁf )). The main challenges are the

first two: Cov (9(1)) and Cov (0(2)) for which explicit bounds are obtained by studying recursions of

03 _

the scaled sequences. Bounding 6,,” = —a,Zp41 is trivial.

The martingale difference term
Proposition A.3. Under (A1)-(A3),

(i) If Real(\) < —% for every eigenvalue A of A, then
Cov (0)) = n™1%y + O(n~179%)

where § = §(31 + A,$a) >0, and Sy is the solution to the Lyapunov equation (4).
(ii) Suppose there is an eigenvalue X of A, that satisfies —o9 = Real(\) > f%. Let v # 0 denote the

corresponding left eigenvector, and suppose moreover that Xav # 0. Then, EH’UT@(})P] converges to
0 at rate n=2¢, O
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Proof of Prop. A.3 (i) Recall that {A]"} is a martingale difference sequence. It is thus an uncorre-

lated sequence for which 6t and AT, are uncorrelated for £ > 2. The following recursion is obtained
from these facts and (29a)

Cov (65'))) = Cov () + ctpy1 |Cov (B) AT + ACov (60) + an11[ACov (BV) AT 4+ S, ]
Multiplying each side by n + 1 gives
(n 4+ 1)Cov (61 ) =nCov (8 + Cov (61) + Cov (8)) AT + ACov (81
+ an+t1 [ACOV( )AT + EAn-s-z]
=nCov (0W) + g1 [ )[nCov (8)) + nCov (V) AT + AnCov (0(V)]
+ ACov (0\)) AT + EAW}

The following argument will be used repeatedly through this Appendix: the recursion for nCov (9%1)) is
(1))

a deterministic SA recursion for nCov (6y,
linear system

, and is regarded as an Euler approximation to the stable

LX) =(1+e X)) +AX () + X()AT] + Za + e TAX (1) AT (49)
Stability follows from the assumption that %I + A is Hurwitz. The standard justification of the Euler
approximation is through the choice of timescale: let ¢, = > ;_; ay and let X" () denote the solution to
this ODE on [t,, c0) with X"(t,) = nCov (9( )) t > tp, for any n > 1. Using standard ODE arguments
(Borkar, 2008),
sup [0 () — k|| = O(1/n)

k>n

Exponential convergence of X’ to ¥y implies convergence of {nCov (07(3))} to zero at rate 1/n? for some
§=0(I+A,XA)>0. O

Proof of Prop. A.3 (i) Denote €2 = E[[vT62°|2] and A = —go + ui. We begin with the proof that

liminf e >0 (50)

n—oo

With vT[IA— A] = 0, we have vT[I g, + A(n, 0)] = [ev(n, 00) + ui]vT, with g,(n, g0) = O(n™'). Applying
(34a) gives
w125 = 1620 4 [[e0(n, 00) + iloTOZW) 4 (n + 1)P0TAT,]

Let © denote the conjugate of v. Consequently, with o2(v) = vTX A, 7,
enpr = [[L+eu(n,00)/(n+ DI +u?/(n + 1) el + (n + 1) 20y,5(v)

V-uniform ergodicity implies that o2 (v) — vTYAT > 0 as n — 0o at a geometric rate. Fix ng > 0 so
that o2 (v) > 0, and hence also e’ /| > 0. We also assume that 1 + &,(n, g0)/(n 4 1) > 0 for n > no,
which is possible since €,(n, go) = O(n_l).

For N > ng we obtain the uniform bound

[e.e]

log(e? 3) > log(e? € 0 1) +2 Z log[1 — |ey(n, 00)|/(n+1)] > —oc0
n=ng+2
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(1)

which proves that liminf,_ . €2 = liminf, . vTE2 T > 0.

The proof of an upper bound for gy < 1/2: by concavity of the logarithm,
log(ep1) < log([[1+ eu(n, 00)/(n + 1)]* +u?/(n +1)%]ef?) + K (n + 1)~

where K = sup,~,, [[1 + €v(n, 00)/(n + 1)]* + v*/(n + 1)?] l[en |72, 4(v). Using concavity of the
logarithm once more gives

51)(”7 Q0)2 u2

12 (a1

log (e, ;) < log(e2) + 2e,(n, 00)/(n + 1) + + K(n+1)%072

which gives the uniform upper bound

2

= lev(n, 00)| | €v(n, 00) u 2002
log(eff) < log(e.,\)+ > (2 ntl) (n+1)2 Jr(n+1)2+K(n+1) N ><OO
n=ng+2

oo __

This proves that lim sup,,_,, en’ = limsup,,_, UTZ?{”(I)E < 00. O

The telescoping sequence term
Proposition A.4. Under (A1)-(A3),

(i) If Real(\) < —3 for every eigenvalue X of A, then, Cov (97(3)) = O(n=179) for some § = §(31 +
A, ¥A) > 0.

(ii) Suppose there is an eigenvalue X of A that satisfies —pp = Real(\) > f%. Let v # 0 denote the
corresponding left eigenvector, and suppose moreover that Xav # 0. Then,

lim sup n?©E[[oT6P)|?] < oo

n—oo
O
Proof for Prop. A.4 (i) Denote D, =¢(n,0)I + A(n,0) — A. We can rewrite (34b) as
2% = 02 4 a1 [[A1 + 4102 4+ D02 — v, (n + 1)°[I + A Zpy1] 51)

= [T+ ant1[31+ A])02P + 0, 11Du02@ — a1 (n 4+ 1)°[ + Al Znta
Let T > 0 solve the Lyapunov equation
I+ AT+ T3+ A +1=0

As in the proof of Lemma A.2, a solution exists because %I + A is Hurwitz. Adopting the familiar

notation ||6~?§’(2) T := \/E[(gﬁ’@))TTgﬁ’(z)], the triangle inequality applied to (51) gives

162Nl < [T+ ansa (31 + A2 r + @ Dalll| 02PNz + ansran(n+ 1) + A Znsallr (52)
The first term can be simplified by the Lyapunov equation.
[T+ s (31 + ABEE B —E[@2 )T = cial + 03 (31 + AFTIET + A 852
<E[(62®)T[T ‘“;“ T+ a2, [3] + A'T[3] + A])62?)]

~ Q41 ~
<05 @ 1T — =105 DN + o1 L2017
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where L is the induced operator norm of %I + A, and A, > 0 denotes its largest eigenvalue.

Consequently, by the inequality 1+ x <1+ %:1:,

~ ~ Qptq ~ Qnt1
||[I+an+1[;I+AH9,%<2>||Ts||e£;<2>||T¢1— vt O L2 S0P (1= S5+ jala L)

Fix ng > 0 such that for n > ny,

Apt1
2

Qnt1
4

1—

+ 30541 L% + a1 | Dallr <1 -

This is possible since || Dy |l7 = O(n™1).

Denote 6 = min(4)\ ,1) and K = SUp,,>n, |[ + A]Zn 117, which is finite because || Z,,41(7 converges.
We obtain the following from (52)

1622 |7 <[162P|7(1 = Sanir) + a2 an K

! (53)
<[102® |l (1 = Sany1) + i *K
Apply (53) repeatedly for n > ng
n+1 n
2 <@ T] (- b+ K 32 T] (1 -de
k=no+1 k=no I=k+1
~ 0 K exp(d) — 3
<|lge(2) 1o p —345
<1052 exp(0) 2B+ TERE 3 4
=ng
where Y27, k370 < oo for § < 1/4. Therefore, |]§£’(2)HT — 0 at rate at least n~°
The desired conclusion follows: letting Ae > 0 denote the smallest eigenvalue of 7T,
ne 2,(2) < E[(QQ»(Q))TQQ(?)] )\i” HTI
O
Proof for Prop. A.4 (ii) Multiplying both sides of (34b) by vT gives
vT0 D = 0702 ® + a1 [[eu(n, 00) + uilo ™82 — (1 = o + ui)an(n + 1) Zy 41 5

= [1+ apq1len(n, 00) + ui]]ngﬁo’(Q) — (1= 0o + ui)anapt1(n+1)%v7Z, 41
With HUT@QLO’(Q) |2 := EHUT@QLO’(Q)]Q], we obtain the following from (54) by the triangle inequality

HvTeffil 2 < |1+ anyafeu(n, 00) + ud| [0T02P |y + [1 — 00 + uilananii(n + 1) 0T Zysall2 - (55)

By the inequality v1+x <1+ %x, we have

|1 + O‘n—i—l&)(”a QO) + O‘n—Q—luz.‘ <1+ an+15v(na QO) + %aq21+15v(n7 Q0)2 + %a%+1u2

Fix ng > 0 such that for n > ng,

3/2
1+ ant1e0(n, 00) + %aiﬂeu(n, 00)> + %04721+1U2 <1+ O‘n/+1
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which is possible since &,(n, g9) = O(n™'). With K = sup,,>,,, |1 — 00 + ui|||vT Zn41]|2, we obtain the
following bound from (55):

(2 3/2 ~ _
10762 |2 < (1 + /2 070225 + a2~ K (56)
Iterating (56) gives,
n+1 n n
, ~ 3/2 - 3/2
10762 P2 < 10702 @l [T (+ed®+ K > i T a+ai?)
k=no+1 k=ngp l=k+1
n+1
< TP pexp( Y K+ K Z 2+ exp( Z 173/2)
k=no+1 k=ng I=k+1

lim sup,, Hngﬁo’(z))’b < oo, since it is assumed that gy < 3. O

Proof of Thm. 2.4 We obtain the convergence rate of Cov (6,,) based on
Cov (6 ZCOVM +Z Z E[0 (69T
i=1 j=1,j%#i
For case (i), by Prop. A.3 (i) and Prop. A.4 (i), there exists § = (31 + A,¥a) > 0 such that
Cov (00) = n™1%y + O(n™179)

(

Cov (87)) = O(n™'7?)
Cov (0P =n"2%z, |

The cross terms between 63 and 8 for i # j are of smaller orders than O(1/n) by the Cauchy-Schwarz
inequality. Therefore, for a possibly smaller § > 0,

Cov (0,) = n~18g + O(n~179)

For case (ii), limp_,0 n22E[[vT6,,|2] = 0 for each o < gy can be obtained from Prop. A.3 (ii) and Prop. A.4
(ii) directly by the triangle inequality. For ¢ > g, the result lim,,_o n??E[|v76,|?] = cc is established
independently in Lemma A.13. O

A.3 Proof of Thm. 2.8

Denote the correlation between 5,({1) and 57(16) as 72‘” (0) _ [55{1) (57({’))T], where 57({1), 57(5’) are different
terms in (42). The key results that help establish Thm. 2.8 are summarized in the following proposition.

Proposition A.5. Under Assumptions (A1)-(A3), if Real(\) < —1 for every eigenvalue of A, then
there is § > 0 such that

(i) Cov (0,(})) =n"1%) + n_QEgl) + O(n=279), where § = 6(I + A, XA) > 0, Bg > 0 is the unique
solution to the Lyapunov equation (4), and Eél) > 0 solves the Lyapunov equation,

I+ AX+ X[+ A"+ AXgAT — XA =0 (57)
(i) RO 4 gD n_22§2) + O(n=%79), where 2(2) solves the Lyapunov equation:
[I+ AJS + S[I + A]" — [I + A]Cov (A7, A7) — Cov (A7, AT)[I + AT =0 (58)

(iii) RY'®) = —n2E.[ATZ]] + O(n3).
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Proof of Prop. A.5 (i) Since A} , is uncorrelated with 57(11), the following recursion follows from
(29a):

Cov (65'))) = Cov () + an i1 [Cov (OW)AT + ACov (0W1) + a1 [ACov (D) AT + 5 AM]}

Take ¢ = 1/2 in the definition of #2(1) and ze® = E[geM (62T = nCov (921)). Multiplying each
side of the equation by n + 1 gives

1 1
Eﬁﬂ) = > { g, [(1 + E) [ze® 4 seWAT 4 Axe®)] 4 EAZ%(UAT + ZAM] (59)

Recall that Yy solves the Laypunov equation 3 + X AT + AY + YA = 0. Denoting F,, = Zﬁ’(l) — Xy,
the following identity holds

o) 4 neMgT 4 axeM) = B, 4 E,AT + AE, — Sa

Subtracting ¥y from both sides of (59) gives the recursion
1 1
En+1 = En + Apt1 [(1 + E) [ETL + EnAT + AEn] + ﬁAEnAT
1 1
+ —AYgAT — =Y A — 3A + EAn+2:|
n n
Similar to the decomposition in (29), we have E,, = EY + ET(?), each evolving as

EY = ED + o, [(1 + l) [ED + EWAT + AEM] + lAEgUAT 41 [AZAT — ZA]] (61a)
n n

n+1 — Hn -
n
E® = BP + oy [+ ) [BP) + B AT + ABP] + LAEPAT + 5., — Sa (61b)

Since ¥a,,,, — 2 converges to zero geometrically fast, {Ele)} converges to zero faster than {E,(f)}.

Multiplying each side of (61a) by n + 1 gives

(n+1EY, = (n+1DED + (1 + i) [ED + EDAT + AE(M] + 1 [AEWAT 4 ATy AT — SA]
n n
1

1
=nEM 4 = [(1 + ) [2nEWD + nEMAT + AnE(MN] + AXgAT - A + 5;;(1)}
n n

with the error term &vY) = AE(VAT — E,,. Note that AXyAT — S = [A+ I]Xg[A + I]T is positive
definite.

The recursion for {nEy(Ll)} is treated as in the proof of Prop. A.3 (i). Consider the matrix ODE,
LX) = (142X (t) + X (1) AT + AX(t)] + ATeAT — Ta + e "[AX (AT — X(t)]  (62)

Let t, = Y p_; 1/k and let X™(t) denote the solution to this ODE on [t,,c0) with X" (t,) = nEy(Ll),
t > t,, for any n > 1. We then obtain as previously,

sup | X" () — kE} | = O(1/n)
k>n
Recall that Eél) > ( is the solution to the Lyapunov equation (57). Exponential convergence of X to Z‘él)

implies convergence of {nEr(ll)} at rate 1/n® for § = 6(A+1,XA) > 0. Therefore, nE,, = Zél) +0(n=%).
Given Cov (97(11)) =n"13y +n"1E,, we have
Cov (0)) = ™15y + n 25l 4+ O(n=279)
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Proof of Prop. A.5 (ii) We focus on RZV'W gince RVZD = [Rg’l)’(l)]T. Recall the update
forms of 65 and 62" in (29a) and (41a) respectively, where 6\ is uncorrelated with the martingale
difference sequence {ﬁnm+k} for k > 2 and 8>" is uncorrelated with {An, .} for k > 2. With RV =
E[@(f’l)(@(ll))ﬂ, the following is obtained from these facts:
RV — gD 4o, [RGDW AT 4 ARCD-D) 4 o, ARZDD AT
— anan 1[I+ AlCov (A, AT,)]

Denote C), = nRg’l)’(l). Multiplying both sides of the previous equation by n + 1 gives
Cri1 = Cp + a1 [(1+ 07 H[C 4+ CLAT + AC,] + an AC, AT — a1 + A]Cov (AT, 5, AT, )]
Multiplying each side of this equation by n + 1 once more results in

(n 4+ 1)Cry1 = (n+ 1)Cp + (1 +07Y)[Cp + CLAT + AC,] + an AC, AT — i, [T + AlCov (AT 5, A™, )
— nCy + an [(1+ 17 )[2nC + nCy AT + AnC,) — [I + AlCov (AT, AT ) + D) ]

~ ~

where the error term Dfﬁl consists of two components: [I+ A][Cov (A} 5, AT o) —Cov (A7 5, AT )]
that converges to zero at a geometric rate and AC, AT — C,,.

As previously, this is approximated by the linear system

LX) =(1+ e 2X(t) + X () AT+ AX(t)] + e '[AX () AT — X(¢)] (63

— [+ AlCov (A7l 5, ATlk2))
With the same argument used in (i), {nC, + nCt} converges to ZQQ) in (58) at rate 1/n’ for 6 =
8(A+1I) > 0. Therefore, nC,,+nCJf = 2§2)—|—O(n_5) and RZVW = n-2¢, = n2Yoc+0(n27%). O

Proof of Prop. A.5 (iii) The third claim in Prop. A.5 is established through a sequence of lemmas.
Start with the representation of ¥ based on (39):

n+1
9n+1 = —mZ,Hg = *mATnn_;'_g + m(ZTH{i - Zn+2)

Since Bnm-i—?) is uncorrelated with the sequence {5,({1)} for k <n+ 1, we have

1)
B0, (Arys)T =0 (64)
Hence it suffices to consider the correlation between 57(1131 and 2n+3 — 2n+2. The formula for 5&21 for
n>1is
1 n+1 _ n+1 n+1
Oty = TT1+owdlio + " [T 17+ andlAT, (65)
k=1 k=1 I=k+1

%E[Z[ 13— 2; 4o] converges to zero geometrically fast under V-uniform ergodicity of ®. Then we
consider the expectation of the following:

n+1 n+1 R R

Z Qg H [+ OélA]AZL+1[ZrTz+3 - ZrTz+2]

k=1 l=k+1

n+1 n+1 n+1 n+1 (66)

= Zak H [+ a4 [A;cn+227§+3 - AZEAZ\JHJ} + Z Ok H I+ e AJ[AT — A;cn+2]2£+3
k=1 I=k+1 k=1 I=k+1
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The definition of T is now based on the assumption that I + A is Hurwitz: T > 0 is the unique solution
to the Lyapunov equation:

A+ IIT+T[A+I]T+1=0
As previously, we denote ||W||2 = E[WTTW] for a random vector W, and denote by || M ||z the induced
operator norm of a matrix M € R?¥4. In the following result the vector W is taken to be deterministic.

Lemma A.6. Suppose the matriz I + A is Hurwitz. Then there exists constant K such that the
following holds for any k > 1 and alln > k

n+1

I H [I+O‘1A]HT =

l=k+1

k
n+ 2
Proof. For any vector W € R? and [ > 1, we have

NI+ cq AW |3 = WTT — 24T — oyl + o} ATTA]W
<WTTT — 24T + o« ATTA]W
< (1 -2+ of L?)[W][7

where L = ||A||r. Hence

I + Al < \/1 — 20+ 22 <1— o+ 3afL?

Lemma A.1 completes the proof:

n+1 n+1 n+1 &
I T] T+adl,< I] IT+adllr < J] 0 - o+ 3L%7) < Ka; —
I=k+1 I=k+1 I=k+1

O

To analyze E[Ak+22n+3] consider the bivariate Markov chain @ = (®,,, ®,41), n > 0, with state space
Z* = Z x Z. An associated weighting function V* : ZxZ — [1,00) is defined as V*(z,2') = V(2)+V (7).

Denote function hFt1m+2 . 7% — Rixd gg phtlnt2(o0 ) — (f(2") = E[f(Pry1) | Br = 2'])E [f(®n+2)T \
O 1 = 2] and hkﬂ "+2 . 7* 5 R as the (,j)-th entry of A*T17+2 for 1 < 4,5 < d. Note that

WLt (B By 1) = E[AL Zngo | Fiosd]
Lemma A.7. Suppose Assumptions (A1) and (A8) hold. For each 1 <i,j <d,

(1) hchLl "2 e LV moreover there exists constant B such that

k+1,n+2 7 A —
s " 2 e < Bl fillvwll fillwp™

(ii) Consequently, there exists constant B’ such that

[T 2 (@, D) | @0 = 2] — 7w (WE2)] < B fullvwll Fyll ooV (200
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Proof. By the definition of V*-norm,

Hhk+1 n+2H .= sup |[fi<2//) + E[f (Pry1) | P = 2]] [f( Dpi2) | P = Z”H
2! 2'"el V( ) /)
. | (ELfj(Brsa) | ®rpr = 2]
=50 V(")
v sup |E[fi(Ppi1) | @1 = 2E[f;(Pps2) | Ppp1 = 2"]]
22"el V('Z,) + V(Z”)

Given ]‘32 € LY. and the vV-uniform ergodicity of ® (Meyn and Tweedie, 2009, Lemma 15.2.9), there
exists constant B, < oo such that

[Efj(@at2) | Pria = 2")] < Buwllfjllvw VV(E) T F
Consequently,

(") [ELf; (@ny2) | @prr = 2]
sup

F ; ntl—k
ez V(z") < |filvwBwwl fillwe (67)

By the inequality V(') + V(2") > /V(2)V(2") and the v/V-uniform ergodicity of ® once more, we
have

|E[fi(®rs1) | B = #]E [ (@rs2) | Pt = 2]

sup
Z’,Z”GZ V( ) —"_ V( ) (68)
|E[fi(Pri1) | Bp = 2] E [J? (Pni2) | Prpr = 2| 2 ok
<sup sup < B%-||f; f ot
sup e ) o 2 Nl il
Combining (67) and (68) gives
k n P A n —
kg "2 v < Bllfill el fill w7 (69)

with B = B,y + B2,
For (ii), denote g; Fnt2 .7 5 R by the conditional expectation:
gi 2 (2) = E[hy TV (@, @) | O = 2]

This is bounded by a constant times V*:
( / hig /)V*(z ZVP(z,d2)
V*(z,2") ’ ’
< [ v [V(z) + PV ()]

1’7]

o2 |_‘/ W20 P )

V-uniform ergodicity of ® is equivalent to the following drift condition (Meyn and Tweedie, 2009,
Theorem 16.0.2): for some 5 > 0,b < oo, and some “petite set” C,

PV(z) =V (z) < =BV (z) + blc(z), z€”

Consequently,
[V(z) + PV(2)] < [2V(2) + b] < [2+ [b]]V(2)
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Therefore,
k,n+2 k+1,n+2 ; A -
lgis " llv < 124 IR " v < 2+ BIBIF el fill o™ (70)

Thus gk o2 € LY. By V-uniform ergodicity of ® again,

|Elgf 2 (@k) | @0 = 2] — 7 (g7 ?)| < Bullgr vV (2)ok
< B'|\fill ol fillwV (2)p" Y

with B’ = [24|b|] By B. The proof is then completed by applying the smoothing property of conditional
expectation. [

Lemma A.8. Under Assumptions (A1) and (A3), there exists K < oo such that the following hold
[ElAR, 2] “n+3 Iy < Kpri=h (71a)
HE A n+2] - E[Ak+2 n+3 HT < K(1+ )Pnﬂ (71b)

Proof. By the triangle inequality,

[EAEAZ Sl < [EZks1 ZT o)l + [E[ELZkst I 2]

where both terms admit the geometric bound in (71a) following directly from the V-geometric mixing
of ® (Meyn and Tweedie, 2009, Theorem 16.1.5).

For (71b), first notice that
E[AT L Z] o) = E[E[ATL Z] o | Fina)] = E[RFTE12(0), @) 4))

With Lemma A.7, we have for each (i, j)-th entry,

[ERET 2 (@, D) | @0 = 2] = (W) | < BIF vl il orV ()0

With fixed initial condition @y = z, by equivalence of matrix norms, there exists a constant K such
that

HE[hk—l—Ln-i-?(q)k’ (I)k+1)] - 7_‘_(hlc]+1 n+2) HT < Kpn—I—l

(71b) then follows from the triangle inequality:

HE Aty n+2] E[Ak+2 n+3 HT < Kp"t + Kp't? = K(1+ P)PHH

Lemma A.9. For fized p € (0,1), there exists K < oo such that for alln > 2,

=S i
Z*p SKT

>
??‘

Proof. Denote v = —log p > 0 and observe that the function ¢~ exp(7t) is increasing over [1,00). The
following holds for n > 2

_ B "
ka —Z exp(vk) < /t exp(yt)dt

1
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Now consider the integral: for any ¢y € (1,n),

n to n
/ t~Lexp(yt)dt < / exp(t)dt + / toexp(yt)dt

1 1 to

exp(yn) — eXP(’YtO)]

S,Vfl[exp(Vto)—-eXp(W)—F o

Take tg = n — \/n.

exp(yn) — exp(y(n — v/n))

exp(yn) — exp(yto) = exp(y(n — v/n)) — exp(v) + n—/n

to

exp(vto) — exp(y) +

< K'n"'exp(yn)

where K’ = sup;s t exp(—yV/t) — texp(y — vt) + [1 — exp(—=yv/1)]/[1 — 1/V/t]. The proof is completed
by setting K =y 1K’ O

Proof of Prop. A.5 (iii). Following (64), we have

O 00T = BB (2o — Zngal') (72)

This is bounded based on (66): Lemma A.6 and (71b) indicate that there exists some constant K such
that

n+1 n+1
ZakH H [+ alA]HTHE[AkHZZJrB AZLHZ:HFZ] HT < K/’nH (73)
k=1 I=k+1

For the second term in (66), it admits a simpler form

n+1 n+1 n+1

~ N 1
Do [T T+ aAl[af, - AR 2 = [T+ wAlAP 2] — —— AR ZT
k=1 I=k+1 =2
n+1 n+1
- Zak 10k H [+ a AJ[T + A]Akﬂ n+3
k=2 I=k+1
where [/ [T+ AJE [AQZT 3] = O(p") and E[AT", 5 n+3] converges to its steady-state mean. For the

remaining part, Lemma A.6 and (71a) together imply that

n+1 n+1
Hzak 10 H [+ i AJ[I + AJE[A}Y} n+3]HT
I=k+1
n+1 n+1
<3 aan [[ I+ adlirlI + Al |EAT 2] sl
k=2 I=k+1
; n+l

< B n+1—k
_n+2;ak 1P

for some constant K’. By Lemma A.9, there exists another constant K” such that

n+2 & n+2 “(n+1)(n+2)
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This combined with (73) shows that

E[6) [ Znss — ZntalT] = —(n + 1) 'EL[ATZT] + O(p"+)

Following (72), we obtain the desired result:

0 Pl 1 m _
E[91(11+)1(9£21)T] = —me[An ZI1+0((n+1)73)

Proof of Thm. 2.8 With the decomposition in (42), we have

3
Cov (6,,) = Cov (8)) + Z Cov (029)) + Cov (6P)) + R(D:®) 1 R(3):()

j=1
3 3
£y Z REND 4 gD 13 S [RENEE) 4 REREI)
i€{1,3} j=1 j=1 k=1k#j

Cov (03V) = O(n~3), Cov(62?) = O(n~?) and Cov (63*®) = O(n~*) by Thm. 2.4 (i). By the
Cauchy-Schwarz inequality, the correlation terms involving 07(1 2 and 0,(12’3) are O(n~=%%), and R,(?’l)’(g) =

O(n=2%9) is also O(n=2®). Prop. A.5 (ii) shows that RZDG) = O(n~?). Hence the covariance can be
approximated as follows:

Cov (8,) = Cov (8)) + Cov (6P)) + RID-G) 1 R 4 pCD.(D) 4 R(.21) 4 O(r729)
By Prop. A.5, there exist 0(I + A,XA) > 0 and 6(I + A) > 0 such that
Cov (0)) = 'S + 025 + O(n~27?)
Cov (6P = =25, + O(p")
RV = 2B [ATZT] 4+ O(n~?)
R(Zvl)v(l) + R 1 7(271) _22( ) + O( —2—(5)

Putting those results together gives
Cov () = n'Sp + n2(8) + P + Tz — E[APZ]] — Ex[Z,(AT)T]) + O(n~27°)
for some 0 > 0, where ¥ := Zél) + E§2) solves the Lyapunov equation (43). O

A.4 Unbounded moments

This section is devoted to the proof that limy,_ e E[[vT62|2] = oo for 0 > gy (see Thm. 2.4 (ii)). Since it
suffices to show the result holds for g9 < o < %, we assume g < % throughout. Recall that A = —pg+us.

Consider the update of 62 in (32). With vT[AI —A] = 0, we have vT[g, ]+ A,] = vT[0— 00+ (n, 0) +uil.
Multiplying each side of (32) by vT gives
V02 = 0702 + g [0 — 00 + ev(n, 0) + uilvTOL + (n+ 1)%T A, ]

= [1 4+ Qn 1041 + Q1702 + (n+ 1) WTA, 4y
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with 0p41 = 0 — 00 + €v(n, 0). Note that 9,41 is strictly positive for sufficiently large n.

For a fixed but arbitrary ng and each n > ng, we have

N B n+1 n+1 n+1
UTQfLH =072, H (14 apor + agpui] + Z ke loTA H 1+ a0 + oqui]
k=no+1 k=no+1 l=k+1
n+1 _ n+1 kgfl
= { H 1+ aror + akui]} . [vmﬁo + 3 . : UTAI@} (74)
k=no+1 k=ng+1 Mizne [+ ntr + oqud]
n+1 _ n+1
= H 1+ agox + akui]} . [vTﬁﬁo + Z 5kUTAk}
k=no+1 k=no+1

with 8, = ng_l/ H?:n0+1[1 + a0 + aluz’].

The analysis of {UT@%} is mainly based on the random series appearing in (74), which requires the
following three preliminary results:

Lemma A.10. There exists some ng such that for each n > ng,
|Bn - ﬁn+1’2 < 4‘611—&-1‘20431(1 + UQ)
Proof. Note that |8, — Bns1l? = |Bas1]?8n/Brr1 — 1|2, so it is sufficient to bound the second factor:

‘Bn/ﬁn-‘rl - 1‘2

(1 +n Y"1 + any 16041 + anui] — 1)2
1+n (75)

= |
=|( _1)1_9[1 + g 10n41] — 1+ (1 + n_l)l_gan+1ui|2

Consider the real part in (75): since ,(n, 0) = O(n~1), there exists ng such that |e,(n, 0)| < 0 — 0o
and gp4+1 = 0 — 00 + &v(n, @) > 0 for n > ngy. Consequently,

0<(T+n )"+ ant18p] = 1< (L+n Y[+ aps18n1] = 1
< (14 Gn1 + Qns10n41)

Given 0 < 9 — 09 < %, we can increase ng if necessary, such that 1 + gn11 + apr10n+1 < 2 for n > ng.
Then we have
(1 + n_l)l_g[l + OénJrlénJrl] -1 S 2an

For the imaginary part, observe that

IR n?
(1+n Y, u= anmu < 2uay,
The proof is completed by summing the bounds for the real and imaginary parts. O

Lemma A.11. Suppose Assumptions Al and A8 hold. With each ng > 1, the random series
> heng 1 BEVT Ay converges a.s..

Proof. Decompose the series into the sum of a martingale difference and telescoping sequence. The mar-
tingale difference sequence converges almost surely given {3, } € f3; the telescoping series is absolutely
convergent by Lemma A.10. O

Lemma A.12. Suppose Assumptions Al and A3 hold. Denote Z} = v1Z, = Nf((l)n), There exists a
deterministic constant K > 0, such that for all ng and each sequence v € €1 C £,

E[Var( Z Ve—no—12F, | fn0+1)] < KZ |’7k|2 (76)
k=nog+2 k=1
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Proof. First recall that Var Z Vk—no—12}, |.7-"n0+1 < E Z Vk—ng— 1Zk| | n0+1] and hence

k=no+2 k=ngp+2
by the Markov property,
Z Vk—no— 1Zk:| | no+1] = Ex |Z%Zk| = hm E. |Z’Ykzk|
k=no+2 k=1 k=1

where 2’ = ®,,, and the last equality holds by the assumption v € ¢; and dominated convergence. For
each n, letting [v]™ = (71, ...,7n) denote 7 truncated at index n, we have

1D wZil] Z\m E[1Z}] +ZZV WE(Z)Z5] = () [Bla[y1" (77)
k=1 =1 j#i

where [R], € C"*" is the covariance matrix with each entry defined as R(i,j) = E./ [(Z;’)TZ;-’],l <
i,j < n; [R], is Hermitian and positive semi-definite. With \,, > 0 denoting the largest eigenvalue of
[R],, we have

(BT <A S Pl <00 S Jl? (78)
k=1 k=1

By the Gershgorin circle theorem (Golub and Van Loan, 1996), the maximal eigenvalue is upper
bounded by the maximum row sum of absolute values of entries:

< max Z]Rzg]<supZ]R2]

zE{l, ,n} +J 1

For any ¢, observe that
oo
YR =Eo[1ZP] + D IRG, DI+ D |RG,5)]
j=1 1<j ©>7

Since V-uniform ergodicity of the Markov chain ® implies V-geometric mixing (Meyn and Tweedie,
2009, Theorem 16.1.5) and [vT f|> € LY, there exist B < co and r € (0, 1) such that for each i,k € Z,

[RGi+ ) — B2 [(Z2)1]Eo (28] < Br L+ V()

Consequently,
[(Z))T]

> IRG,5) <Ex[|1ZP] + |E.
j=1

+ZBTJ l +7‘V +ZBTZ ] er(z’)]

1<J i>7

Given [0Tf|2 € LY, by (23),
E.[1Z0P] < Ex[1Z2 ] + By |10 f1°]], V()
The Markov chain ® is also v/V-uniformly ergodic. By (23) for v/V and [v7f|> € LY. once more,

[E[(Z))T]] < BuwlvT fllvw VV ()P
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Hence
o

v - v £ 7 j £ P
E((ZON]D_[E=(Z)] < B2olo  fI25V(Z)p' > ) < B2l fI2p——V(Z)
j=1 j=1 1=p

The other two terms on the right hand side of (79) are bounded as follows:

Y BriT 14 V()] =) Bl 417V ()] < (1+V( ")

Jj>i j>i

ZBTZ ] —|—7“]V ZB - ] —|—BV( NG —1) i< — (z’)sqpiri
7<i 7<t t

where sup; ir" exists since lim,,_,oc nr’™ = 0.
(A

Consequently, there exists some deterministic constant K’ independent of 2z’ such that, the largest
eigenvalues {\,,} are uniformly bounded

sup A, < K'V (%)

Combining this with (77) and (78) gives

o0 (o]
E4[1Y 2P < K'V() Dl
k=1 k=1
Therefore,

o
[ Z Vheno1 Zh|* | Frgr1] | Po = Z} < K'E[V(®nor1) | @0 = 2] > [l
k=no+2 k=1

By V € LY, and (23) again, E[V(®,,41) | ®0 = 2] < n(V) + ByV(2). The desired conclusion then
follows by setting K = K'(ByV (z) + n(V)). O

Lemma A.13. Suppose Assumptions A1-A3 hold and Sav # 0. With {62} updated via (32),

lim inf E[|[v762|%] = oo, 0> 00

n—oo
Proof. With fixed ng, equation (74) gives a representation for UTGn 41 for each n > ng. Tt is obvious

that lim infp, o0 [Tf_, 41 11+ kok + guil> = co. Hence it suffices to show that lim inf, o E[jvT62, +

ZZI;OH BrvTAg|?] is strictly greater than zero.

By Fatou’s lemma,

n+1 n+1

11nrggng[|vTe@ + ) BT A >E[hm1nf|vT99 + > BT A
k= no+1 k= no+1
= E[[0762, + Z BroT Agl?]
k=no+1

> Var (102 + > BruTAg)
k=no+1
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where the equality holds by Lemma A.11. By the law of total variance,

Var (002, + Y BoTAy) > E[Var (0702 + Y BrvTAg | Fupar)]
k‘=no+1 k:n0+l

o)
= E[Var( Z BroT Ay | Fogt1)]
k=nop+1

Apply once more the decomposition based on Poisson’s equation:
VA = A+ 2y = Zyyy, 21,

where ZU = T f(®,) and A = Zy — E[Z) | Fa] is a martingale difference. By the variance
inequality Var (X +VY | Fpot1) < 2Var (X | Fro+1) +2Var (Y | Frp+1), we have

E[Var( Z IBk’UTAk ‘ an—&—l)]

k=no+1 (80)
> SE[Var( Y BeAYTy | Fugsn)] —E[Var( > Be(ZE = Z01) | Fugr)]
k=no+1 k=ng+1

By the law of total variance once more,
o0 oo oo
Var (37 BeAR) =E[Var( Y AT | Fagrn)] + Var (Bl 30 BeARL | Frosa))
k=ngp+1 k=no+1 k=ng+1

Note that limy, oo E[Y5_, 11 BeAFT | Fno+1] converges to zero almost surely. With {8,} € £ and
the Jensen’s inequality, we have for all n,

n oo
2
EL D Bl | Fronl|” < D IBPPENAY? | Fagir] < o0
k=no+1 k=nop+1

Then by the dominated convergence theorem, E[|E[Y_22, 1 BeAYT | Frgt1] ‘2] = 0. Therefore,

Var (E[ Z AT |]:n0+1]) < EHE[ Z BrAKT |]:n0+1H2] =0

k:n0+1 k::n0+1
Hence,

oo o0 o0

E[Var( Y BTy | Fagin)] = Var (Y BAT) = D |BklPoks (81)
k=nop+1 k=no+1 k=no+1
where 02 = Var (AY™).
For the telescoping term on the right hand side of (80), we have
o0 o0
E[Var( Y Be(ZE = Zis1) | Fags)] = E[Var (Bugs1Zpgi1 — D (Be = Bre) 28 | Fags1)]
k=no+1 k=no+2

(82)

[e.9]

=E[Var( Y (Br = Brr1) 2L | Fapir)]

k=no+2
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Given {5, — Bn+1} € ¢1 by Lemma A.10, Lemma A.12 indicates that there exists some constant K
independent of ng such that,

EVar( > Bk = Brei1) Zk | Fuor1)] <K D 1Bk — Braa|”
k=ng+2 k=ng+2

Combining (81) and (82) gives

o (0.) o0
EVar (> Buo™A | Fror)l 2 5 Y BP0k — K > 1Bk — Bl
k=no+1 k=no+1 k=np+2

Since |vT f |2 € LY, and 02 — 0% = vTEAT > 0 at a geometric rate, we set ng sufficiently large such
that Lemma A.10 holds and moreover for all n > ny,

1 1
P2t bt arediet) s Lot
Then,
E[Var ( g Brv Ak | Frgt1)] > 1 i |8k
0 =37
k=nop+1 k=no+1
Therefore,
1 o0
oo Tg0 T - § 2
hnrr_lgcng[vQ + g BrvT Ayl ] 28 Bkl >0
k=nop+1 k=nop+1

The desired conclusion then follows from (74):

2 .. ~ 2 e . Y 2
hmlnfEUvTH 1% Zhgggéf H |1+ orou, + aguil -l}nni)ngUvmfboJr Z BroT Agl*] = o0

n—oo
k=ng+1 k=ng+1

A.5 Coupling of Deterministic and Random Linear SA
Let A:Z — R denote the zero-mean solution to the following Poisson equation:
E[A(®n11) | @ =2] = A(z) — A(z) + A,  z€Z

which is a matrix version of (25). Denote A7, ; = A(®,11) — E[A(®,11) | Fn] (a martingale difference
sequence), and A, = A(®,,). Then, from (35),

(Ang1 =AYby, = [Atyo + Antr — Anpol6l,
= AA+29° + An+190 - An+292+1 + -An+2(9;+1 - ‘92)
= AA 2(9 + [An+19 An+253+1] + an+1An+2 (An+152 + An—l-l)

The sequence {&,} from (37) can be expressed as the sum

En=EN + D 4P 4 W
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where &, W —oznAnHGn, and the first three sequences are solutions to the following linear systems:
5(1)1 =& + anp[AEDN + AZLL07), 5( ) =0 (83a)
) = &P + ania[AER) — anll + Al A 1185 e — ;. (s3)
£, = €Y + a1 [AEP) + anr1Ansa(An165 + Apg)] 5(53) =0 (83c)

The second recursion arises through the arguments used in the proof of Lemma 2.2.

Recall that A = —pg + wi is an eigenvalue of the matrix A with largest real part. For fixed 0 < ¢ < 0o,
let T' > 0 denote the unique solution to the Lyapunov equation

[ol + AT +T[oI + A"+1=0 (84)

As previously, the norm of random vector E € R? is defined as: ||E|r = \/E[ETTE].

Lemma A.14. Under Assumptions (A1)-(A4), there exist constants L4 14 and K414 such that, for
alln > 1,

(i) The following holds for each 1 < i <3,

1ED1E < (1= 20011+ L2 1003 DIED G + Kasad 1 (13 + 10413 +1)

(ii) The following holds for 57(14),
IESLIR < Kario? (€13 + 16513 + 1)

The inequality below will be useful in proving Lemma A.14.

Lemma A.15. For any real numbers a,b and all ¢ > 0,
(a+b)2<(1+cNHa?+ (14 c)b?
Proof. With (a + b)? = a? + b + 2ab, the result follows directly from the inequality
2ab = 2(a/\/c)(\/cb) < a*/c + cb?
0

Proof of Lemma A.14. First consider {5,9)} updated via (83a). Since the martingale difference se-
quence A§+2 is uncorrelated with 6, or 579), we have

IS = 1T + ana AIED | + 02 41|07, 505 17
Using the fact that 7" > 0 solves the Lyapunov equation (84) gives
€ +1HT (1 — 20041 + L104n+1)||<‘:(1 [ an+1||An+290||2T
where Ly = ||A|r (the induced operator norm). With 65 = &, + 62,

|85 28l < 20875 I (€l + 16517

Consequently,

[ENNIF < (1= 20am41 + LRa2 )IEDPIF + Kiak, (1€11F + 63113) (85)
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where K = sup,, 2| Az, ||% is finite by the V-uniform ergodicity of ® applied to ,112 ; (recall Thm. 2.1).
For {EnQ)} updated by (83b), using Lemma A.15 with ¢ = n(n + 1) gives
12113 <(1 + anansn) (1 — 20011 + Lia2 ) EP [}
+2(ann1 + anap )T+ AMAn a7 (1EaI17 + 16717)
We can find Ly and K5 such that for all n > 1,
0‘721+1L% + anany1(1 = 200m 41 + L%O‘?H—l) < Lgagﬂ-l
2(anant1 + apap )|+ AlAunlf < Kool

We then obtain the desired form for the sequence {57(12) }

1E21 13 < (1= 20011 + L3a2 )IEP B + Kool (I€l1F + 163]13) (86)

The same argument applies to {5753)} in (83c). Therefore, for some constants Lz and K3,

12113 < (1= 200m41 + L302 )IEDNF + Ksal i (1€l + 63113 + 1) (87)

A bound on the final term Er(fgl = —an+1An+252 41 is relatively easy.

4 o o
HED 12 = st Antal02 + angr (Ant102 + Anp)]|[2
<202 1 [ Ans2 |31 + st At [ Z185 13 + 021 | Ania [17)

Hence there exists some constant K4 such that
4 -
1ESL 1B < Kaay (€113 + 1633 + 1)

O]

The results in Lemma A.14 lead to a rough bound on H@‘?LHZT presented in the following. This interme-
diate result will be used later to establish the refined bound in Thm. 2.6.

Lemma A.16. Under Assumptions (A1)-(A4),

limsupn9||6~?fl||% < 00, for 0 <o and p <1
n—o0

Proof. Denote £ = ! H&(f)HzT By Lemma A.14, we can find ng > 1 such that 1 — 2pap4+1 +
L? 02, >0for n>ng and

Efr < (1= 200m11 + L2 1400 1) + 4K anaas ([ Eall7 + 167117 + 1)

< (1= 20ap41 + L2 400 ) E + 4K 4 aap o (A6 + (10717 + 1)

< (1= 20an41 + Lo 1 )E + Kiotap 4

with L2 tot = L4 14+ 16K 414 and Kot = sup, 4KA11(||§;L||%’ + 1), which are finite by Lemma A.2
combined with Lemma A.14. Iterating this inequality gives, for n > ng,

n+1 n+1 n+1
e <E I (1 =200k + Liyad) + Kiot > o [ (1= 200+ Liyaf)
k=no+1 k=nop+1 l=k+1
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By Lemma A.1,
20 n+1
gtot gtot KA.lno KA 1 Kot Z p20—2
n+1 ( + 2)29 TL + 2 20

k=no+1

The partial sum can be estimated by an integral: with 2p — 2 <0,

n+1 n+1 1 1)2e-1 _ 20—-1 2 — 1 if 1
Zk292§1+/ 720720 — +[(n+1) ng /(20 ) 1 Q?é% (88)
k=nq no 1+ 1D(n + 1) — 111(710) , if p= 5
Given p < 1,
1
Kaing’ | KaiKow N~ 20
né’EfLOth;‘;t 20 Z k07" < oo
(n+2) (n+2)e i
Consequently, lim sup,, ., n?||E,||% < oo by the inequality n?||E,[|2 < 4neELt. Then we have
ne|l05 17 < 20 EallF + 2020165117
where ngHg;LH% — 0 as n goes to infinity by Lemma A.2. Hence limsup,, ., n||6° 2. < . O

Proof of Thm. 2.6. First consider {5722)} updated via (83b). By the triangle inequality and the inequal-

ity l—wgéx,

12 I < T + ans1 AIED |7 + anansal|[T + Al Ani163|r

< (1 gomyr + 10202, ) EDIr + o219 K

where L = || Al and K = sup,, 2||[I + Al Api1|/7]03]|/(n+1)¢/2, which is finite thanks to Lemma A.16.
Hence, by Lemma A.l once more,

n+1 n+1 n+1
2+0/2
1€ +1”T < H€ H H[l — ooy, + %LQ |+ KZ@ +e/ H [1— ooy + %LQai]
k=2 I=k+1
< e lr—= 4‘§:Mﬂ2

(n+2) (n+2)e

With o < 1, we have Y7°, k%272 < $°%° k™32 < co. Hence limsup,,_, . n9||5,(12)HT < 00. Re-
placing An+1§$1 —|— An+1 with 5 — 9~O in (83c), the same argument applies to {5(3 } and we get
limsup,, . n2[|EY||7 < co. The fact that limsup,,_, nHr‘: +1||T < oo follows directly from definition
51(14) = —oznAnHQn and Lemma A.16. Then we have, for each 2 < i < 4,

lim sup n?||EY || < oo, for p < gp and p <1 (89)
n—o0

Now consider the martingale difference part {&(LI)}. The following is directly obtained from (83a):
1 no
12117 <(1 = 2ean i + L2, DIED I + a1 | A 187 7

4
<(1—20an41 + L2l DIEDN 17 + an 1 [ Al (8D IED 17 + 21163 17]
i=1
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From Lemma A.2 we have sup,, n5\|§,'1||% < oo for § = min(1,2p). Combining this with (89) implies
that there exists some constant K such that for § = min(1,2p),

4

18717 (8 IEV I +2007113] < K
1=2

1
(n+1)°

Consequently,
1S I3 < (1= 200m 11 + LRg02 ) IED [} + KpaZth

where L3, = sup,, L? + 8||A74 ,||2. With initial condition & = 0, iterating this inequality gives

1
15 < 302 T 12000+ L] < (05 5o
k=1 l=k+1 k=1

With 2 4+ § — 20 > 0, the partial sum is bounded by an integral similar as (88):

n+l O((n + 1)729)7 if o < % and ¢ = 29
b Z kT2 = L O((n+1)72%), ifl<p<landd=1
k= O((n+1)72), ifp>landd=1

Therefore,

(i) If oo < 1, then limsup,, . (n + 1)29]]57221”% < oo for p < go.

(i) If g > 1, then lim sup,, o (n + 12X 13 < oc.

Given that the same convergence rates hold for the other components in (89), the conclusion then
follows. -



