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A Appendices

A.1 Proofs for decomposition and scaling

Proof of Lemma 2.2. Recall the summation by parts formula: for scalar sequences {ak, bk},

NX

k=0

ak+1[bk+1 � bk] = ak+1bk+1 � a1b0 �
NX

k=1

[ak+1 � ak]bk (44)

This is applied to (29b), beginning with

e✓TN+1 =
NX

n=0

↵n+1A
e✓Tn +

NX

n=0

↵n+1[Zn+1 � Zn+2]

Hence with ak = ↵k and bk = Zk+1, the identity (44) implies

NX

n=0

↵n+1[Zn+1 � Zn+2] = Z1 � ↵N+1ZN+2 +
NX

n=1

[↵n+1 � ↵n]Zn+1

= Z1 � ↵N+1ZN+2 �
NX

n=1

↵n+1↵nZn+1

By substitution, and using e✓T0 = 0,

e✓TN+1 = Z1 � ↵N+1ZN+2 +
NX

n=1

↵n+1
⇥
Ae✓Tn � ↵nZn+1

⇤

With ⌅n := e✓Tn + ↵nZn+1 for n � 1 we finally obtain for N � 1,

⌅N+1 = Z1 +
NX

n=1

↵n+1
⇥
A⌅n � ↵n[I +A]Zn+1

⇤

which is equivalent to (30).

Proof of Lemma 2.3. Consider the Taylor series expansion:

(n+ 1)%

n%
= (1 + n

�1)% = 1 + %n
�1 � 1

2%(1� %)n�2 +O(n�3)

= 1 + %(n+ 1)�1 + %n
�1(n+ 1)�1 � 1

2%(1� %)n�2 +O(n�3)

where the second equation uses n�1 � (n+ 1)�1 = n
�1(n+ 1)�1. With ↵n = 1/n, the following bound

follows:
(n+ 1)% = n

%
⇥
1 + ↵n+1(%+ "(n, %))

⇤

where "(n, %) = O(n�1), and "(n, %) > 0 for all n.

Multiplying both sides of (3) by (n+ 1)%, we obtain

e✓%n+1 =
e✓%n + ↵n+1

⇥
%n

e✓%n +A(n, %)e✓%n + (n+ 1)%�n+1
⇤

where %n = %+ "(n, %) and A(n, %) = (1 + n
�1)%A.
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Lemma A.1. Let %0 > 0, L � 0 be fixed real numbers. Then the following holds for each n � 1 and
1  n0 < n:

nY

k=n0

[1� %0↵k + L
2
↵
2
k]  KA.1

n
%0
0

(n+ 1)%0

where KA.1 = exp(%0 + L
2P1

k=1 ↵
2
k).

Proof. By the inequality 1� x  exp(�x),

nY

k=n0

[1� %0↵k + L
2
↵
2
k]  exp(�%0

nX

k=n0

↵k) exp(L
2

nX

k=n0

↵
2
k)  exp(�%0)K exp(�%0

nX

k=n0

↵k)

The remainder of the proof involves establishing the bound

exp(�%0

nX

k=n0

↵k)  exp(%0)
n
%0
0

(n+ 1)%0
(45)

For n0 = 1 this follows from the bound
Pn

k=1 ↵k � ln(n + 1), and for n0 � 2 the bound (45) follows
from

Pn
k=n0

↵k > ln(n+ 1)� ln(n0 � 1)� 1.

Lemma A.2. Under Assumptions A1-A3, let � = �%0+ui denote an eigenvalue of the matrix A with
largest real part. Then

lim
n!1

n
2%E[e✓|ne✓n] = 0 , % < %0 and %  1

2

Proof. Recall the decomposition of e✓n in (31): e✓n = e✓(1)n + e✓(2)n + e✓(3)n , with e✓(1)n , e✓(2)n evolving as

e✓(1)n+1 =
e✓(1)n + ↵n+1

⇥
Ae✓(1)n +�m

n+2

⇤
, e✓(1)0 = e✓0 (46a)

e✓(2)n+1 =
e✓(2)n + ↵n+1

⇥
Ae✓(2)n � ↵n[I +A]Zn+1

⇤
, e✓(2)1 = Z1 (46b)

For fixed % < %0 and %  1
2 , Let T > 0 solve the Lyapunov equation [A + %I]T + T [A + %I]| + I = 0,

which exists since A+ %I is Hurwitz. Define the norm of e✓n by ke✓nkT :=
q
E[e✓|nT e✓n].

First consider e✓(1)n . Since the martingale di↵erence �m
n+2 is uncorrelated with e✓(1)n , denoting en =

ke✓(1)n k2T , bn+2 = k�m
n+2k2T , we obtain the following from (46a):

en+1 = k[I + ↵n+1A]e✓(1)n k2T + bn+2 (47)

Letting �� > 0 denote the largest eigenvalue of T , we arrive at the following simplification of the first
term in (47)

k[I + ↵n+1A]e✓(1)n k2T = E
⇥
(e✓(1)n )|[T � 2↵n+1%T � ↵n+1I + ↵

2
n+1ATA

|]e✓(1)n

⇤

 E
⇥
(e✓(1)n )|[T � 2↵n+1%T � 1

��
↵n+1T + ↵

2
n+1ATA

|]e✓(1)n

⇤

 [1� 2↵n+1%� ↵n+1/�� + ↵
2
n+1L

2]ke✓nk2T

(48)

where L denotes the induced operator norm of A with respect to the norm k · kT . We then obtain
the following recursive bound from (47) and (48)

en+1  [1� (2%+ 1/��)↵n+1 + L
2
↵
2
n+1]en + ↵

2
n+1K
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where K = supn�1 bn. K is finite since bn converges to E⇡[(�m
n )|T�m

n ] geometrically fast.

Consequently, for each n � 1,

en+1  e0

n+1Y

k=1

[1� (2%+ 1/��)↵k + L
2
↵
2
k] +K

n+1X

k=1

↵
2
k

n+1Y

l=k+1

[1� (2%+ 1/��)↵l + L
2
↵
2
l ]

By Lemma A.1,

en+1  e1KA.1
1

(n+ 2)2%+1/��
+

KKA.1

(n+ 2)2%+1/��

n+1X

k=1

↵
2�2%�1/��
k

Therefore, en+1 ! 0 at rate at least n�2%.

For e✓(2)n , we use similar arguments. We obtain the following from (46b) by the triangle inequality.

ke✓(2)n+1kT  k[I + ↵n+1A]e✓(2)n kT + ↵n↵n+1k[I +A]Zn+1kT

Using the same argument as in (48), along with the inequality
p
1 + x  1 + 1

2x,

k[I + ↵n+1A]e✓(2)n kT  ke✓(2)n kT
q
1� 2↵n+1%� ↵n+1/�� + ↵2

n+1L
2

 ke✓(2)n kT (1� ↵n+1%� ↵n+1/(2��) +
1
2↵

2
n+1L

2)

Denote K
0 = supn�1 k[I +A]Zn+1kT .

ke✓(2)n+1kT  [1� (%+ 1/(2��))↵n+1 +
1
2↵

2
n+1L

2]ke✓(2)n kT + ↵n↵n+1K
0

Then by the same argument for the martingale di↵erence term, we can show that ke✓(2)n kT ! 0 at rate
at least n�%.

Given ke✓(3)n kT = ↵nkZn+1kT converges to zero at rate 1/n, the proof is completed by the triangle
inequality.

A.2 Proof of Thm. 2.4

Denote Cov (✓(i)n ) = E[e✓(i)n (e✓(i)n )|] and ⌃%,(i)
n = E[e✓%,(i)(e✓%,(i))|] = n

2%Cov (✓(i)n ) for each i in (33). The

proof proceeds by establishing the convergence rate for each Cov (✓(i)n ). The main challenges are the

first two: Cov (✓(1)n ) and Cov (✓(2)n ), for which explicit bounds are obtained by studying recursions of

the scaled sequences. Bounding e✓(3)n = �↵nZn+1 is trivial.

The martingale di↵erence term

Proposition A.3. Under (A1)-(A3),

(i) If Real(�) < �1
2 for every eigenvalue � of A, then

Cov (✓(1)n ) = n
�1⌃✓ +O(n�1��)

where � = �(12I +A,⌃�) > 0, and ⌃✓ is the solution to the Lyapunov equation (4).

(ii) Suppose there is an eigenvalue � of A, that satisfies �%0 = Real(�) > �1
2 . Let v 6= 0 denote the

corresponding left eigenvector, and suppose moreover that ⌃�v 6= 0. Then, E[|v|e✓(1)n |2] converges to
0 at rate n

�2%0.
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Proof of Prop. A.3 (i) Recall that {�m
n } is a martingale di↵erence sequence. It is thus an uncorre-

lated sequence for which e✓(1)n and �m
n+k are uncorrelated for k � 2. The following recursion is obtained

from these facts and (29a)

Cov (✓(1)n+1) = Cov (✓(1)n ) + ↵n+1

h
Cov (✓(1)n )A| +ACov (✓(1)n ) + ↵n+1[ACov (✓(1)n )A| + ⌃�n+2 ]

i

Multiplying each side by n+ 1 gives

(n+ 1)Cov (✓(1)n+1) =nCov (✓(1)n ) + Cov (✓(1)n ) + Cov (✓(1)n )A| +ACov (✓(1)n )

+ ↵n+1[ACov (✓(1)n )A| + ⌃�n+2 ]

=nCov (✓(1)n ) + ↵n+1

h
(1 +

1

n
)[nCov (✓(1)n ) + nCov (✓(1)n )A| +AnCov (✓(1)n )]

+ACov (✓(1)n )A| + ⌃�n+2

i

The following argument will be used repeatedly through this Appendix: the recursion for nCov (✓(1)n ) is

a deterministic SA recursion for nCov (✓(1)n ), and is regarded as an Euler approximation to the stable
linear system

d
dtX (t) = (1 + e

�t)[X (t) +AX (t) + X (t)A|] + ⌃� + e
�t
AX (t)A| (49)

Stability follows from the assumption that 1
2I +A is Hurwitz. The standard justification of the Euler

approximation is through the choice of timescale: let tn =
Pn

k=1 ↵k and let X n(t) denote the solution to

this ODE on [tn,1) with X n(tn) = nCov (✓(1)n ), t � tn, for any n � 1. Using standard ODE arguments
(Borkar, 2008),

sup
k�n

kX n(tk)� k⌃(1)
k k = O(1/n)

Exponential convergence of X to ⌃✓ implies convergence of {nCov (✓(1)n )} to zero at rate 1/n� for some
� = �(12I +A,⌃�) > 0.

Proof of Prop. A.3 (ii) Denote e
%0
n = E[|v|e✓%0n |2] and � = �%0 + ui. We begin with the proof that

lim inf
n!1

e
%0
n > 0 (50)

With v
|[I��A] = 0, we have v|[I%n+A(n, %)] = ["v(n, %0)+ui]v|, with "v(n, %0) = O(n�1). Applying

(34a) gives

v
|e✓%0,(1)n+1 = v

|e✓%0,(1)n + ↵n+1
⇥
["v(n, %0) + ui]v|e✓%0,(1)n + (n+ 1)%0v|�m

n+2

⇤

Let v denote the conjugate of v. Consequently, with �
2
n(v) = v

|⌃�nv,

e
%0
n+1 =

⇥
[1 + "v(n, %0)/(n+ 1)]2 + u

2
/(n+ 1)2

⇤
e
%0
n + (n+ 1)2%0�2

�
2
n+2(v)

V -uniform ergodicity implies that �2
n(v) ! v

|⌃�v > 0 as n ! 1 at a geometric rate. Fix n0 > 0 so
that �2

n0
(v) > 0, and hence also e

%0
n0+1 > 0. We also assume that 1 + "v(n, %0)/(n+ 1) > 0 for n � n0,

which is possible since "v(n, %0) = O(n�1).

For N > n0 we obtain the uniform bound

log(e%0N ) � log(e%0n0+1) + 2
1X

n=n0+2

log[1� |"v(n, %0)|/(n+ 1)] > �1



Shuhang Chen, Adithya M. Devraj, Ana Bušić, Sean Meyn

which proves that lim infn!1 e
%0
n = lim infn!1 v

|⌃%0,(1)
n v > 0.

The proof of an upper bound for %0 < 1/2: by concavity of the logarithm,

log(e%0n+1)  log
�⇥
[1 + "v(n, %0)/(n+ 1)]2 + u

2
/(n+ 1)2

⇤
e
%0
n

�
+K(n+ 1)2%0�2

where K = supn>n0

⇥
[1 + "v(n, %0)/(n + 1)]2 + u

2
/(n + 1)2

⇤�1
[e%0n ]�1

�
2
n+2(v). Using concavity of the

logarithm once more gives

log(e%0n+1)  log(e%0n ) + 2"v(n, %0)/(n+ 1) +
"v(n, %0)2

(n+ 1)2
+

u
2

(n+ 1)2
+K(n+ 1)2%0�2

which gives the uniform upper bound

log(e%0N )  log(e%0n0+1) +
1X

n=n0+2

⇣
2
|"v(n, %0)|
n+ 1)

+
"v(n, %0)2

(n+ 1)2
+

u
2

(n+ 1)2
+K(n+ 1)2%0�2

⌘
< 1

This proves that lim supn!1 e
%0
n = lim supn!1 v

|⌃%0,(1)
n v < 1.

The telescoping sequence term

Proposition A.4. Under (A1)-(A3),

(i) If Real(�) < �1
2 for every eigenvalue � of A, then, Cov (✓(2)n ) = O(n�1��) for some � = �(12I +

A,⌃�) > 0.

(ii) Suppose there is an eigenvalue � of A that satisfies �%0 = Real(�) > �1
2 . Let v 6= 0 denote the

corresponding left eigenvector, and suppose moreover that ⌃�v 6= 0. Then,

lim sup
n!1

n
2%0E[|v|e✓(2)n |2] < 1

Proof for Prop. A.4 (i) Denote Dn = "(n, %)I +A(n, %)�A. We can rewrite (34b) as

e✓%,(2)n+1 = e✓%,(2)n + ↵n+1
⇥
[12I +A]e✓%,(2)n +Dn

e✓%,(2)n � ↵n(n+ 1)%[I +A]Zn+1
⇤

=
⇥
I + ↵n+1[

1
2I +A]

⇤e✓%,(2)n + ↵n+1Dn
e✓%,(2)n � ↵n+1↵n(n+ 1)%[I +A]Zn+1

(51)

Let T > 0 solve the Lyapunov equation

[12I +A]|T + T [12I +A] + I = 0

As in the proof of Lemma A.2, a solution exists because 1
2I + A is Hurwitz. Adopting the familiar

notation ke✓%,(2)n kT :=
q
E[(e✓%,(2)n )|T e✓%,(2)n ], the triangle inequality applied to (51) gives

ke✓%,(2)n+1 kT  k
⇥
I + ↵n+1[

1
2I +A]

⇤e✓%,(2)n kT + ↵n+1kDnkT ke✓%,(2)n kT + ↵n+1↵n(n+ 1)%k[I +A]Zn+1kT (52)

The first term can be simplified by the Lyapunov equation.

k
⇥
I + ↵n+1[

1
2I +A]

⇤e✓%,(2)n k2T =E
⇥
(e✓%,(2)n )|

⇥
T � ↵n+1I + ↵

2
n+1[

1
2I +A]|T [12I +A]

⇤e✓%,(2)n

⇤

E
⇥
(e✓%,(2)n )|

⇥
T � ↵n+1

��
T + ↵

2
n+1[

1
2I +A]|T [12I +A]

⇤e✓%,(2)n

⇤

ke✓%,(2)n k2T � ↵n+1

��
ke✓%,(2)n k2T + ↵

2
n+1L

2ke✓%,(2)n k2T
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where L is the induced operator norm of 1
2I +A, and �� > 0 denotes its largest eigenvalue.

Consequently, by the inequality
p
1 + x  1 + 1

2x,

k
⇥
I + ↵n+1[

1
2I +A]

⇤e✓%,(2)n kT  ke✓%,(2)n kT
r
1� ↵n+1

��
+ ↵2

n+1L
2  ke✓%,(2)n kT (1�

↵n+1

2��
+ 1

2↵
2
n+1L

2)

Fix n0 > 0 such that for n � n0,

1� ↵n+1

2��
+ 1

2↵
2
n+1L

2 + ↵n+1kDnkT  1� ↵n+1

4��

This is possible since kDnkT = O(n�1).

Denote � = min( 1
4��

,
1
4) and K = supn�n0

k[I +A]Zn+1kT , which is finite because kZn+1kT converges.
We obtain the following from (52)

ke✓%,(2)n+1 kT ke✓%,(2)n kT (1� �↵n+1) + ↵
1/2
n+1↵nK

ke✓%,(2)n kT (1� �↵n+1) + ↵
3/2
n K

(53)

Apply (53) repeatedly for n � n0

ke✓%,(2)n+1 kT ke✓%,(2)n0
kT

n+1Y

k=n0+1

(1� �↵k) +K

nX

k=n0

↵
3/2
k

nY

l=k+1

(1� �↵l)

ke✓%,(2)n0
kT exp(�)

n
�
0

(n+ 2)�
+

K exp(�)

(n+ 1)�

nX

k=n0

k
� 3

2+�

where
P1

k=1 k
� 3

2+�
< 1 for �  1/4. Therefore, ke✓%,(2)n kT ! 0 at rate at least n��.

The desired conclusion follows: letting �• > 0 denote the smallest eigenvalue of T ,

⌃%,(2)
n  E[(e✓%,(2)n )|e✓%,(2)n ]I  1

�•
ke✓%,(2)n k2T I

Proof for Prop. A.4 (ii) Multiplying both sides of (34b) by v
| gives

v
|e✓%0,(2)n+1 = v

|e✓%0,(2)n + ↵n+1
⇥
["v(n, %0) + ui]v|e✓%0,(2)n � (1� %0 + ui)↵n(n+ 1)%0v|Zn+1

⇤

=
⇥
1 + ↵n+1["v(n, %0) + ui]

⇤
v
|e✓%0,(2)n � (1� %0 + ui)↵n↵n+1(n+ 1)%0v|Zn+1

(54)

With kv|e✓%0,(2)n k2 :=
q
E[|v|e✓%0,(2)n |2], we obtain the following from (54) by the triangle inequality

kv|e✓%0,(2)n+1 k2 
��1 + ↵n+1["v(n, %0) + ui]

��kv|e✓%0,(2)n k2 +
��1� %0 + ui

��↵n↵n+1(n+ 1)%0kv|Zn+1k2 (55)

By the inequality
p
1 + x  1 + 1

2x, we have

��1 + ↵n+1"v(n, %0) + ↵n+1ui
��  1 + ↵n+1"v(n, %0) +

1
2↵

2
n+1"v(n, %0)

2 + 1
2↵

2
n+1u

2

Fix n0 > 0 such that for n � n0,

1 + ↵n+1"v(n, %0) +
1
2↵

2
n+1"v(n, %0)

2 + 1
2↵

2
n+1u

2  1 + ↵
3/2
n+1
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which is possible since "v(n, %0) = O(n�1). With K = supn�n0
|1 � %0 + ui|kv|Zn+1k2, we obtain the

following bound from (55):

kv|e✓%0,(2)n+1 k2  (1 + ↵
3/2
n+1)kv

|e✓%0,(2)n k2 + ↵
2�%0
n K (56)

Iterating (56) gives,

kv|e✓%0,(2)n+1 k2  kv|e✓%0,(2)n0
k2

n+1Y

k=n0+1

(1 + ↵
3/2
k ) +K

nX

k=n0

↵
2�%0
k

nY

l=k+1

(1 + ↵
3/2
l )

 kv|e✓%0,(2)n0
k2 exp(

n+1X

k=n0+1

k
�2/3) +K

nX

k=n0

k
�2+%0 exp(

nX

l=k+1

l
�3/2)

lim supn!1 kv|e✓%0,(2)n )k2 < 1, since it is assumed that %0 <
1
2 .

Proof of Thm. 2.4 We obtain the convergence rate of Cov (✓n) based on

Cov (✓n) =
3X

i=1

Cov (✓(i)n ) +
3X

i=1

3X

j=1,j 6=i

E[e✓(i)n (e✓(j)n )|]

For case (i), by Prop. A.3 (i) and Prop. A.4 (i), there exists � = �(12I +A,⌃�) > 0 such that

Cov (✓(1)n ) = n
�1⌃✓ +O(n�1��)

Cov (✓(2)n ) = O(n�1��)

Cov (✓(3)n ) = n
�2⌃Zn+1

The cross terms between e✓(i)n and e✓(j)n for i 6= j are of smaller orders than O(1/n) by the Cauchy-Schwarz
inequality. Therefore, for a possibly smaller � > 0,

Cov (✓n) = n
�1⌃✓ +O(n�1��)

For case (ii), limn!0 n
2%E[|v|e✓n|2] = 0 for each % < %0 can be obtained from Prop. A.3 (ii) and Prop. A.4

(ii) directly by the triangle inequality. For % > %0, the result limn!0 n
2%E[|v|e✓n|2] = 1 is established

independently in Lemma A.13.

A.3 Proof of Thm. 2.8

Denote the correlation between e✓(a)n and e✓(b)n as R
(a),(b)
n = E[e✓(a)n (e✓(b)n )|], where e✓(a)n , e✓(b)n are di↵erent

terms in (42). The key results that help establish Thm. 2.8 are summarized in the following proposition.

Proposition A.5. Under Assumptions (A1)-(A3), if Real(�) < �1 for every eigenvalue of A, then
there is � > 0 such that

(i) Cov (✓(1)n ) = n
�1⌃✓ + n

�2⌃(1)
] + O(n�2��), where � = �(I + A,⌃�) > 0, ⌃✓ � 0 is the unique

solution to the Lyapunov equation (4), and ⌃(1)
] � 0 solves the Lyapunov equation,

[I +A]⌃+ ⌃[I +A]| +A⌃✓A
| � ⌃� = 0 (57)

(ii) R
(2,1),(1)
n +R

(1),(2,1)
n = n

�2⌃(2)
] +O(n�2��), where ⌃(2)

] solves the Lyapunov equation:

[I +A]⌃+ ⌃[I +A]| � [I +A]Cov ⇡(b�m
n ,�m

n )� Cov ⇡(�
m
n , b�m

n )[I +A]| = 0 (58)

(iii) R
(1),(3)
n = �n

�2E⇡[�m
n
bZ|
n] +O(n�3).
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Proof of Prop. A.5 (i) Since �m
n+2 is uncorrelated with e✓(1)n , the following recursion follows from

(29a):

Cov (✓(1)n+1) = Cov (✓(1)n ) + ↵n+1

h
Cov (✓(1)n )A| +ACov (✓(1)n ) + ↵n+1[ACov (✓(1)n )A| + ⌃�n+2 ]

i

Take % = 1/2 in the definition of e✓%,(1) and ⌃%,(1)
n = E[e✓%,(1)(e✓%,(1))|] = nCov (✓(1)n ). Multiplying each

side of the equation by n+ 1 gives

⌃%,(1)
n+1 = ⌃%,(1)

n + ↵n+1

h
(1 +

1

n
)
⇥
⌃%,(1)
n + ⌃%,(1)

n A
| +A⌃%,(1)

n

⇤
+

1

n
A⌃%,(1)

n A
| + ⌃�n+2

i
(59)

Recall that ⌃✓ solves the Laypunov equation ⌃ + ⌃A| + A⌃ + ⌃� = 0. Denoting En = ⌃%,(1)
n � ⌃✓,

the following identity holds

⌃%,(1)
n + ⌃%,(1)

n A
| +A⌃%,(1)

n = En + EnA
| +AEn � ⌃�

Subtracting ⌃✓ from both sides of (59) gives the recursion

En+1 = En + ↵n+1

h
(1 +

1

n
)
⇥
En + EnA

| +AEn
⇤
+

1

n
AEnA

|

+
1

n
A⌃✓A

| � 1

n
⌃� � ⌃� + ⌃�n+2

i (60)

Similar to the decomposition in (29), we have En = E
(1)
n + E

(2)
n , each evolving as

E
(1)
n+1 = E

(1)
n + ↵n+1

h
(1 +

1

n
)
⇥
E

(1)
n + E

(1)
n A

| +AE
(1)
n

⇤
+

1

n
AE

(1)
n A

| +
1

n

⇥
A⌃✓A

| � ⌃�
⇤i

(61a)

E
(2)
n+1 = E

(2)
n + ↵n+1

h
(1 +

1

n
)
⇥
E

(2)
n + E

(2)
n A

| +AE
(2)
n

⇤
+

1

n
AE

(2)
n A

| + ⌃�n+2 � ⌃�

i
(61b)

Since ⌃�n+2 � ⌃� converges to zero geometrically fast, {E(1)
n } converges to zero faster than {E(2)

n }.

Multiplying each side of (61a) by n+ 1 gives

(n+ 1)E(1)
n+1 = (n+ 1)E(1)

n + (1 +
1

n
)
⇥
E

(1)
n + E

(1)
n A

| +AE
(1)
n

⇤
+

1

n

⇥
AE

(1)
n A

| +A⌃✓A
| � ⌃�

⇤

= nE
(1)
n +

1

n

h
(1 +

1

n
)
⇥
2nE(1)

n + nE
(1)
n A

| +AnE
(1)
n

⇤
+A⌃✓A

| � ⌃� + E•,(1)
n

i

with the error term E•,(1)
n = AE

(1)
n A

| � En. Note that A⌃✓A
| � ⌃� = [A + I]⌃✓[A + I]| is positive

definite.

The recursion for {nE(1)
n } is treated as in the proof of Prop. A.3 (i). Consider the matrix ODE,

d
dtX (t) = (1 + e

�t)[2X (t) + X (t)A| +AX (t)] +A⌃✓A
| � ⌃� + e

�t[AX (t)A| � X (t)] (62)

Let tn =
Pn

k=1 1/k and let X n(t) denote the solution to this ODE on [tn,1) with X n(tn) = nE
(1)
n ,

t � tn, for any n � 1. We then obtain as previously,

sup
k�n

kX n(tk)� kE
(1)
k k = O(1/n)

Recall that ⌃(1)
] � 0 is the solution to the Lyapunov equation (57). Exponential convergence of X to ⌃(1)

]

implies convergence of {nE(1)
n } at rate 1/n� for � = �(A+I,⌃�) > 0. Therefore, nEn = ⌃(1)

] +O(n��).

Given Cov (✓(1)n ) = n
�1⌃✓ + n

�1
En, we have

Cov (✓(1)n ) = n
�1⌃✓ + n

�2⌃(1)
] +O(n�2��)
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Proof of Prop. A.5 (ii) We focus on R
(2,1),(1)
n since R

(1),(2,1)
n = [R(2,1),(1)

n ]|. Recall the update

forms of e✓(1)n and e✓(2,1)n in (29a) and (41a) respectively, where e✓(1)n is uncorrelated with the martingale

di↵erence sequence {b�m
n+k} for k � 2 and e✓(2,1)n is uncorrelated with {�m

n+k} for k � 2. With R
(2,1),(1)
n =

E[e✓(2,1)n (e✓(1)n )|], the following is obtained from these facts:

R
(2,1),(1)
n+1 = R

(2,1),(1)
n + ↵n+1

⇥
R

(2,1),(1)
n A

| +AR
(2,1),(1)
n + ↵n+1AR

(2,1),(1)
n A

|

� ↵n↵n+1[I +A]Cov (b�m
n+2,�

m
n+2)

⇤

Denote Cn = nR
(2,1),(1)
n . Multiplying both sides of the previous equation by n+ 1 gives

Cn+1 = Cn + ↵n+1
⇥
(1 + n

�1)[Cn + CnA
| +ACn] + ↵nACnA

| � ↵n[I +A]Cov (b�m
n+2,�

m
n+2)

⇤

Multiplying each side of this equation by n+ 1 once more results in

(n+ 1)Cn+1 = (n+ 1)Cn + (1 + n
�1)[Cn + CnA

| +ACn] + ↵nACnA
| � ↵n[I +A]Cov (b�m

n+2,�
m
n+2)

= nCn + ↵n
⇥
(1 + n

�1)[2nCn + nCnA
| +AnCn]� [I +A]Cov ⇡(b�m

n+2,�
m
n+2) +D(2)

n+1

⇤

where the error term D(2)
n+1 consists of two components: [I+A][Cov ⇡(b�m

n+2,�
m
n+2)�Cov (b�m

n+2,�
m
n+2)]

that converges to zero at a geometric rate and ACnA
| � Cn.

As previously, this is approximated by the linear system

d
dtX (t) =(1 + e

�t)[2X (t) + X (t)A| +AX (t)] + e
�t[AX (t)A| � X (t)]

� [I +A]Cov ⇡(b�m
n+2,�

m
n+2))

(63)

With the same argument used in (i), {nCn + nC
|
n} converges to ⌃(2)

] in (58) at rate 1/n� for � =

�(A+I) > 0. Therefore, nCn+nC
|
n = ⌃(2)

] +O(n��) and R
(2,1),(1)
n = n

�2
Cn = n

�2⌃1,C+O(n�2��).

Proof of Prop. A.5 (iii) The third claim in Prop. A.5 is established through a sequence of lemmas.

Start with the representation of e✓(3)n+1 based on (39):

e✓(3)n+1 = � 1

n+ 1
Zn+2 = � 1

n+ 1
b�m
n+3 +

1

n+ 1
( bZn+3 � bZn+2)

Since b�m
n+3 is uncorrelated with the sequence {e✓(1)k } for k  n+ 1, we have

E[e✓(1)n+1(
b�m
n+3)

|] = 0 (64)

Hence it su�ces to consider the correlation between e✓(1)n+1 and bZn+3 � bZn+2. The formula for e✓(1)n+1 for
n � 1 is

e✓(1)n+1 =
n+1Y

k=1

[I + ↵kA]e✓0 +
n+1X

k=1

↵k

n+1Y

l=k+1

[I + ↵lA]�m
k+1 (65)

e✓0E[ bZ|
n+3 � bZ|

n+2] converges to zero geometrically fast under V -uniform ergodicity of �. Then we
consider the expectation of the following:

n+1X

k=1

↵k

n+1Y

l=k+1

[I + ↵lA]�m
k+1[ bZ

|
n+3 � bZ|

n+2]

=
n+1X

k=1

↵k

n+1Y

l=k+1

[I + ↵lA]
⇥
�m

k+2
bZ|
n+3 ��m

k+1
bZ|
n+2

⇤
+

n+1X

k=1

↵k

n+1Y

l=k+1

[I + ↵lA]
⇥
�m

k+1 ��m
k+2

⇤ bZ|
n+3

(66)
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The definition of T is now based on the assumption that I+A is Hurwitz: T > 0 is the unique solution
to the Lyapunov equation:

[A+ I]T + T [A+ I]| + I = 0

As previously, we denote kWk2T = E[W |
TW ] for a random vector W , and denote by kMkT the induced

operator norm of a matrix M 2 Rd⇥d. In the following result the vector W is taken to be deterministic.

Lemma A.6. Suppose the matrix I + A is Hurwitz. Then there exists constant K such that the
following holds for any k � 1 and all n � k

��
n+1Y

l=k+1

[I + ↵lA]
��
T
 K

k

n+ 2

Proof. For any vector W 2 Rd and l � 1, we have

k[I + ↵lA]Wk2T = W
|[T � 2↵lT � ↵lI + ↵

2
lA

|
TA]W

 W
|[TT � 2↵lT + ↵

2
lA

|
TA]W

 (1� 2↵l + ↵
2
l L

2)kWk2T

where L = kAkT . Hence

kI + ↵lAkT 
q
1� 2↵l + ↵2

l L
2  1� ↵l +

1
2↵

2
l L

2

Lemma A.1 completes the proof:

��
n+1Y

l=k+1

[I + ↵lA]
��
T


n+1Y

l=k+1

k[I + ↵lA]kT 
n+1Y

l=k+1

[1� ↵l +
1
2L

2
↵
2
l ]  KA.1

k

n+ 2

To analyze E[�m
k+2

bZ|
n+3], consider the bivariate Markov chain �⇤

n = (�n,�n+1), n � 0, with state space
Z⇤ = Z⇥Z. An associated weighting function V

⇤ : Z⇥Z ! [1,1) is defined as V ⇤(z, z0) = V (z)+V (z0).

Denote function h
k+1,n+2 : Z⇤ ! Rd⇥d as hk+1,n+2(z0, z00) = (f̂(z00)�E[f̂(�k+1) | �k = z

0])E[ ˆ̂f(�n+2)| |
�k+1 = z

00] and h
k+1,n+2
i,j : Z⇤ ! R as the (i, j)-th entry of h

k+1,n+2 for 1  i, j  d. Note that

h
k+1,n+2(�k,�k+1) = E[�m

k+1
bZn+2 | Fk+1]

Lemma A.7. Suppose Assumptions (A1) and (A3) hold. For each 1  i, j  d,

(i) h
k+1,n+2
i,j 2 L

V ⇤
1 , moreover there exists constant B such that

khk+1,n+2
i,j kV ⇤  Bkf̂ ikp

V k ˆ̂fjkp
V ⇢

n�k+1

(ii) Consequently, there exists constant B0 such that

��E[hk+1,n+2
i,j (�k,�k+1) | �0 = z]� ⇡

�
h
k+1,n+2
i,j

���  B
0kf̂ ikp

V k ˆ̂fjkp
V V (z)⇢n+1
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Proof. By the definition of V ⇤-norm,

khk+1,n+2
i,j kV ⇤ = sup

z0,z002Z

��⇥f̂ i(z
00) + E[f̂ i(�k+1) | �k = z

0]
⇤
E[ ˆ̂fj(�n+2) | �k+1 = z

00]
��

V (z0) + V (z00)

 sup
z002Z

��f̂ i(z
00)E[ ˆ̂fj(�n+2) | �k+1 = z

00]
��

V (z00)

+ sup
z0,z002Z

��E[f̂ i(�k+1) | �k = z
0]E[ ˆ̂fj(�n+2) | �k+1 = z

00]
��

V (z0) + V (z00)

Given ˆ̂
f
2
j 2 L

V
1 and the

p
V -uniform ergodicity of � (Meyn and Tweedie, 2009, Lemma 15.2.9), there

exists constant Bp
V < 1 such that

��E[ ˆ̂fj(�n+2) | �k+1 = z
00]
��  Bp

V k ˆ̂fjkp
V

p
V (z00)⇢n+1�k

Consequently,

sup
z002Z

|f̂ i(z
00)
⇥
E[ ˆ̂fj(�n+2) | �k+1 = z

00]|
V (z00)

 kf̂ ikp
VB

p
V k ˆ̂fjkp

V ⇢
n+1�k (67)

By the inequality V (z0) + V (z00) �
p
V (z0)V (z00) and the

p
V -uniform ergodicity of � once more, we

have

sup
z0,z002Z

��E[f̂ i(�k+1) | �k = z
0]E[ ˆ̂fj(�n+2) | �k+1 = z

00]
��

V (z0) + V (z00)

 sup
z02Z

��E[f̂ i(�k+1) | �k = z
0]
��

p
V (z0)

sup
z002Z

��E[ ˆ̂fj(�n+2) | �k+1 = z
00]
��

p
V (z00)

 B
2p
V kf̂ ikp

V k ˆ̂fjkp
V ⇢

n+2�k

(68)

Combining (67) and (68) gives

khk+1,n+2
i,j kV ⇤  Bkf̂ ikp

V k ˆ̂fjkp
V ⇢

n+1�k (69)

with B = Bp
V +B

2p
V
.

For (ii), denote g
k,n+2
i,j : Z ! R by the conditional expectation:

g
k,n+2
i,j (z) = E[hk+1,n+2

i,j (�k,�k+1) | �k = z]

This is bounded by a constant times V ⇤:

|gk,n+2
i,j (z)| =

���
Z

h
k+1,n+2
i,j (z, z0)P (z, dz0)

��� 
���
Z

h
k+1,n+2
i,j (z, z0)

V ⇤(z, z0)
V

⇤(z, z0)P (z, dz0)
���

 khk+1,n+2
i,j kV ⇤ [V (z) + PV (z)]

V -uniform ergodicity of � is equivalent to the following drift condition (Meyn and Tweedie, 2009,
Theorem 16.0.2): for some � > 0, b < 1, and some “petite set” C,

PV (z)� V (z)  ��V (z) + bIC(z) , z 2 Z

Consequently,
[V (z) + PV (z)]  [2V (z) + b]  [2 + |b|]V (z)
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Therefore,

kgk,n+2
i,j kV  [2 + |b|]khk+1,n+2

i,j kV ⇤  [2 + |b|]Bkf̂ ikp
V k ˆ̂fjkp

V ⇢
n+1�k (70)

Thus gk,n+2
i,j 2 L

V
1. By V -uniform ergodicity of � again,

��E[gk,n+2
i,j (�k) | �0 = z]� ⇡

�
g
k,n+2
i,j

���  BV kgk,n+2
i,j kV V (z)⇢k

 B
0kf̂ ikp

V k ˆ̂fjkp
V V (z)⇢n+1

with B
0 = [2+|b|]BV B. The proof is then completed by applying the smoothing property of conditional

expectation.

Lemma A.8. Under Assumptions (A1) and (A3), there exists K < 1 such that the following hold
��E[�m

k+1
bZ|
n+3]

��
T
 K⇢

n+1�k (71a)
��E[�m

k+1
bZ|
n+2]� E[�m

k+2
bZ|
n+3]

��
T
 K(1 + ⇢)⇢n+1 (71b)

Proof. By the triangle inequality,
��E[�m

k+1
bZ|
n+2]

��
T


��E[Zk+1
bZ|
n+2]

��
T
+
��E

⇥
E[Zk+1|Fk] bZ|

n+2

⇤��
T

where both terms admit the geometric bound in (71a) following directly from the V -geometric mixing
of � (Meyn and Tweedie, 2009, Theorem 16.1.5).

For (71b), first notice that

E[�m
k+1

bZ|
n+2] = E

⇥
E[�m

k+1
bZ|
n+2 | Fk+1]

⇤
= E[hk+1,n+2(�k,�k+1)]

With Lemma A.7, we have for each (i, j)-th entry,
���E[hk+1,n+2

i,j (�k,�k+1) | �0 = z]� ⇡
�
h
k+1,n+2
i,j

����  B
0kf̂ ikp

V k ˆ̂fjkp
V V (z)⇢n+1

With fixed initial condition �0 = z, by equivalence of matrix norms, there exists a constant K such
that ���E[hk+1,n+2(�k,�k+1)]� ⇡

�
h
k+1,n+2
i,j

����
T
 K⇢

n+1

(71b) then follows from the triangle inequality:
��E[�m

k+1
bZ|
n+2]� E[�m

k+2
bZ|
n+3]

��
T
 K⇢

n+1 +K⇢
n+2 = K(1 + ⇢)⇢n+1

Lemma A.9. For fixed ⇢ 2 (0, 1), there exists K < 1 such that for all n � 2,

n�1X

k=1

1

k
⇢
�k  K

⇢
�n

n

Proof. Denote � = � log ⇢ > 0 and observe that the function t
�1 exp(�t) is increasing over [1,1). The

following holds for n � 2

n�1X

k=1

1

k
⇢
�k =

n�1X

k=1

1

k
exp(�k) 

Z n

1
t
�1 exp(�t)dt
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Now consider the integral: for any t0 2 (1, n),

Z n

1
t
�1 exp(�t)dt 

Z t0

1
exp(�t)dt+

Z n

t0

t
�1
0 exp(�t)dt

 �
�1

⇥
exp(�t0)� exp(�) +

exp(�n)� exp(�t0)

t0

⇤

Take t0 = n�
p
n.

exp(�t0)� exp(�) +
exp(�n)� exp(�t0)

t0
= exp(�(n�

p
n))� exp(�) +

exp(�n)� exp(�(n�
p
n))

n�
p
n

 K
0
n
�1 exp(�n)

where K
0 = supt�2 t exp(��

p
t)� t exp(� � �t) + [1� exp(��

p
t)]/[1� 1/

p
t]. The proof is completed

by setting K = �
�1

K
0.

Proof of Prop. A.5 (iii). Following (64), we have

R
(1),(3)
n+1 = E[e✓(1)n+1(

e✓(3)n+1)
|] =

1

n+ 1
E[e✓(1)n+1[

bZn+3 � bZn+2]
|] (72)

This is bounded based on (66): Lemma A.6 and (71b) indicate that there exists some constant K such
that

n+1X

k=1

↵k

��
n+1Y

l=k+1

[I + ↵lA]
��
T

��E
⇥
�m

k+2
bZ|
n+3 ��m

k+1
bZ|
n+2

⇤��
T
 K⇢

n+1 (73)

For the second term in (66), it admits a simpler form

n+1X

k=1

↵k

n+1Y

l=k+1

[I + ↵lA]
⇥
�m

k+1 ��m
k+2

⇤ bZ|
n+3 =

n+1Y

l=2

[I + ↵lA]�m
2
bZ|
n+3 �

1

n+ 1
�m

n+3
bZ|
n+3

�
n+1X

k=2

↵k�1↵k

n+1Y

l=k+1

[I + ↵lA][I +A]�m
k+1

bZ|
n+3

where
Qn+1

l=2 [I+↵lA]E[�2
bZ|
n+3] = O(⇢n) and E[�m

n+3
bZ|
n+3] converges to its steady-state mean. For the

remaining part, Lemma A.6 and (71a) together imply that

���
n+1X

k=2

↵k�1↵k

n+1Y

l=k+1

[I + ↵lA][I +A]E[�m
k+1

bZ|
n+3]

���
T


n+1X

k=2

↵k�1↵k

n+1Y

l=k+1

kI + ↵lAkT kI +AkT kE[�m
k+1

bZ|
n+3]kT

 K
0

n+ 2

n+1X

k=2

↵k�1⇢
n+1�k

for some constant K 0. By Lemma A.9, there exists another constant K 00 such that

K
0

n+ 2

n+1X

k=2

↵k�1⇢
n�k =

K
0
⇢
n

n+ 2

nX

k=1

↵k⇢
�k  K

0
K

00
⇢

(n+ 1)(n+ 2)
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This combined with (73) shows that

E[e✓(1)n+1[
bZn+3 � bZn+2]

|] = �(n+ 1)�1E⇡[�
m
n
bZ|
n] +O(⇢n+1)

Following (72), we obtain the desired result:

E[e✓(1)n+1(
e✓(3)n+1)

|] = � 1

(n+ 1)2
E⇡[�

m
n
bZ|
n] +O((n+ 1)�3)

Proof of Thm. 2.8 With the decomposition in (42), we have

Cov (✓n) = Cov (✓(1)n ) +
3X

j=1

Cov (✓(2,j)n ) + Cov (✓(3)n ) +R
(1),(3)
n +R

(3),(1)
n

+
X

i2{1,3}

3X

j=1

[R(2,j),(i)
n +R

(i),(2,j)
n ] +

3X

j=1

3X

k=1,k 6=j

[R(2,j),(2,k)
n +R

(2,k),(2,j)
n ]

Cov (✓(2,1)n ) = O(n�3), Cov (✓(2,2)n ) = O(n�5) and Cov (✓(2,3)n ) = O(n�4) by Thm. 2.4 (i). By the

Cauchy-Schwarz inequality, the correlation terms involving e✓(2,2)n and e✓(2,3)n are O(n�2.5), and R
(2,1),(3)
n =

O(n�2.5) is also O(n�2.5). Prop. A.5 (ii) shows that R(2,1),(3)
n = O(n�3). Hence the covariance can be

approximated as follows:

Cov (✓n) = Cov (✓(1)n ) + Cov (✓(3)n ) +R
(1),(3)
n +R

(3),(1)
n +R

(2,1),(1)
n +R

(1),(2,1)
n +O(n�2.5)

By Prop. A.5, there exist �(I +A,⌃�) > 0 and �(I +A) > 0 such that

Cov (✓(1)n ) = n
�1⌃✓ + n

�2⌃(1)
] +O(n�2��)

Cov (✓(3)n ) = n
�2⌃Z +O(⇢n)

R
(1),(3)
n = �n

�2E⇡[�
m
n
bZ|
n] +O(n�3)

R
(2,1),(1)
n +R

(1),(2,1)
n = n

�2⌃(2)
] +O(n�2��)

Putting those results together gives

Cov (✓n) = n
�1⌃✓ + n

�2
�
⌃(1)
] + ⌃(2)

] + ⌃Z � E⇡[�
m
n
bZ|
n]� E⇡[ bZn(�

m
n )|]

�
+O(n�2��)

for some � > 0, where ⌃] := ⌃(1)
] + ⌃(2)

] solves the Lyapunov equation (43).

A.4 Unbounded moments

This section is devoted to the proof that limn!1 E[|v|e✓%n|2] = 1 for % > %0 (see Thm. 2.4 (ii)). Since it
su�ces to show the result holds for %0 < % <

1
2 , we assume % <

1
2 throughout. Recall that � = �%0+ui.

Consider the update of e✓%n in (32). With v
|[�I�A] = 0, we have v|[%nI+An] = v

|[%�%0+"v(n, %)+ui].
Multiplying each side of (32) by v

| gives

v
|e✓%n+1 = v

|e✓%n + ↵n+1
⇥
[%� %0 + "v(n, %) + ui]v|e✓%n + (n+ 1)%v|�n+1

⇤

= [1 + ↵n+1%̃n+1 + ↵n+1ui]v
|e✓%n + (n+ 1)%�1

v
|�n+1
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with %̃n+1 = %� %0 + "v(n, %). Note that %̃n+1 is strictly positive for su�ciently large n.

For a fixed but arbitrary n0 and each n � n0, we have

v
|e✓%n+1 = v

|e✓%n0

n+1Y

k=n0+1

[1 + ↵k%̃k + ↵kui] +
n+1X

k=n0+1

k
%�1

v
|�k

n+1Y

l=k+1

[1 + ↵l%̃l + ↵lui]

=
h n+1Y

k=n0+1

[1 + ↵k%̃k + ↵kui]
i
·
h
v
|e✓%n0

+
n+1X

k=n0+1

k
%�1

Qk
l=n0+1[1 + ↵l%̃l + ↵lui]

v
|�k

i

=
h n+1Y

k=n0+1

[1 + ↵k%̃k + ↵kui]
i
·
h
v
|e✓%n0

+
n+1X

k=n0+1

�kv
|�k

i

(74)

with �n = n
%�1

/
Qn

l=n0+1[1 + ↵l%̃l + ↵lui].

The analysis of {v|e✓%n} is mainly based on the random series appearing in (74), which requires the
following three preliminary results:

Lemma A.10. There exists some n0 such that for each n > n0,

|�n � �n+1|2  4|�n+1|2↵2
n(1 + u

2)

Proof. Note that |�n � �n+1|2 = |�n+1|2|�n/�n+1 � 1|2, so it is su�cient to bound the second factor:

|�n/�n+1 � 1|2 = |(1 + n
�1)1�%[1 + ↵n+1%̃n+1 + ↵n+1ui]� 1|2

= |(1 + n
�1)1�%[1 + ↵n+1%̃n+1]� 1 + (1 + n

�1)1�%
↵n+1ui|2

(75)

Consider the real part in (75): since "v(n, %) = O(n�1), there exists n0 such that |"v(n, %)|  % � %0

and %̃n+1 = %� %0 + "v(n, %) > 0 for n � n0. Consequently,

0  (1 + n
�1)1�%[1 + ↵n+1%̃n+1]� 1 < (1 + n

�1)[1 + ↵n+1%̃n+1]� 1

 n
�1(1 + %̃n+1 + ↵n+1%̃n+1)

Given 0 < %� %0 <
1
2 , we can increase n0 if necessary, such that 1 + %̃n+1 + ↵n+1%̃n+1  2 for n � n0.

Then we have
(1 + n

�1)1�%[1 + ↵n+1%̃n+1]� 1  2↵n

For the imaginary part, observe that

(1 + n
�1)1�%

↵n+1u = ↵n
n
%

(n+ 1)%
u  2u↵n

The proof is completed by summing the bounds for the real and imaginary parts.

Lemma A.11. Suppose Assumptions A1 and A3 hold. With each n0 � 1, the random seriesP1
k=n0+1 �kv

|�k converges a.s..

Proof. Decompose the series into the sum of a martingale di↵erence and telescoping sequence. The mar-
tingale di↵erence sequence converges almost surely given {�n} 2 `2; the telescoping series is absolutely
convergent by Lemma A.10.

Lemma A.12. Suppose Assumptions A1 and A3 hold. Denote Z
v
n = v

|
Zn = v

|
f̂(�n). There exists a

deterministic constant K > 0, such that for all n0 and each sequence � 2 `1 ✓ `2,

E
⇥
Var (

1X

k=n0+2

�k�n0�1Z
v
k | Fn0+1)

⇤
 K

1X

k=1

|�k|2 (76)
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Proof. First recall that Var
� 1X

k=n0+2

�k�n0�1Z
v
k | Fn0+1

�
 E

⇥
|

1X

k=n0+2

�k�n0�1Z
v
k |2 | Fn0+1

⇤
, and hence

by the Markov property,

E
⇥
|

1X

k=n0+2

�k�n0�1Z
v
k |2 | Fn0+1

⇤
= Ez0

⇥
|

1X

k=1

�kZ
v
k |2

⇤
= lim

n!1
Ez0

⇥
|

nX

k=1

�kZ
v
k |2

⇤

where z
0 = �n, and the last equality holds by the assumption � 2 `1 and dominated convergence. For

each n, letting d�en = (�1, . . . , �n) denote � truncated at index n, we have

Ez0
⇥
|

nX

k=1

�kZ
v
k |2

⇤
=

nX

k=1

|�k|2Ez0
⇥
|Zv

k |2
⇤
+

nX

i=1

nX

j 6=i

�
†
i �jEz0

⇥
(Zv

i )
†
Z

v
j

⇤
= (d�en)†[R]nd�en (77)

where [R]n 2 Cn⇥n is the covariance matrix with each entry defined as R(i, j) = Ez0
⇥
(Zv

i )
†
Z

v
j

⇤
, 1 

i, j  n; [R]n is Hermitian and positive semi-definite. With �n � 0 denoting the largest eigenvalue of
[R]n, we have

(d�en)†[R]nd�en  �n

nX

k=1

|�k|2  �n

1X

k=1

|�k|2 (78)

By the Gershgorin circle theorem (Golub and Van Loan, 1996), the maximal eigenvalue is upper
bounded by the maximum row sum of absolute values of entries:

�n  max
i2{1,...,n}

nX

j=1

|R(i, j)|  sup
i2Z+

1X

j=1

|R(i, j)|

For any i, observe that

1X

j=1

|R(i, j)| = Ez0
⇥
|Zv

i |2
⇤
+
X

i<j

|R(i, j)|+
X

i>j

|R(i, j)|

Since V -uniform ergodicity of the Markov chain � implies V -geometric mixing (Meyn and Tweedie,
2009, Theorem 16.1.5) and |v|f̂ |2 2 L

V
1, there exist B < 1 and r 2 (0, 1) such that for each i, k 2 Z+,

���R(i, i+ k)� Ez0
⇥
(Zv

i )
†⇤Ez0

⇥
Z

v
i+k

⇤��� Br
k[1 + r

i
V (z0)]

Consequently,
1X

j=1

|R(i, j)| Ez0
⇥
|Zv

i |2
⇤
+
���Ez0

⇥
(Zv

i )
†⇤
���

1X

j=1

���Ez0 [Z
v
j ]
���

+
X

i<j

Br
j�i[1 + r

i
V (z0)] +

X

i>j

Br
i�j [1 + r

j
V (z0)]

(79)

Given |v|f̂ |2 2 L
V
1, by (23),

Ez0
⇥
|Zv

n|2
⇤
 E⇡

⇥
|Zv

n|2
⇤
+BV

��|v|f̂ |2
��
V
V (z0)

The Markov chain � is also
p
V -uniformly ergodic. By (23) for

p
V and |v|f̂ |2 2 L

V
1 once more,

��Ez0 [(Z
v
i )

†]
��  Bp

V kv|f̂kp
V

p
V (z0)⇢j
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Hence
��Ez0 [(Z

v
i )

†]
��

1X

j=1

��Ez0 [Z
v
j ]
��  B

2p
V kv|f̂k2pV V (z0)⇢i

1X

j=1

⇢
j  B

2p
V kv|f̂k2pV

⇢

1� ⇢
V (z0)

The other two terms on the right hand side of (79) are bounded as follows:

X

j>i

Br
j�i[1 + r

i
V (z0)] =

X

j>i

B[rj�i + r
j
V (z0)]  Br

1� r
(1 + V (z0))

X

j<i

Br
i�j [1 + r

j
V (z0)] =

⇥X

j<i

B[ri�j ]
⇤
+BV (z0)(i� 1)ri  Br

1� r
+BV (z0) sup

i
ir

i

where supi ir
i exists since limn!1 nr

n = 0.

Consequently, there exists some deterministic constant K
0 independent of z

0 such that, the largest
eigenvalues {�n} are uniformly bounded

sup
n

�n  K
0
V (z0)

Combining this with (77) and (78) gives

Ez0
⇥
|

1X

k=1

Z
v
k |2

⇤
 K

0
V (z0)

1X

k=1

|�k|2

Therefore,

E
h
E
⇥
|

1X

k=n0+2

�k�n0�1Z
v
k |2 | Fn0+1

⇤
| �0 = z

i
 K

0E
⇥
V (�n0+1) | �0 = z

⇤ 1X

k=1

|�k|2

By V 2 L
V
1 and (23) again, E[V (�n0+1) | �0 = z]  ⇡(V ) + BV V (z). The desired conclusion then

follows by setting K = K
0(BV V (z) + ⇡(V )).

Lemma A.13. Suppose Assumptions A1-A3 hold and ⌃�v 6= 0. With {e✓%n} updated via (32),

lim inf
n!1

E[|v|e✓%n|2] = 1 , % > %0

Proof. With fixed n0, equation (74) gives a representation for v
|e✓%n+1 for each n � n0. It is obvious

that lim infn!1
Qn

k=n0+1 |1+ %̃k↵k +↵kui|2 = 1. Hence it su�ces to show that lim infn!1 E[|v|e✓%n0 +Pn+1
k=n0+1 �kv

|�k|2] is strictly greater than zero.

By Fatou’s lemma,

lim inf
n!1

E
⇥
|v|e✓%n0

+
n+1X

k=n0+1

�kv
|�k|2

⇤
� E

⇥
lim inf
n!1

|v|e✓%n0
+

n+1X

k=n0+1

�kv
|�k|2

⇤

= E
⇥
|v|e✓%n0

+
1X

k=n0+1

�kv
|�k|2

⇤

� Var
�
v
|e✓%n0

+
1X

k=n0+1

�kv
|�k

�
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where the equality holds by Lemma A.11. By the law of total variance,

Var
�
v
|e✓%n0

+
1X

k=n0+1

�kv
|�k

�
� E

⇥
Var (v|e✓%n0

+
1X

k=n0+1

�kv
|�k | Fn0+1)

⇤

= E
⇥
Var (

1X

k=n0+1

�kv
|�k | Fn0+1)

⇤

Apply once more the decomposition based on Poisson’s equation:

v
|�n = �vm

n+1 + Z
v
n � Z

v
n+1 , n � 1 ,

where Z
v
n = v

|
f̂(�n) and �vm

n+1 = Z
v
n+1 � E[Zv

n+1 | Fn] is a martingale di↵erence. By the variance
inequality Var (X + Y | Fn0+1)  2Var (X | Fn0+1) + 2Var (Y | Fn0+1), we have

E
⇥
Var (

1X

k=n0+1

�kv
|�k | Fn0+1)

⇤

� 1
2E

⇥
Var (

1X

k=n0+1

�k�
vm
k+1 | Fn0+1)

⇤
� E

⇥
Var (

1X

k=n0+1

�k(Z
v
k � Z

v
k+1) | Fn0+1)

⇤
(80)

By the law of total variance once more,

Var
� 1X

k=n0+1

�k�
vm
k+1

�
= E

⇥
Var (

1X

k=n0+1

�k�
vm
k+1 | Fn0+1)

⇤
+ Var

�
E[

1X

k=n0+1

�k�
vm
k+1 | Fn0+1]

�

Note that limn!1 E[
Pn

k=n0+1 �k�
vm
k+1 | Fn0+1] converges to zero almost surely. With {�n} 2 `2 and

the Jensen’s inequality, we have for all n,

��E[
nX

k=n0+1

�k�
vm
k+1 | Fn0+1]

��2 
1X

k=n0+1

|�k|2E[|�vm
k+1|2 | Fn0+1] < 1

Then by the dominated convergence theorem, E
⇥��E[

P1
k=n0+1 �k�

vm
k+1 | Fn0+1]

��2⇤ = 0. Therefore,

Var
�
E[

1X

k=n0+1

�k�
vm
k+1 | Fn0+1]

�
 E

⇥��E[
1X

k=n0+1

�k�
vm
k+1 | Fn0+1]

��2⇤ = 0

Hence,

E
⇥
Var (

1X

k=n0+1

�k�
vm
k+1 | Fn0+1)

⇤
= Var

� 1X

k=n0+1

�k�
vm
k+1

�
=

1X

k=n0+1

|�k|2�2
k+1 (81)

where �
2
n = Var (�vm

n ).

For the telescoping term on the right hand side of (80), we have

E
⇥
Var (

1X

k=n0+1

�k(Z
v
k � Z

v
k+1) | Fn0+1)

⇤
= E

⇥
Var (�n0+1Z

v
n0+1 �

1X

k=n0+2

(�k � �k+1)Z
v
k | Fn0+1)

⇤

= E
⇥
Var (

1X

k=n0+2

(�k � �k+1)Z
v
k | Fn0+1)

⇤
(82)
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Given {�n � �n+1} 2 `1 by Lemma A.10, Lemma A.12 indicates that there exists some constant K

independent of n0 such that,

E
⇥
Var (

1X

k=n0+2

(�k � �k+1)Ẑk | Fn0+1)
⇤
 K

1X

k=n0+2

|�k � �k+1|2

Combining (81) and (82) gives

E[Var (
1X

k=n0+1

�kv
|�k | Fn0+1)] � 1

2

1X

k=n0+1

|�k|2�2
k+1 �K

1X

k=n0+2

|�k � �k+1|2

Since |v|f̂ |2 2 L
V
1 and �

2
n ! �

2 = v
|⌃�v > 0 at a geometric rate, we set n0 su�ciently large such

that Lemma A.10 holds and moreover for all n � n0,

�
2
n � 1

2�
2
,

1

4
�
2 � 4K↵

2
n(1 + u

2) � 1

8
�
2
,

Then,

E
⇥
Var (

1X

k=n0+1

�kv
|�k | Fn0+1)

⇤
� 1

8
�
2

1X

k=n0+1

|�k|2

Therefore,

lim inf
n!1

E
⇥
|v|e✓%n0

+
nX

k=n0+1

�kv
|�k|2

⇤
� 1

8
�
2

1X

k=n0+1

|�k|2 > 0

The desired conclusion then follows from (74):

lim inf
n!1

E
⇥
|v|e✓%n+1|

2
⇤
� lim inf

n!1

nY

k=n0+1

|1 + %̃k↵k + ↵kui|2 · lim inf
n!1

E
⇥
|v|e✓%n0

+
nX

k=n0+1

�kv
|�k|2

⇤
= 1

A.5 Coupling of Deterministic and Random Linear SA

Let bA : Z ! Rd⇥d denote the zero-mean solution to the following Poisson equation:

E[ bA(�n+1) | �n = z] = bA(z)�A(z) +A , z 2 Z

which is a matrix version of (25). Denote �A
n+1 = bA(�n+1)�E[ bA(�n+1) | Fn] (a martingale di↵erence

sequence), and An = bA(�n). Then, from (35),

(An+1 �A)e✓�n = [�A
n+2 +An+1 �An+2]e✓�n

= �A
n+2

e✓�n +An+1
e✓�n �An+2

e✓�n+1 +An+2(e✓�n+1 � e✓�n)

= �A
n+2

e✓�n + [An+1
e✓�n �An+2

e✓�n+1] + ↵n+1An+2(An+1
e✓�n +�n+1)

The sequence {En} from (37) can be expressed as the sum

En = E(1)
n + E(2)

n + E(3)
n + E(4)

n
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where E(4)
n = �↵nAn+1

e✓�n, and the first three sequences are solutions to the following linear systems:

E(1)
n+1 = E(1)

n + ↵n+1[AE(1)
n +�A

n+2
e✓�n] , E(1)

0 = 0 (83a)

E(2)
n+1 = E(2)

n + ↵n+1[AE(2)
n � ↵n[I +A]An+1

e✓�n] , E(2)
1 = A1

e✓�0 (83b)

E(3)
n+1 = E(3)

n + ↵n+1[AE(3)
n + ↵n+1An+2(An+1

e✓�n +�n+1)] , E(3)
0 = 0 (83c)

The second recursion arises through the arguments used in the proof of Lemma 2.2.

Recall that � = �%0 + ui is an eigenvalue of the matrix A with largest real part. For fixed 0 < % < %0,
let T � 0 denote the unique solution to the Lyapunov equation

[%I +A]T + T [%I +A]| + I = 0 (84)

As previously, the norm of random vector E 2 Rd is defined as: kEkT =
p
E[E|TE].

Lemma A.14. Under Assumptions (A1)-(A4), there exist constants LA.14 and KA.14 such that, for
all n � 1,

(i) The following holds for each 1  i  3,

kE(i)
n+1k

2
T  (1� 2%↵n+1 + L

2
A.14↵

2
n+1)kE(i)

n k2T +KA.14↵
2
n+1(kEnk2T + ke✓•nk2T + 1)

(ii) The following holds for E(4)
n ,

kE(4)
n+1k

2
T  KA.14↵

2
n+1(kEnk2T + ke✓•nk2T + 1)

The inequality below will be useful in proving Lemma A.14.

Lemma A.15. For any real numbers a, b and all c > 0,

(a+ b)2  (1 + c
�1)a2 + (1 + c)b2

Proof. With (a+ b)2 = a
2 + b

2 + 2ab, the result follows directly from the inequality

2ab = 2(a/
p
c)(

p
cb)  a

2
/c+ cb

2

Proof of Lemma A.14. First consider {E(1)
n } updated via (83a). Since the martingale di↵erence se-

quence �A
n+2 is uncorrelated with e✓�n or E(1)

n , we have

kE(1)
n+1k

2
T = k[I + ↵n+1A]E(1)

n k2T + ↵
2
n+1k�A

n+2
e✓�nk2T

Using the fact that T � 0 solves the Lyapunov equation (84) gives

kE(1)
n+1k

2
T  (1� 2%↵n+1 + L

2
1↵

2
n+1)kE(1)

n k2T + ↵
2
n+1k�A

n+2
e✓�nk2T

where L1 = kAkT (the induced operator norm). With e✓�n = En + e✓•n,

k�A
n+2

e✓�nk2T  2k�A
n+2k2T (kEnk2T + ke✓•nk2T )

Consequently,

kE(1)
n+1k

2
T  (1� 2%↵n+1 + L

2
1↵

2
n+1)kE(1)

n k2T +K1↵
2
n+1(kEnk2T + ke✓•nk2T ) (85)
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where K1 = supn 2k�A
n+2k2T is finite by the V -uniform ergodicity of � applied to bA2

i,j (recall Thm. 2.1).

For {E(2)
n } updated by (83b), using Lemma A.15 with c = n(n+ 1) gives

kE(2)
n+1k

2
T (1 + ↵n↵n+1)(1� 2%↵n+1 + L

2
1↵

2
n+1)kE(2)

n k2T
+ 2(↵n↵n+1 + ↵

2
n↵

2
n+1)k[I +A]An+1k2T (kEnk2T + ke✓•nk2T )

We can find L2 and K2 such that for all n � 1,

↵
2
n+1L

2
1 + ↵n↵n+1(1� 2%↵n+1 + L

2
1↵

2
n+1)  L

2
2↵

2
n+1

2(↵n↵n+1 + ↵
2
n↵

2
n+1)k[I +A]An+1k2T  K2↵

2
n+1

We then obtain the desired form for the sequence {E(2)
n }

kE(2)
n+1k

2
T  (1� 2%↵n+1 + L

2
2↵

2
n+1)kE(2)

n k2T +K2↵
2
n+1(kEnk2T + ke✓•nk2T ) (86)

The same argument applies to {E(3)
n } in (83c). Therefore, for some constants L3 and K3,

kE(3)
n+1k

2
T  (1� 2%↵n+1 + L

2
3↵

2
n+1)kE(3)

n k2T +K3↵
2
n+1(kEnk2T + ke✓•nk2T + 1) (87)

A bound on the final term E(4)
n+1 = �↵n+1An+2

e✓�n+1 is relatively easy.

kE(4)
n+1k

2
T = k↵n+1An+2[e✓�n + ↵n+1(An+1

e✓�n +�n+1)]k2T
 2↵2

n+1kAn+2k2T (kI + ↵n+1An+1k2T ke✓�nk2T + ↵
2
n+1k�n+1k2T )

Hence there exists some constant K4 such that

kE(4)
n+1k

2
T  K4↵

2
n+1(kEnk2T + ke✓•nk2T + 1)

The results in Lemma A.14 lead to a rough bound on ke✓�nk2T presented in the following. This interme-
diate result will be used later to establish the refined bound in Thm. 2.6.

Lemma A.16. Under Assumptions (A1)-(A4),

lim sup
n!1

n
%ke✓�nk2T < 1 , for % < %0 and %  1

Proof. Denote Etot
n =

P4
i=1 kE

(i)
n k2T . By Lemma A.14, we can find n0 � 1 such that 1 � 2%↵n+1 +

L
2
A.14↵

2
n+1 > 0 for n � n0 and

Etot
n+1  (1� 2%↵n+1 + L

2
A.14↵

2
n+1)Etot

n + 4KA.14↵
2
n+1(kEnk2T + ke✓•nk2T + 1)

 (1� 2%↵n+1 + L
2
A.14↵

2
n+1)Etot

n + 4KA.14↵
2
n+1(4Etot

n + ke✓•nk2T + 1)

 (1� 2%↵n+1 + L
2
tot↵

2
n+1)Etot

n +Ktot↵
2
n+1

with L
2
tot = L

2
A.14 + 16KA.14 and Ktot = supn 4KA.14(ke✓•nk2T + 1), which are finite by Lemma A.2

combined with Lemma A.14. Iterating this inequality gives, for n � n0,

Etot
n+1  Etot

n0

n+1Y

k=n0+1

(1� 2%↵k + L
2
tot↵

2
k) +Ktot

n+1X

k=n0+1

↵
2
k

n+1Y

l=k+1

(1� 2%↵l + L
2
tot↵

2
l )
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By Lemma A.1,

Etot
n+1  Etot

n0

KA.1n
2%
0

(n+ 2)2%
+

KA.1Ktot

(n+ 2)2%

n+1X

k=n0+1

k
2%�2

The partial sum can be estimated by an integral: with 2%� 2  0,

n+1X

k=n0

k
2%�2  1 +

Z n+1

n0

r
2%�2

dr =

(
1 + [(n+ 1)2%�1 � n

2%�1
0 ]/(2%� 1) , if % 6= 1

2

1 + ln(n+ 1)� ln(n0) , if % = 1
2

(88)

Given %  1,

n
%Etot

n  Etot
n0

KA.1n
2%
0

(n+ 2)%
+

KA.1Ktot

(n+ 2)%

n+1X

k=n0+1

k
2%�2

< 1

Consequently, lim supn!1 n
%kEnk2T < 1 by the inequality n

%kEnk2T  4n%Etot
n . Then we have

n
%ke✓�nk2T  2n%kEnk2T + 2n%ke✓•nk2T

where n
%ke✓•nk2T ! 0 as n goes to infinity by Lemma A.2. Hence lim supn!1 n

%ke✓�nk2T < 1.

Proof of Thm. 2.6. First consider {E(2)
n } updated via (83b). By the triangle inequality and the inequal-

ity
p
1� x  1

2x,

kE(2)
n+1kT  k[I + ↵n+1A]E(2)

n kT + ↵n↵n+1k[I +A]An+1
e✓�nkT

 (1� %↵n+1 +
1
2L

2
↵
2
n+1)kE(2)

n kT + ↵
2+%/2
n+1 K

where L = kAkT and K = supn 2k[I+A]An+1kT ke✓�nk/(n+1)%/2, which is finite thanks to Lemma A.16.
Hence, by Lemma A.1 once more,

kE(2)
n+1kT  kE(2)

1 kT
n+1Y

k=2

[1� %↵k +
1
2L

2
↵
2
k] +K

n+1X

k=2

↵
2+%/2
k

n+1Y

l=k+1

[1� %↵k +
1
2L

2
↵
2
k]

 kE(2)
1 kT

KA.1

(n+ 2)%
+

KKA.1

(n+ 2)%

n+1X

k=2

k
%/2�2

With %  1, we have
P1

k=1 k
%/2�2 

P1
k=1 k

�3/2
< 1. Hence lim supn!1 n

%kE(2)
n kT < 1. Re-

placing An+1
e✓�n + �n+1 with e✓�n+1 � e✓�n in (83c), the same argument applies to {E(3)

n } and we get

lim supn!1 n
%kE(3)

n kT < 1. The fact that lim supn!1 nkE(4)
n+1kT < 1 follows directly from definition

E(4)
n = �↵nAn+1

e✓�n and Lemma A.16. Then we have, for each 2  i  4,

lim sup
n!1

n
%kE(i)

n kT < 1 , for % < %0 and %  1 (89)

Now consider the martingale di↵erence part {E(1)
n }. The following is directly obtained from (83a):

kE(1)
n+1k

2
T (1� 2%↵n+1 + L

2
↵
2
n+1)kE(1)

n k2T + ↵
2
n+1k�A

n+2k2T ke✓�nk2T

(1� 2%↵n+1 + L
2
↵
2
n+1)kE(1)

n k2T + ↵
2
n+1k�A

n+2k2T
⇥
8

4X

i=1

kE(i)
n k2T + 2ke✓•nk2T

⇤
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From Lemma A.2 we have supn n
�ke✓•nk2T < 1 for � = min(1, 2%). Combining this with (89) implies

that there exists some constant KM such that for � = min(1, 2%),

k�A
n+2k2T

⇥
8

4X

i=2

kE(i)
n k2T + 2ke✓•nk2T

⇤
 KM

1

(n+ 1)�

Consequently,

kE(1)
n+1k

2
T  (1� 2%↵n+1 + L

2
M↵

2
n+1)kE(1)

n k2T +KM↵
2+�
n+1

where L
2
M = supn L

2 + 8k�A
n+2k2T . With initial condition E0 = 0, iterating this inequality gives

kE(1)
n+1k

2
T  KM

n+1X

k=1

↵
2+�
k

n+1Y

l=k+1

[1� 2%↵l + L
2
M↵

2
l ] 

KMKA.1

(n+ 2)2%

n+1X

k=1

k
�(2+��2%)

With 2 + � � 2% > 0, the partial sum is bounded by an integral similar as (88):

1

(n+ 2)2%

n+1X

k=1

k
�(2+��2%) =

8
><

>:

O((n+ 1)�2%), if %  1
2 and � = 2%

O((n+ 1)�2%), if 1
2 < % < 1 and � = 1

O((n+ 1)�2), if % > 1 and � = 1

Therefore,

(i) If %0  1, then lim supn!1(n+ 1)2%kE(1)
n+1k2T < 1 for % < %0.

(ii) If %0 > 1, then lim supn!1(n+ 1)2kE(1)
n+1k2T < 1.

Given that the same convergence rates hold for the other components in (89), the conclusion then
follows.


