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Appendix

A Review of RL Setups

We provide an extended review of different formulations of RL for interested readers. First, let us recall the
problem setup. Let S and A be state and action spaces, and let π(a|s) denote a policy. For γ ∈ [0, 1), we are
interested in solving a γ-discounted infinite-horizon RL problem:

maxπ V
π(p), s.t. V π(p) := (1− γ)Es0∼pEξ∼ρπ(s0) [

∑∞
t=0 γ

tr(st, at)] (24)

where V π(p) is the discounted average return, r : S × A → [0, 1] is the reward function, ρπ(s0) denotes the
distribution of trajectory ξ = s0, a0, s1, . . . generated by running π from state s0 in a Markov decision process
(MDP), and p is a fixed but unknown initial state distribution.

A.1 Coordinate-wise Formulations

RL in terms of stationary state distribution Let dπt (s) denote the state distribution at time t given by
running π starting from p. We define its γ-weighted mixture as

dπ(s) := (1− γ)
∑∞
t=0 γ

tdπt (s) (25)

We can view dπ in (25) as a form of stationary state distribution of π, because it is a valid probability distribution
of state and satisfies the stationarity property below,

dπ(s′) = (1− γ)p(s′) + γEs∼dπEa∼π|s[P(s′|s, a)] (2)

where P(s′|s, a) is the transition probability of the MDP. The definition in (25) generalizes the concept of
stationary distribution of MDP; as γ → 1, dπ is known as the limiting average state distribution, which is the
same as the stationary distribution of the MDP under π, if one exists. Moreover, with the property in (2), dπ
summarizes the Markov structure of RL, and allows us to write (24) simply as

max
π

V π(p), s.t. V π(p) = Es∼dπEa∼π|s [r(s, a)] (26)

after commuting the order of expectation and summation. That is, an RL problem aims to maximize the expected
reward under the stationary state-action distribution generated by the policy π.

RL in terms of value function We can also write (24) in terms of value function. Recall

V π(s) := (1− γ)Eξ∼ρπ(s0)|s0=s [
∑∞
t=0 γ

tr(st, at)] (1)

is the value function of π. By definition, V π (like dπ) satisfies a stationarity property

V π(s) = Ea∼π|s
[
(1− γ)r(s, a) + γEs′∼P|s,a [V π(s′)]

]
(5)

which can be viewed as a dual equivalent of (2). Because r is in [0, 1], (5) implies V π lies in [0, 1].

The value function V ∗ (a shorthand of Vπ∗) of the optimal policy π∗ of the RL problem satisfies the so-called
Bellman equation (Bellman, 1954): V ∗(s) = maxa∈A(1− γ)r(s, a) + γEs′∼P|s,a [V ∗(s′)], where the optimal policy
π∗ can be recovered as the arg max. Equivalently, by the definition of max, the Bellman equation amounts to
finding the smallest V such that V (s) ≥ (1− γ)r(s, a) + γEs′∼P|s,a [V (s′)], ∀s ∈ S, a ∈ A. In other words, the
RL problem in (24) can be written as

min
V

Es∼p[V (s)] s.t. V (s) ≥ (1− γ)r(s, a) + γEs′∼P|s,a [V (s′)] , ∀s ∈ S, a ∈ A (27)

A.2 Linear Programming Formulations

We now connect the above two alternate expressions through the classical LP setup of RL (Manne et al., 1959;
Denardo and Fox, 1968).
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LP in terms of value function The classic LP formulation6 is simply a restatement of (27):

min
v

p>v s.t. (1− γ)r + γPv ≤ Ev (4)

where p ∈ R|S|, v ∈ R|S|, and r ∈ R|S||A| are the vector forms of p, V , r, respectively, P ∈ R|S||A|×|S| is the
transition probability7, and E = I⊗1 ∈ R|S||A|×|S| (we use | · | to denote the cardinality of a set, ⊗ the Kronecker
product, I ∈ R|S|×|S| is the identity, and 1 ∈ R|A| a vector of ones). It is easy to verify that for all p > 0, the
solution to (4) is the same and equal to v∗ (the vector form of V ∗).

LP in terms of stationary state-action distribution Define the Lagrangian function

L(v, f) := p>v + f>((1− γ)r + γPv −Ev) (28)

where f ≥ 0 ∈ R|S||A| is the Lagrangian multiplier. By Lagrangian duality, the dual problem of (4) is given as
maxf≥0 minv L(v, f). Or after substituting the optimality condition of v and define µ := (1− γ)f , we can write
the dual problem as another LP problem

max
µ≥0

r>µ s.t. (1− γ)p + γP>µ = E>µ (3)

Note that this problem like (4) is normalized: we have ‖µ‖1 = 1 because ‖p‖1 = 1, and

‖µ‖1 = 1>E>µ = (1− γ)1>p + γ1>P>µ = (1− γ)‖p‖1 + γ‖µ‖1

where we use the facts that µ ≥ 0 and P is a stochastic transition matrix. This means that µ is a valid state-action
distribution, from which we see that the equality constraint in (3) is simply a vector form (2). Therefore, (3) is
the same as (26) if we define the policy π as the conditional distribution based on µ.

B Missing Proofs of Section 3

B.1 Proof of Lemma 1

Lemma 1. For any x = (v,µ), if x′ ∈ X satisfies (2) and (5) (i.e. v′ and µ′ are the value function and
state-action distribution of policy πµ′), rep(x;x′) = −µ>av′ .

Proof. First note that F (x, x) = 0. Then as x′ satisfies stationarity, we can use Lemma 2 below and write

rep(x;x′) = F (x, x)− F (x, x′)

= −F (x, x′)

= −(p>v′ − p>v)− µ>av′ + µ′>av (∵ Definition of F in (14))

= −µ′av − µ>av′ + µ′>av (∵ Lemma 2)

= −µ>av′

B.2 Proof of Lemma 2

Lemma 2. Let vπ and µπ denote the value and state-action distribution of some policy π. Then for any function
v′, it holds that p>(vπ − v′) = (µπ)>av′ . In particular, it implies V π(p)− V π′(p) = (µπ)>avπ′ .

Proof. This is the well-known performance difference lemma. The proof is based on the stationary properties in
(2) and (5), which can be stated in vector form as

(µπ)>Evπ = (µπ)>((1− γ)r + γPvπ) and (1− γ)p + γP>µπ = E>µπ

6Our setup in (4) differs from the classic one in the (1− γ) factor in the constraint to normalize the problem.
7We arrange the coordinates in a way such that along the |S||A| indices are contiguous in actions.
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The proof is a simple application of these two properties.

p>(vπ − v′) =
1

1− γ
(E>µπ − γP>µπ)>(vπ − v′)

=
1

1− γ
(µπ)>((E− γP)vπ − (E− γP)v′)

=
1

1− γ
(µπ)>((1− γ)r− (E− γP)v′) = (µπ)>av′

where we use the stationarity property of µπ in the first equality and that vπ in the third equality.

B.3 Proof of Proposition 2

Proposition 2. For any x = (v,µ) ∈ X , if E>µ ≥ (1− γ)p, rep(x;x∗) ≥ (1− γ) mins p(s)‖v∗ − vπµ‖∞.

Proof. This proof mainly follows the steps in Wang (2017a) but written in our notation. First Lemma 1 shows
rep(x;x∗) = −µ>av∗ . We then lower bound −µ>av∗ by reversing the proof of the performance difference lemma
(Lemma 2).

µ>av∗ =
1

1− γ
µ>((1− γ)r− (E− γP)v∗) (∵ Definition of av∗)

=
1

1− γ
µ>((E− γP)vπµ − (E− γP)v∗) (∵ Stationarity of vπµ)

=
1

1− γ
µ>(E− γP)(vπµ − v∗)

=
1

1− γ
d>(I− γPπµ)(vπµ − v∗)

where we define d := E>µ and Pπµ as the state-transition of running policy πµ.

We wish to further upper bound this quantity. To proceed, we appeal to the Bellman equation of the optimal
value function v∗ and the stationarity of vπµ :

v∗ ≥ (1− γ)rπµ + γPπµv∗ and vπµ = (1− γ)rπµ + γPπµvπµ ,

which together imply that (I− γPπµ)(vπµ − v∗) ≤ 0. We will also use the stationarity of dπµ (the average state
distribution of πµ): dπµ = (1− γ)p + γP>πµ

dπµ .

Since d ≥ (1− γ)p in the assumption, we can then write

µ>av∗ =
1

1− γ
d>(I− γPπµ)(vπµ − v∗)

≤ p>(I− γPπµ)(vπµ − v∗)

≤ −min
s
p(s)‖(I− γPπµ)(vπµ − v∗)‖∞

≤ −min
s
p(s)(1− γ)‖vπµ − v∗‖∞.

Finally, flipping the sign of the inequality concludes the proof.

B.4 Proof of Proposition 3

Proposition 3. There is a class of MDPs such that, for some x ∈ X , Proposition 2 is an equality.

Proof. We show this equality holds for a class of MDPs. For simplicity, let us first consider an MDP with
three states 1, 2, 3 and for each state there are three actions (left, right, stay). They correspond to intuitive,
deterministic transition dynamics

P(max{s− 1, 1}|s, left) = 1, P(min{s+ 1, 3}|s, right) = 1, P(s|s, stay) = 1.
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We set the reward as r(s, right) = 1 for s = 1, 2, 3 and zero otherwise. It is easy to see that the optimal policy is
π∗(right|s) = 1, which has value function v∗ = [1, 1, 1]>.

Now consider x = (v,µ) ∈ X . To define µ, let µ(s, a) = d(s)πµ(a|s). We set

πµ(right|1) = 1, πµ(stay|2) = 1, πµ(right|3) = 1

That is, πµ is equal to π∗ except when s = 2. One can verify the value function of this policy is vπµ = [(1−γ), 0, 1]>.

As far as d is concerned (d = E>µ), suppose the initial distribution is uniform, i.e. p = [1/3, 1/3, 1/3]>, we
choose d as d = (1−γ)p+γ[1, 0, 0]>, which satisfies the assumption in Proposition 2. Therefore, we have µ ∈M′
and we will let v be some arbitrary point in V.

Now we show for this choice x = (v,µ) ∈ V ×M′, the equality in Proposition 2 holds. By Lemma 1, we know
rep(x;x′) = −µ>av∗ . Recall the advantage is defined as av∗ = r + 1

1−γ (γP − E)v∗. Let AV ∗(s, a) denote the
functional form of av∗ and define the expected advantage:

AV ∗(s, πµ) := Ea∼πµ [AV ∗(s, a)].

We can verify it has the following values:

AV ∗(1, πµ) = 0, AV ∗(2, πµ) = −1, AV ∗(3, πµ) = 0.

Thus, the above construction yields

rep(x;x∗) = −µ>av∗ =
(1− γ)

3
= (1− γ) min

s
p(s)‖v∗ − vπµ‖∞

One can easily generalize this 3-state MDP to an |S|-state MDP where states are partitioned into three groups.

C Missing Proofs of Section 4

C.1 Proof of Proposition 4

Proposition 4. For x = (v,µ) ∈ X , define y∗x := (vπµ ,µ∗) ∈ X . It holds rep(x; y∗x) = V ∗(p)− V πµ(p).

Proof. First we generalize Lemma 1.

Lemma 3. Let x = (v,µ) be arbitrary. Consider x̃′ = (v′ + u′,µ′), where v′ and µ′ are the value function and
state-action distribution of policy πµ′ , and u′ is arbitrary. It holds that rep(x; x̃′) = −µ>av′ − b>µu′.

To proceed, we write y∗x = (v∗+(vπµ−v∗),µ∗) and use Lemma 3, which gives rep(x; y∗x) = −µ>av∗−b>µ (vπµ−v∗).
To relate this equality to the policy performance gap, we also need the following equality.

Lemma 4. For µ ∈M, it holds that −µ>av∗ = V ∗(p)− V πµ(p) + b>µ(vπµ − v∗).

Together they imply the desired equality rep(x; y∗x) = V ∗(p)− V πµ(p).

C.1.1 Proof of Lemma 3

Lemma 3. Let x = (v,µ) be arbitrary. Consider x̃′ = (v′ + u′,µ′), where v′ and µ′ are the value function and
state-action distribution of policy πµ′ , and u′ is arbitrary. It holds that rep(x; x̃′) = −µ>av′ − b>µu′.

Proof. Let x′ = (v′,µ′). As shorthand, define f ′ := v′+u′, and L := 1
1−γ (γP−E) (i.e. we can write af = r+Lf).

Because rep(x;x′) = −F (x, x′) = −(p>v′ + µ>av′ − p>v − µ′>av), we can write

rep(x; x̃′) = −p>f ′ − µ>af ′ + p>v + µ′>av

=
(
−p>v′ − µ>av′ + p>v + µ′>av

)
− p>u′ − µ>Lu′

= rep(x;x′)− p>u′ − µ>Lu′

= rep(x;x′)− b>µu′

Finally, by Lemma 1, we have also rep(x;x′) = −µ>av′ and therefore the final equality.



Ching-An Cheng, Remi Tachet des Combes, Byron Boots, Geoff Gordon

C.1.2 Proof of Lemma 4

Lemma 4. For µ ∈M, it holds that −µ>av∗ = V ∗(p)− V πµ(p) + b>µ(vπµ − v∗).

Proof. Following the setup in Lemma 3, we prove the statement by the rearrangement below:

−µ>av′ = −(µπµ)>av′ + (µπµ)>av′ − µ>av′

= V π
′
(p)− V πµ(p) + (µπµ − µ)>av′

=
(
V π
′
(p)− V πµ(p)

)
+ (µπµ − µ)>r + (µπµ − µ)>Lv′

where the second equality is due to the performance difference lemma, i.e. Lemma 2, and the last equality uses the
definition av′ = r + Lv′. For the second term above, let rπµ and Pπµ denote the expected reward and transition
under πµ. Because µ ∈M, we can rewrite it as

(µπµ − µ)>r = (E>µπµ −E>µ)rπµ

= ((1− γ)p + γP>µπµ −E>µ)rπµ

= (1− γ)b>µrπµ + γ(µπµ − µ)>Prπµ

= (1− γ)b>µ

(
rπµ + γPπµrπµ + γ2P2

πµ
rπµ + . . .

)
= b>µvπµ

where the second equality uses the stationarity of µπµ given by (2). For the third term, it can be written

(µπµ − µ)>Lv′ = (−p− L>µ)>v′ = −b>µv′

where the first equality uses stationarity, i.e. bµπµ = p + L>µπµ = 0. Finally combining the three steps, we have

−µ>av′ = V π
′
(p)− V πµ(p) + bµ(vπµ − v′)

C.2 Proof of Corollary 1

Corollary 1. Let XN = {xn ∈ Xθ}Nn=1 be any sequence. Let π̂N be the policy given either by the average or the
best decision in XN . It holds that

V π̂N (p) ≥ V ∗(p)− RegretN (Θ)
N − εΘ,N

where εΘ,N = minxθ∈Xθ rep(x̂N ; y∗N ) − rep(x̂N ;xθ) measures the expressiveness of Xθ, and RegretN (Θ) :=∑N
n=1 ln(xn)−minx∈XΘ

∑N
n=1 ln(x).

Proof. This can be proved by a simple rearrangement

V ∗(p)− V π̂N (p) = rep(x̂N ; y∗N ) = εΘ,N + max
xθ∈Xθ

rep(x̂N ;xθ) ≤ εΘ,N +
RegretN (Θ)

N

where the first equality is Proposition 4 and the last inequality is due to the skew-symmetry of F , similar to the
proof of Theorem 1.

C.3 Proof of Proposition 5

Proposition 5. Let x̂N = (v̂N , µ̂N ). Under the setup in Corollary 1, regardless of the parameterization, it is
true that εΘ,N is no larger than

min
(vθ,µθ)∈XΘ

‖µθ − µ∗‖1
1− γ + min

w:w≥1
‖bµ̂N ‖1,w‖vθ − vπ̂N ‖∞,1/w

≤ min
(vθ,µθ)∈XΘ

1

1− γ

(
‖µθ − µ∗‖1 + 2‖vθ − vπ̂N ‖∞

)
.

where the norms are defined as ‖x‖1,w =
∑
i wi|xi| and ‖x‖∞,1/w = maxi w

−1
i |xi|.



A Reduction from Reinforcement Learning to Online Learning

Proof. For shorthand, let us set x = (v,µ) = x̂N and write also πµ = π̂N as the associated policy. Let
y∗x = (vπµ ,µ∗) and similarly let xθ = (vθ,µθ) ∈ XΘ. With rep(x;x′) = −F (x, x′) and (14), we can write

rep(x; y∗x)− rep(x;xθ) =
(
−p>vπµ − µ>avπµ + p>v + µ∗>av

)
−
(
−p>vθ − µ>avθ + p>v + µ>θ av

)
= p>(vθ − vπµ) + (µ∗ − µθ)>av + µ>(avθ − avπµ )

= b>µ(vθ − vπµ) + (µ∗ − µθ)>av

Next we quantize the size of av and bµ.

Lemma 5. For (v,µ) ∈ X , ‖av‖∞ ≤ 1
1−γ and ‖bµ‖1 ≤ 2

1−γ .

Proof of Lemma 5. Let ∆ denote the set of distributions

‖av‖∞ =
1

1− γ
‖(1− γ)r + γPv −Ev‖∞ ≤

1

1− γ
max

a,b∈[0,1]
|a− b| ≤ 1

1− γ

‖bµ‖1 =
1

1− γ
‖(1− γ)p + γP>µ−E>µ‖1 ≤

1

1− γ
max

q,q′∈∆
‖q− q′‖1 ≤

2

1− γ

Therefore, we have preliminary upper bounds:

(µ∗ − µθ)>av ≤ ‖av‖∞‖µ∗ − µθ‖1 ≤
1

1− γ
‖µ∗ − µθ‖1

b>µ(vθ − vπµ) ≤ ‖bµ‖1‖vθ − vπµ‖∞ ≤
2

1− γ
‖vθ − vπµ‖∞

However, the second inequality above can be very conservative, especially when bµ ≈ 0 which can be likely
when it is close to the end of policy optimization. To this end, we introduce a free vector w ≥ 1. Define norms
‖v‖∞,1/w = maxi

|vi|
wi

and ‖δ‖1,w =
∑
i wi|δi|. Then we can instead have an upper bound

b>µ(vθ − vπµ) ≤ min
w:w≥1

‖bµ‖1,w‖vθ − vπµ‖∞,1/w

Notice that when w = 1 the above inequality reduces to b>µ (vθ−vπµ) ≤ ‖bµ‖1‖vθ−vπµ‖∞, which as we showed
has an upper bound 2

1−γ ‖vθ − vπµ‖∞.

Combining the above upper bounds, we have an upper bound on εΘ,N :

εΘ,N = rep(x; y∗x)− rep(x;xθ) ≤
1

1− γ
‖µθ − µ∗‖1 + min

w:w≥1
‖bµ‖1,w‖vθ − vπµ‖∞,1/w

≤ 1

1− γ
(‖µθ − µ∗‖1 + 2‖vθ − vπµ‖∞) .

Since it holds for any θ ∈ Θ, we can minimize the right-hand side over all possible choices.

D Proof of Sample Complexity of Mirror Descent

Theorem 2. With probability 1− δ, Algorithm 1 learns an ε-optimal policy with Õ
(
|S||A| log( 1

δ )

(1−γ)2ε2

)
samples.

The proof is a combination of the basic property of mirror descent (Lemma 9) and the martingale concentration.
Define K = |S||A| and κ = 1

1−γ as shorthands. We first slightly modify the per-round loss used to compute the
gradient. Recall ln(x) := p>v + µ>n av − p>vn − µ>avn and let us consider instead a loss function

hn(x) := b>µnv + µ>(κ1− avn)
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which shifts ln by a constant in each round. (Note for all the decisions (vn,µn) produced by Algorithm 1 µn
always satisfies ‖µn‖1 = 1). One can verify that ln(x)− ln(x′) = hn(x)− hn(x′), for all x, x′ ∈ X , when µ,µ′ in
x and x′ satisfy ‖µ‖1 = ‖µ′‖1 (which holds for Algorithm 1). As the definition of regret is relative, we may work
with hn in online learning and use it to define the feedback.

The reason for using hn instead of ln is to make ∇µhn((v,µ)) (and its unbiased approximation) a positive vector
(because κ ≥ ‖av‖∞ for any v ∈ V), so that the regret bound can have a better dependency on the dimension for
learning µ that lives in the simplexM. This is a common trick used in the online learning, e.g. in EXP3.

To run mirror descent, we set the first-order feedback gn received by the learner as an unbiased estimate of
∇hn(xn). For round n, we construct gn based on two calls of the generative model:

gn =

[
gn,v
gn,µ

]
=

[
p̃n + 1

1−γ (γP̃n −En)>µ̃n

K(κ1̂n − r̂n − 1
1−γ (γP̂n − Ên)vn)

]
For gn,v, we sample p, then sample µn to get a state-action pair, and finally query the transition dynamics P

at the state-action pair sampled from µn. (p̃n, P̃n, and µ̃n denote the single-sample empirical approximation
of these probabilities.) For gn,µ, we first sample uniformly a state-action pair (which explains the factor K),
and then query the reward r and the transition dynamics P. (1̂n, r̂n, P̂n, and Ên denote the single-sample
empirical estimates.) To emphasize, we use ˜ and ˆ to distinguish the empirical quantities obtained by these
two independent queries. By construction, we have gn,µ ≥ 0. It is clear that this direction gn is unbiased, i.e.
E[gn] = ∇hn(xn). Moreover, it is extremely sparse and can be computed using O(1) sample, computational, and
memory complexities.

Let y∗N = (vπ̂N ,µ∗). We bound the regret by the following rearrangement.

RegretN (y∗N ) =

N∑
n=1

ln(xn)−
N∑
n=1

ln(y∗N )

=

N∑
n=1

hn(xn)−
N∑
n=1

hn(y∗N )

=

N∑
n=1

∇hn(xn)>(xn − y∗N )

=

(
N∑
n=1

(∇hn(xn)− gn)>xn

)
+

(
N∑
n=1

g>n (xn − y∗N )

)
+

(
N∑
n=1

(gn −∇hn(xn))>y∗N

)

≤

(
N∑
n=1

(∇hn(xn)− gn)>xn

)
+

(
max
x∈X

N∑
n=1

g>n (xn − x)

)
+

(
N∑
n=1

(gn −∇hn(xn))>y∗N

)
, (29)

where the third equality comes from hn being linear. We recognize the first term is a martingale MN =∑N
n=1(∇hn(xn)− gn)>xn, because xn does not depend on gn. Therefore, we can appeal to standard martingale

concentration property. For the second term, it can be upper bounded by standard regret analysis of mirror
descent, by treating g>n x as the per-round loss. For the third term, because y∗N = (vπ̂N ,µ∗) depends on {gn}Nn=1,
it is not a martingale. Nonetheless, we will be able to handle it through a union bound. Below, we give details
for bounding these three terms.

D.1 The First Term: Martingale Concentration

For the first term,
∑N
n=1(∇hn(xn)− gn)>xn, we use a martingale concentration property. Specifically, we adopt

a Bernstein-type inequality (McDiarmid, 1998, Theorem 3.15):
Lemma 6. (McDiarmid, 1998, Theorem 3.15) Let M0, . . . ,MN be a martingale and let F0 ⊆ F1 ⊆ · · · ⊆ Fn
be the filtration such that Mn = E|Fn [Mn+1]. Suppose there are b, σ < ∞ such that for all n, given Fn−1,
Mn −Mn−1 ≤ b, and V|Fn−1

[Mn −Mn−1] ≤ σ2 almost surely. Then for any ε ≥ 0,

P (MN −M0 ≥ ε) ≤ exp

(
−ε2

2Nσ2(1 + bε
3Nσ2 )

)
.
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Lemma 6 implies, with probability at least 1− δ,

MN −M0 ≤

√
2Nσ2(1 + o(1)) log

(
1

δ

)
,

where o(1) means convergence to 0 as N →∞.

To apply Lemma 6, we need to provide bounds on the properties of the martingale difference:

Mn −Mn−1 = (∇hn(xn)− gn)>xn

= (κ1− avn − gn,µ)>µn + (bµn − gn,v)
>vn.

For the first term (κ1− avn − gn,µ)>µn, we use the lemma below:
Lemma 7. Let µ ∈ M be arbitrary, chosen independently from the randomness of gn,µ when Fn−1 is given.
Then it holds |(κ1− avn − gn,µ)>µ| ≤ 2(1+K)

1−γ and V|Fn−1
[(κ1− avn − gn,µ)>µ] ≤ 4K

(1−γ)2 .

Proof. By triangular inequality,

|(κ1− avn − gn,µ)>µ| ≤ |(κ1− avn)>µ|+ |g>n,µµ|.

For the deterministic part, using Lemma 5 and Hölder’s inequality,

|(κ1− avn)>µ| ≤ κ+ ‖avn‖∞‖µ‖1 ≤
2

1− γ
.

For the stochastic part, let in be index of the sampled state-action pair and jn be the index of the transited state
sampled at the pair given by in. With abuse of notation, we will use in to index both S ×A and S. With this
notation, we may derive

|g>n,µµ| = |Kµ>(κ1̂n − r̂n −
1

1− γ
(γP̂n − Ên)vn)|

= Kµin |κ− rin −
γvn,jn − vn,in

1− γ
|

≤ 2Kµin
1− γ

≤ 2K

1− γ

where we use the facts that rin , vn,jn , vn,in ∈ [0, 1] and µin ≤ 1.

For V|Fn−1
[(κ1− avn − gn,µ)>µn], we can write it as

V|Fn−1
[(κ1− avn − gn,µ)>µ] = V|Fn−1

[g>n,µµ]

≤ E|Fn−1
[|g>n,µµn|2]

=
∑
in

1

K
Ejn|in

[
K2µ2

in

(
κ− rin −

γvn,jn − vn,in
1− γ

)2
]

≤ 4K

(1− γ)2

∑
in

µ2
in

≤ 4K

(1− γ)2

(∑
in

µin

)2

≤ 4K

(1− γ)2

where in the second inequality we use the fact that |κ− rin −
γvn,jn−vn,in

1−γ | ≤ 2
1−γ .

For the second term (bµn − gn,v)
>vn, we use the following lemma.

Lemma 8. Let v ∈ V be arbitrary, chosen independently from the randomness of gn,v when Fn−1 is given.. Then
it holds that |(bµn − gn,v)

>v| ≤ 4
1−γ and V|Fn−1

[(bµn − gn,v)
>v] ≤ 4

(1−γ)2 .
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Proof. We appeal to Lemma 5, which shows ‖bµn‖1, ‖gn,v‖1 ≤ 2
1−γ , and derive

|(bµn − gn,v)
>v| ≤ (‖bµn‖1 + ‖gn,v‖1)‖v‖∞ ≤

4

1− γ
.

Similarly, for the variance, we can write

V|Fn−1
[(bµn − gn,v)

>v] = V|Fn−1
[g>n,vv] ≤ E|Fn−1

[(g>n,vv)2] ≤ 4

(1− γ)2
.

Thus, with helps from the two lemmas above, we are able to show

Mn −Mn−1 ≤ |(κ1− avn − gn,µ)>µn|+ |(bµn − gn,v)
>vn| ≤

4 + 2(1 +K)

1− γ
as well as (because gn,µ and gn,b are computed using independent samples)

V|Fn−1
[Mn −Mn−1] ≤ E|Fn−1

[|(κ1− avn − gn,µ)>µn|2] + E|Fn−1
[|(bµn − gn,v)

>vn|2] ≤ 4(1 +K)

(1− γ)2

Now, since M0 = 0, by martingale concentration in Lemma 6, we have

P

(
N∑
n=1

(∇hn(xn)− gn)>xn > ε

)
≤ exp

(
−ε2

2Nσ2(1 + bε
3Nσ2 )

)
with b = 6+2K

1−γ and σ2 = 4(1+K)
(1−γ)2 . This implies that, with probability at least 1− δ, it holds

N∑
n=1

(∇hn(xn)− gn)>xn ≤

√
N

8(1 +K)

(1− γ)2
(1 + o(1)) log

(
1

δ

)
= Õ


√
NK log( 1

δ )

1− γ


D.2 Static Regret of Mirror Descent

Next we move onto deriving the regret bound of mirror descent with respect to the online loss sequence:

max
x∈X

N∑
n=1

g>n (xn − x)

This part is quite standard; nonetheless, we provide complete derivations below.

We first recall a basic property of mirror descent
Lemma 9. Let X be a convex set. Suppose R is 1-strongly convex with respect to some norm ‖ · ‖. Let g be an
arbitrary vector and define, for x ∈ X ,

y = arg min
x′∈X

〈g, x′〉+BR(x′||x)

Then for all z ∈ X ,

〈g, y − z〉 ≤ BR(z||x)−BR(z||y)−BR(y||x) (30)

Proof. Recall the definition BR(x′||x) = R(x′)− R(x)− 〈∇R(x), x′ − x〉. The optimality of the proximal map
can be written as

〈g +∇R(y)−∇R(x), y − z〉 ≤ 0, ∀z ∈ X .

By rearranging the terms, we can rewrite the above inequality in terms of Bregman divergences as follows and
derive the first inequality (30):

〈g, y − z〉 ≤ 〈∇R(x)−∇R(y), y − z〉
= BR(z||x)−BR(z||y) + 〈∇R(x)−∇R(y), y〉 − 〈∇R(x), x〉+ 〈∇R(y), y〉+R(x)−R(y)

= BR(z||x)−BR(z||y) + 〈∇R(x), y − x〉+R(x)−R(y)

= BR(z||x)−BR(z||y)−BR(y||x),

which concludes the lemma.
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Let x′ ∈ X be arbitrary. Applying this lemma to the nth iteration of mirror descent in (20), we get

〈gn, xn+1 − x′〉 ≤
1

η
(BR(x′||xn)−BR(x′||xn+1)−BR(xn+1||xn))

By a telescoping sum, we then have

N∑
n=1

〈gn, xn − x′〉 ≤
1

η
BR(x′||x1) +

N∑
n=1

〈gn, xn+1 − xn〉 −
1

η
BR(xn+1||xn).

We bound the right-hand side as follows. Recall that based on the geometry of X = V ×M, we considered a
natural Bregman divergence of the form:

BR(x′||x) =
1

2|S|
‖v′ − v‖22 +KL(µ′||µ)

Let x1 = (v1,µ1) where µ1 is uniform. By this choice, we have:

1

η
BR(x′||x1) ≤ 1

η
max
x∈X

BR(x||x1) ≤ 1

η

(
1

2
+ log(K)

)
.

We now decompose each item in the above sum as:

〈gn, xn+1 − xn〉 −
1

η
BR(xn+1||xn) =

(
g>n,v(vn+1 − vn)− 1

2η|S|
‖vn − vn+1‖22

)
+

(
g>n,µ(µn+1 − µn)− 1

η
KL(µn+1||µn)

)
and we upper bound them using the two lemmas below (recall gn,µ ≥ 0 due to the added κ1 term).

Lemma 10. For any vector x, y, g and scalar η > 0, it holds 〈g, x− y〉 − 1
2η‖x− y‖

2
2 ≤

η‖g‖22
2 .

Proof. By Cauchy-Swartz inequality, 〈g, x− y〉 − 1
2η‖x− y‖

2
2 ≤ ‖g‖2‖x− y‖2 − 1

2η‖x− y‖
2
2 ≤

η‖g‖22
2 .

Lemma 11. Suppose BR(x||y) = KL(x||y) and x, y are probability distributions, and g ≥ 0 element-wise. Then,
for η > 0,

−1

η
BR(y||x) + 〈g, x− y〉 ≤ η

2

∑
i

xi(gi)
2 =

η

2
‖g‖2x.

Proof. Let ∆ denotes the unit simplex.

−BR(y||x) + 〈ηg, x− y〉 ≤ 〈ηg, x〉+ max
y′∈∆

〈−ηg, y〉 −BR(y′||x)

= 〈ηg, x〉+ log

(∑
i

xi exp(−ηgi)

)
(∵ convex conjugate of KL divergence)

≤ 〈ηg, x〉+ log

(∑
i

xi

(
1− ηgi +

1

2
(ηgi)

2

))
(∵ ex ≤ 1 + x+

1

2
x2 for x ≤ 0)

= 〈ηg, x〉+ log

(
1 +

∑
i

xi

(
−ηgi +

1

2
(ηgi)

2

))

≤ 〈ηg, x〉+
∑
i

xi

(
−ηgi +

1

2
(ηgi)

2

)
(∵ log(x) ≤ x− 1)

=
1

2

∑
i

xi(ηgi)
2 =

η2

2
‖g‖2x.

Finally, dividing both sides by η, we get the desired result.
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Thus, we have the upper bound 〈gn, xn+1 − xn〉 − 1
ηBR(xn+1||xn) =

η|S|‖gn,v‖22
2 +

η‖gn,µ‖2µn
2 . Together with the

upper bound on 1
ηBR(x′||x1), it implies that

N∑
n=1

〈gn, xn − x′〉 ≤
1

η
BR(x′||x1) +

N∑
n=1

〈gn, xn+1 − xn〉 −
1

η
BR(xn+1||xn)

≤ 1

η

(
1

2
+ log(K)

)
+
η

2

N∑
n=1

|S|‖gn,v‖22 + ‖gn,µ‖2µn . (31)

We can expect, with high probability,
∑N
n=1 |S|‖gn,v‖22 + ‖gn,µ‖2µn concentrates toward its expectation, i.e.

N∑
n=1

|S|‖gn,v‖22 + ‖gn,µ‖2µn ≤
N∑
n=1

E[|S|‖gn,v‖22 + ‖gn,µ‖2µn ] + o(N).

Below we quantify this relationship using martingale concentration. First we bound the expectation.

Lemma 12. E[‖gn,v‖22] ≤ 4
(1−γ)2 and E[‖gn,µ‖2µn ] ≤ 4K

(1−γ)2 .

Proof. For the first statement, using the fact that ‖ · ‖2 ≤ ‖ · ‖1 and Lemma 5, we can write

E[‖gn,v‖22] ≤ E[‖gn,v‖21] = E[‖p̃n +
1

1− γ
(γP̃n −En)>µ̃n‖21] ≤ 4

(1− γ)2
.

For the second statement, let in be the index of the sampled state-action pair and jn be the index of the
transited-to state sampled at the pair given by in. With abuse of notation, we will use in to index both S ×A
and S.

E[‖gn,µ‖2µn ] = E

[∑
in

1

K
Ejn|in

[
K2µin

(
κ− rin −

γvn,jn − vn,in
1− γ

)2
]]

≤ 4K

(1− γ)2
E

[∑
in

µin

]
≤ 4K

(1− γ)2
.

To bound the tail, we resort to the Höffding-Azuma inequality of martingale (McDiarmid, 1998, Theorem 3.14).

Lemma 13 (Azuma-Hoeffding). Let M0, . . . ,MN be a martingale and let F0 ⊆ F1 ⊆ · · · ⊆ Fn be the filtration
such that Mn = E|Fn [Mn+1]. Suppose there exists b <∞ such that for all n, given Fn−1, |Mn−Mn−1| ≤ b. Then
for any ε ≥ 0,

P (MN −M0 ≥ ε) ≤ exp

(
−2ε2

Nb2

)

To apply Lemma 13, we consider the martingale

MN =

N∑
n=1

|S|‖gn,v‖22 + ‖gn,µ‖2µn −

(
N∑
n=1

E[|S|‖gn,v‖22 + ‖gn,µ‖2µn ]

)

To bound the change of the size of martingale difference |Mn −Mn−1|, we follow similar steps to Lemma 12.

Lemma 14. ‖gn,v‖22 ≤ 4
(1−γ)2 and ‖gn,µ‖2µn ≤

4K2

(1−γ)2 .

Note ‖gn,µ‖2µ is K-factor larger than E[‖gn,µ‖2µ]) and K ≥ 1. Therefore, we have

|Mn −Mn−1| ≤ |S|‖gn,v‖22 + ‖gn,µ‖2µn + |S|E[‖gn,v‖22] + E[‖gn,µ‖2µn ] ≤ 8(|S|+K2)

(1− γ)2
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Combining these results, we have, with probability as least 1− δ,
N∑
n=1

|S|‖gn,v‖22 + ‖gn,µ‖2µn ≤
N∑
n=1

E[|S|‖gn,v‖22 + ‖gn,µ‖2µn ] +
4
√

2(|S|+K2)

(1− γ)2

√
N log

(
1

δ

)

≤ 4(K + |S|)
(1− γ)2

N +
4
√

2(|S|+K2)

(1− γ)2

√
N log

(
1

δ

)

Now we suppose we set η = 1−γ√
KN

. From (37), we then have

N∑
n=1

〈gn, xn − x′〉 ≤
1

η

(
1

2
+ log(K)

)
+
η

2

N∑
n=1

|S|‖gn,v‖22 + ‖gn,µ‖2µn

≤
√
KN

1− γ

(
1

2
+ log(K)

)
+

1− γ√
KN

(
2(K + |S|)

(1− γ)2
N +

2
√

2(|S|+K2)

(1− γ)2

√
N log

(
1

δ

))

≤ Õ

√KN
1− γ

+

√
K3 log 1

δ

1− γ

 .

D.3 Union Bound

Lastly, we provide an upper bound on the last component:

N∑
n=1

(gn −∇hn(xn))>y∗N .

Because y∗N depends on gn, this term does not obey martingale concentration like the first component∑N
n=1(∇hn(xn) − gn)>xn which we analyzed in Appendix D.1 To resolve this issue, we utilize the concept

of covering number and derive a union bound.

Recall for a compact set Z in a norm space, the covering number N (Z, ε) with ε > 0 is the minimal number of
ε-balls that covers Z. That is, there is a set {zi ∈ Z}N (Z,ε)

i=1 such that maxz∈Z minz′∈B(Z,ε) ‖z − z′‖ ≤ ε. Usually
the covering number N (Z, ε) is polynomial in ε and perhaps exponential in the ambient dimension of Z.

The idea of covering number can be used to provide a union bound of concentration over compact sets, which we
summarize as a lemma below.
Lemma 15. Let f, g be two random L-Lipschitz functions. Suppose for some a > 0 and some fixed z ∈ Z selected
independently of f, g, it holds

P (|f(z)− g(z)| > ε) ≤ exp
(
−aε2

)
Then it holds that

P

(
sup
z∈Z
|f(z)− g(z)| > ε

)
≤ N

(
Z, ε

4L

)
exp

(
−aε2

4

)
Proof. Let C denote a set of covers of size N (Z, ε

4L ) Then, for any z ∈ Z which could depend on f, g,

|f(z)− g(z)| ≤ min
z′∈C
|f(z)− f(z′)|+ |f(z′)− g(z′)|+ |g(z′)− g(z)|

≤ min
z′∈C

2L‖z − z′‖+ |f(z′)− g(z′)]|

≤ ε

2
+ max

z′∈C
|f(z′)− g(z′)|

Thus, supz∈Z |f(z)− g(z)| > ε =⇒ maxz′∈C |f(z′)− g(z′)| > ε
2 . Therefore, we have the union bound.

P

(
sup
z∈Z
|f(z)− E[f(z)]| > ε

)
≤ N

(
Z, ε

4L

)
exp

(
−aε2

4

)
.
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We now use Lemma 15 to bound the component
∑N
n=1(gn−∇hn(xn))>y∗N . We recall by definition, for x = (v,µ),

(∇hn(xn)− gn)>x = (κ1− avn − gn,µ)>µ+ (bµn − gn,v)
>v

Because y∗N = (vπ̂N ,µ∗), we can write the sum of interest as

N∑
n=1

(gn −∇hn(xn))>y∗N =

N∑
n=1

(gn,µ − κ1 + avn)>µ∗ +

N∑
n=1

(gn,v − bµn)>vπ̂N

For the first term, because µ∗ is set beforehand by the MDP definition and does not depend on the randomness
during learning, it is a martingale and we can apply the steps in Appendix D.1 to show,

N∑
n=1

(gn,µ − κ1 + avn)>µ∗ = Õ


√
NK log( 1

δ )

1− γ


For the second term, because vπ̂N depends on the randomness in the learning process, we need to use a union
bound. Following the steps in Appendix D.1, we see that for some fixed v ∈ V, it holds

P

(∣∣∣∣∣
N∑
n=1

(gn,v − bµn)>v

∣∣∣∣∣ > ε

)
≤ exp

(
− (1− γ)2

N
ε2
)

where some constants were ignored for the sake of conciseness. Note also that it does not have the
√
K factor

because of Lemma 8. To apply Lemma 15, we need to know the order of covering number of V. Since V is
an |S|-dimensional unit cube in the positive orthant, it is straightforward to show N (V, ε) ≤ max(1, (1/ε)|S|)

(by simply discretizing evenly in each dimension). Moreover, the functions
∑N
n=1 g>n,vv and

∑N
n=1 b>µnv are

N
1−γ -Lipschitz in ‖ · ‖∞.

Applying Lemma 15 then gives us:

P

(
sup
v∈V

∣∣∣∣∣
N∑
n=1

(gn,v − bµn)>v

∣∣∣∣∣ > ε

)
≤ N

(
V, ε(1− γ)

4N

)
exp

(
− (1− γ)2

4N
ε2
)
.

For a given δ, we thus want to find the smallest ε such that:

δ ≥ N
(
V, ε(1− γ)

4N

)
exp

(
− (1− γ)2

4N
ε2
)
.

That is:

log(
1

δ
) ≤ (1− γ)2

4N
ε2 + |S|min(0, log(

ε(1− γ)

4N
)).

Picking ε = O

(
log(N)

√
N log( 1

δ )

1−γ

)
= Õ

(√
N log( 1

δ )

1−γ

)
guarantees that the inequality is verified asymptotically.

Combining these two steps, we have shown overall, with probability at least 1− δ,

N∑
n=1

(gn −∇hn(xn))>y∗N = Õ


√
NK log( 1

δ )

1− γ

 .

D.4 Summary

In the previous subsections, we have provided high probability upper bounds for each term in the decomposition

RegretN (y∗N ) ≤

(
N∑
n=1

(∇hn(xn)− gn)>xn

)
+

(
max
x∈X

N∑
n=1

g>n (xn − x)

)
+

(
N∑
n=1

(gn −∇hn(xn))>y∗N

)
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implying with probability at least 1− δ,

RegretN (y∗N ) ≤ Õ


√
NK log( 1

δ )

1− γ

+ Õ

√KN
1− γ

+

√
K3 log 1

δ

1− γ

 = Õ


√
N |S||A| log( 1

δ )

1− γ


By Theorem 1, this would imply with probability at least 1− δ,

V π̂N (p) ≥ V ∗(p)− RegretN (y∗N )

N
≥ V ∗(p)− Õ


√
|S||A| log( 1

δ )

(1− γ)
√
N


In other words, the sample complexity of mirror descent to obtain an ε approximately optimal policy (i.e.
V ∗(p)− V π̂N (p) ≤ ε) is at most Õ

(
|S||A| log( 1

δ )

(1−γ)2ε2

)
.

E Sample Complexity of Mirror Descent with Basis Functions

Here we provide further discussions on the sample complexity of running Algorithm 1 with linearly parameterized
function approximators and the proof of Theorem 3.

Theorem 3. Under a proper choice of Θ and BR, with probability 1− δ, Algorithm 1 learns an (ε+ εΘ,N )-optimal
policy with Õ

(
dim(Θ) log( 1

δ )

(1−γ)2ε2

)
samples.

E.1 Setup

We suppose that the decision variable is parameterized in the form xθ = (Φθv,Ψθµ), where Φ,Ψ are given
nonlinear basis functions and (θv,θµ) ∈ Θ are the parameters to learn. For modeling the value function, we
suppose each column in Φ is a vector (i.e. function) such that its ‖ · ‖∞ is less than one. For modeling the
state-action distribution, we suppose each column in Ψ is a state-action distribution from which we can draw
samples. This choice implies that every column of Φ belongs to V, and every column of Ψ belongs toM.

Considering the geometry of Φ and Ψ, we consider a compact and convex parameter set

Θ = {θ = (θv,θµ) : ‖θv‖2 ≤
Cv√

dim(θv)
,θµ ≥ 0, ‖θµ‖1 = 1}

where Cv <∞. The constant Cv acts as a regularization in learning: if it is too small, the bias (captured as εΘ,N
in Corollary 1 restated below) becomes larger; if it is too large, the learning becomes slower.

This choice of Θ makes sure, for θ = (θv,θµ) ∈ Θ, Ψθµ ∈ M and ‖Φθv‖∞ ≤ ‖θv‖1 ≤ Cv. Therefore, by the
above construction, we can verify that the requirement in Corollary 1 is satisfied, i.e. for θ = (θv,θµ) ∈ Θ, we
have (Φθv,Ψθµ) ∈ XΘ.

Corollary 1. Let XN = {xn ∈ Xθ}Nn=1 be any sequence. Let π̂N be the policy given either by the average or the
best decision in XN . It holds that

V π̂N (p) ≥ V ∗(p)− RegretN (Θ)
N − εΘ,N

where εΘ,N = minxθ∈Xθ rep(x̂N ; y∗N ) − rep(x̂N ;xθ) measures the expressiveness of Xθ, and RegretN (Θ) :=∑N
n=1 ln(xn)−minx∈XΘ

∑N
n=1 ln(x).

E.2 Online Loss and Sampled Gradient

Let θ = (θv,θµ) ∈ Θ. In view of the parameterization above, we can identify the online loss in (22) in the
parameter space as

hn(θ) := b>µnΦθv + θ>µ Ψ>( 1
1−γ1− avn) (32)
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where we have the natural identification xn = (vn,µn) = (Φθv,n,Ψθµ,n) and θn = (θv,n,θµ,n) ∈ Θ is the decision
made by the online learner in the nth round. Note that because this extension of Algorithm 1 makes sure
‖θµ,n‖1 = 1 for every iteration, we can still use hn. For writing convenience, we will continue to overload hn as a
function of parameter θ in the following analyses.

Mirror descent requires gradient estimates of ∇hn(θn). Here we construct an unbiased stochastic estimate of
∇hn(θn) as

gn =

[
gn,v
gn,µ

]
=

[
Φ>(p̃n + 1

1−γ (γP̃n −En)>µ̃n)

dim(θµ)Ψ̂>n ( 1
1−γ 1̂n − r̂n − 1

1−γ (γP̂n − Ên)vn)

]
(33)

using two calls of the generative model (again we overload the symbol gn for the analyses in this section):

• The upper part gn,v is constructed similarly as before in (23): First we sample the initial state from the
initial distribution, the state-action pair using the learned state-action distribution, and then the transited-to
state at the sampled state-action pair. We evaluate Φ’s values at those samples to construct gn,v. Thus,
gn,v would generally be a dense vector of size dim(θv) (unless the columns of Φ are sparse to begin with).

• The lower part gn,µ is constructed slightly differently. Recall for the tabular version in (23), we uniformly
sample over the state and action spaces. Here instead we first sample uniformly a column (i.e. a basis
function) in Ψ and then sample a state-action pair according to the sampled column, which is a distribution
by design. Therefore, the multiplier due to uniform sampling in the second row of (33) is now dim(θµ) rather
than |S||A| in (23). The matrix Ψ̂n is extremely sparse, where only the single sampled entry (the column
and the state-action pair) is one and the others are zero. In fact, one can think of the tabular version as
simply using basis functions Ψ = I, i.e. each column is a delta distribution. Under this identification, the
expression in (33) matches the one in (23).

It is straightforward to verify that E[gn] = ∇hn(θn) for gn in (33).

E.3 Proof of Theorem 3

We follow the same steps of the analysis of the tabular version. We will highlight the differences/improvement
due to using function approximations.

First, we use Corollary 1 in place of Theorem 1. To properly handle the randomness, we revisit its derivation to
slightly tighten the statement, which was simplified for the sake of cleaner exposition. Define

y∗N,θ = (v∗N,θ,µ
∗
θ) := arg max

xθ∈Xθ
rep(x̂N ;xθ).

For writing convenience, let us also denote θ∗N = (θ∗v,N ,θ
∗
µ) ∈ Θ as the corresponding parameter of y∗N,θ. We

remark that µ∗θ (i.e. θ∗µ), which tries to approximate µ∗, is fixed before the learning process, whereas v∗N,θ (i.e.
θ∗v,N ) could depend on the stochasticity in the learning. Using this new notation and the steps in the proof of
Corollary 1, we can write

V ∗(p)− V π̂N (p) = rep(x̂N ; y∗N )

= εΘ,N + rep(x̂N ; y∗N,θ) ≤ εΘ,N +
RegretN (y∗N,θ)

N

where the first equality is Proposition 4, the last inequality follows the proof of Theorem 1, and we recall the
definition εΘ,N = rep(x̂N ; y∗N )− rep(x̂N ; y∗N,θ).

The rest of the proof is very similar to that of Theorem 1, because linear parameterization does not change the
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convexity of the loss sequence. Let y∗N = (vπ̂N ,µ∗). We bound the regret by the following rearrangement.

RegretN (y∗N,θ) =

N∑
n=1

ln(xn)−
N∑
n=1

ln(y∗N,θ)

=

N∑
n=1

hn(θn)−
N∑
n=1

hn(θ∗N )

=

N∑
n=1

∇hn(θn)>(θn − θ∗N )

=

(
N∑
n=1

(∇hn(θn)− gn)>θn

)
+

(
N∑
n=1

g>n (θn − θ∗N )

)
+

(
N∑
n=1

(gn −∇hn(θn))>θ∗N

)

≤

(
N∑
n=1

(∇hn(θn)− gn)>θn

)
+

(
max
θ∈Θ

N∑
n=1

g>n (θn − θ)

)
+

(
N∑
n=1

(gn −∇hn(θn))>θ∗N

)
(34)

where the second equality is due to the identifcation in (32).

We will solve this online learning problem with mirror descent

θn+1 = arg min
θ∈Θ

〈gn, θ〉+
1

η
BR(θ||θn) (35)

with step size η > 0 and a Bregman divergence that is a straightforward extension of (21)

BR(θ′||θ) = 1
2
dim(θv)
C2
v
‖θ′v − θv‖22 +KL(θ′µ||θµ) (36)

where the constant dim(θv)
C2
v

is chosen to make the size of Bregman divergence dimension-free (at least up to log

factors). Below we analyze the size of the three terms in (34) like what we did for Theorem 2.

E.4 The First Term: Martingale Concentration

The first term is a martingale. We will use this part to highlight the different properties due to using basis
functions. The proof follows the steps in Appendix D.1, but now the martingale difference of interest is instead

Mn −Mn−1 = (∇hn(θn)− gn)>θn

= (Ψ>(κ1− avn)− gn,µ)>θµ,n + (Φ>bµn − gn,v)
>θv,n

They now have nicer properties due to the way gn,µ is sampled.

For the first term (Ψ>(κ1 − avn) − gn,µ)>θµ,n, we use the lemma below, where we recall the filtration Fn is
naturally defined as {θ1, . . . , θn}.
Lemma 16. Let θ = (θv,θµ) ∈ Θ be arbitrary that is chosen independent of the randomness of gn,µ when Fn−1

is given. Then it holds |(κ1− avn − gn,µ)>θ| ≤ 2(1+dim(θµ))
1−γ and V|Fn−1

[(κ1− avn − gn,µ)>θn] ≤ 4dim(θµ)
(1−γ)2 .

Proof. By triangular inequality,

|(Ψ>(κ1− avn)− gn,µ)>θµ| ≤ |(κ1− avn)>Ψθµ|+ |g>n,µθµ|

For the deterministic part, using Lemma 5 and Hölder’s inequality,

|(κ1− avn)>Ψθµ| ≤ κ+ ‖avn‖∞‖Ψθµ‖1 ≤
2

1− γ

For the stochastic part, let kn denote the sampled column index, in be index of the sampled state-action pair
using the column of kn, and jn be the index of the transited state sampled at the pair given by in. With abuse of
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notation, we will use in to index both S ×A and S. Let µ = Ψθµ. With this notation, we may derive

|g>n,µθµ| = |dim(θµ)θ>µ Ψ̂>n (κ1̂n − r̂n −
1

1− γ
(γP̂n − Ên)vn)|

= dim(θµ)θµ,kn |κ− rin −
γvn,jn − vn,in

1− γ
|

≤ 2dim(θµ)θµ,kn
1− γ

≤ 2dim(θµ)

1− γ

where we use the facts rin , vn,jn , vn,in ∈ [0, 1] and θµ,kn ≤ 1.

Let ψ(k)
µ denote the kth column of Ψ. For V|Fn−1

[(κ1− avn − gn,µ)>θn], we can write it as

V|Fn−1
[(Ψ>(κ1− avn)− gn,µ)>θµ] = V|Fn−1

[g>n,µθn]

≤ E|Fn−1
[|g>n,µθn|2]

=
∑
kn

1

dim(θµ)

∑
in

ψ
(kn)
µ,in

Ejn|in

[
dim(θµ)2θ2

µ,kn

(
κ− rin −

γvn,jn − vn,in
1− γ

)2
]

≤ 4dim(θµ)

(1− γ)2

∑
kn

θ2
µ,kn

∑
in

ψ
(kn)
µ,in

≤ 4dim(θµ)

(1− γ)2

(∑
kn

θµ,kn

)2

≤ 4dim(θµ)

(1− γ)2

where in the second inequality we use the fact that |κ− rin −
γvn,jn−vn,in

1−γ | ≤ 2
1−γ .

For the second term (Φ>bµn − gn,v)
>θv,n, we use this lemma.

Lemma 17. Let θ ∈ V be arbitrary that is chosen independent of the randomness of gn,v when Fn−1 is given.
Then it holds |(Φ>bµn − gn,v)

>θ| ≤ 4Cv
1−γ and V|Fn−1

[(Φ>bµn − gn,v)
>θ] ≤ 4C2

v

(1−γ)2 .

Proof. We appeal to Lemma 5, which shows ‖bµn‖1 ≤ 2
1−γ and

‖p̃n +
1

1− γ
(γP̃n −En)>µ̃n‖1 ≤

2

1− γ

Therefore, overall we can derive

|(Φ>bµn − gn,v)
>θ| ≤

(
‖bµn‖1 + ‖p̃n +

1

1− γ
(γP̃n −En)>µ̃n‖1

)
‖Φθv‖∞ ≤

4Cv
1− γ

where we use again each column in Φ has ‖ · ‖∞ less than one, and ‖ · ‖∞ ≤ ‖ · ‖2. Similarly, for the variance, we
can write

V|Fn−1
[(Φ>bµn − gn,v)

>θ] = V|Fn−1
[g>n,vθ] ≤ E|Fn−1

[(g>n,vθ)2] ≤ 4C2
v

(1− γ)2

From the above two lemmas, we see the main difference from the what we had in Appendix D.1 for the tabular
case is that, the martingale difference now scales in O

(
Cv+dim(θµ)

1−γ

)
instead of O

(
|S||A|
1−γ

)
, and its variance scales

in O
(
C2
v+dim(θµ)

(1−γ)2

)
instead of O

(
|S||A|
(1−γ)2

)
. We note the constant Cv is universal, independent of the problem size.

Following the similar steps in Appendix D.1, these new results imply that

P

(
N∑
n=1

(∇hn(θn)− gn)>θn > ε

)
≤ exp

(
−ε2

2Nσ2(1 + bε
3Nσ2 )

)
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with b = O
(
Cv+dim(θµ)

1−γ

)
and O

(
C2
v+dim(θµ)

(1−γ)2

)
. This implies that, with probability at least 1− δ, it hold

N∑
n=1

(∇hn(θn)− gn)>θn = Õ


√
N(C2

v + dim(θµ)) log( 1
δ )

1− γ


E.5 Static Regret of Mirror Descent

Again the steps here are very similar to those in Appendix D.2. We concern bounding the static regret.

max
θ∈Θ

N∑
n=1

g>n (θn − θ)

From Appendix D.2, we recall this can be achieved by the mirror descent’s optimality condition. The below
inequality is true, for any θ′ ∈ Θ:

N∑
n=1

〈gn, θn − θ′〉 ≤
1

η
BR(θ′||θ1) +

N∑
n=1

〈gn, θn+1 − θn〉 −
1

η
BR(θn+1||θn)

Based on our choice of Bregman divergence given in (36), i.e.

BR(θ′||θ) = 1
2
dim(θv)
C2
v
‖θ′v − θv‖22 +KL(θ′µ||θµ), (36)

we have 1
ηBR(θ′||θ1) ≤ Õ(1)

η . For each 〈gn, θn+1 − θn〉 − 1
ηBR(θn+1||θn), we will use again the two basic lemmas

we proved in Appendix D.2.

Lemma 10. For any vector x, y, g and scalar η > 0, it holds 〈g, x− y〉 − 1
2η‖x− y‖

2
2 ≤

η‖g‖22
2 .

Lemma 11. Suppose BR(x||y) = KL(x||y) and x, y are probability distributions, and g ≥ 0 element-wise. Then,
for η > 0,

−1

η
BR(y||x) + 〈g, x− y〉 ≤ η

2

∑
i

xi(gi)
2 =

η

2
‖g‖2x.

Thus, we have the upper bound

〈gn, θn+1 − θn〉 −
1

η
BR(θn+1||θn) =

C2
v

dim(θv)

η‖gn,v‖22
2

+
η‖gn,µ‖2θµ,n

2

Together with the upper bound on 1
ηBR(x′||x1), it implies that

N∑
n=1

〈gn, xn − x′〉 ≤
1

η
BR(x′||x1) +

N∑
n=1

〈gn, xn+1 − xn〉 −
1

η
BR(xn+1||xn)

≤ Õ(1)

η
+
η

2

N∑
n=1

C2
v

dim(θv)
‖gn,v‖22 + ‖gn,µ‖2θµ,n (37)

We can expect, with high probability,
∑N
n=1

C2
v

dim(θv)‖gn,v‖
2
2 + ‖gn,µ‖2θµ,n concentrates toward its expectation, i.e.

N∑
n=1

C2
v

dim(θv)
‖gn,v‖22 + ‖gn,µ‖2θµ,n ≤

N∑
n=1

E
[

C2
v

dim(θv)
‖gn,v‖22 + ‖gn,µ‖2θµ,n

]
+ o(N)

To bound the right-hand side, we will use the upper bounds below, which largely follow the proof of Lemma 16
and Lemma 17.
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Lemma 18. E[‖gn,v‖22] ≤ 4dim(θv)
(1−γ)2 and E[‖gn,µ‖2θµ,n ] ≤ 4dim(θµ)

(1−γ)2 .

Lemma 19. ‖gn,v‖22 ≤
4dim(θv)
(1−γ)2 and ‖gn,µ‖2θµ,n ≤

4dim(θµ)2

(1−γ)2 .

By Azuma-Hoeffding’s inequality in Lemma 13,

N∑
n=1

C2
v

dim(θv)
‖gn,v‖22 + ‖gn,µ‖2θµ,n

≤
N∑
n=1

E
[

C2
v

dim(θv)
‖gn,v‖22 + ‖gn,µ‖2θµ,n

]
+O

(
C2
v + dim(θµ)2

(1− γ)2

√
N log

(
1

δ

))

≤ O
(
C2
v + dim(θµ)

(1− γ)2
N

)
+O

(
C2
v + dim(θµ)2

(1− γ)2

√
N log

(
1

δ

))

Now we suppose we set η = O

(
1−γ√

N(C2
v+dim(θµ))

)
. We have

N∑
n=1

〈gn, θn − θ′〉 ≤
Õ(1)

η
+
η

2

N∑
n=1

C2
v

dim(θv)
‖gn,v‖22 + ‖gn,µ‖2θµ,n ≤ Õ

(√
(C2

v + dim(θµ))N

1− γ

)

E.5.1 Union Bound

Lastly we use an union bound to handle the term
N∑
n=1

(gn −∇hn(θn))>θ∗N

We follow the steps in Appendix D.3: we will use again the fact that θ∗N = (θ∗v,N ,θ
∗
µ) ∈ Θ, so we can handle the

part with θ∗µ using the standard martingale concentration, and the part with θ∗v,N using the union bound.

Using the previous analyses, we see can first show that the martingale due to the part θ∗µ concentrates in

Õ

(√
Ndim(θµ) log( 1

δ )

1−γ

)
. Likewise, using the union bound, we can show the martingale due to the part θ∗v,N

concentrates in Õ
(√

NC2
v log(Nδ )

1−γ

)
where N some proper the covering number of the set

{
θv : ‖θv‖2 ≤ Cv√

dim(θv)

}
.

Because logN = O(dim(θv)) for an Euclidean ball. We can combine the two bounds and show together

N∑
n=1

(gn −∇hn(θn))>θ∗N = Õ


√
N(C2

v dim(θv) + dim(θµ)) log( 1
δ )

1− γ


E.5.2 Summary

Combining the results of the three parts above, we have, with probability 1− δ,

RegretN (y∗N,θ)

≤

(
N∑
n=1

(∇hn(θn)− gn)>θn

)
+

(
max
θ∈Θ

N∑
n=1

g>n (θn − θ)

)
+

(
N∑
n=1

(gn −∇hn(θn))>θ∗N

)

= Õ


√
N(dim(θµ) + C2

v ) log(1
δ )

1− γ

+ Õ

(√
(C2

v + dim(θµ))N

1− γ

)
+ Õ


√
N(C2

v dim(θv) + dim(θµ)) log(1
δ )

1− γ


= Õ


√
Ndim(Θ) log( 1

δ )

1− γ


where the last step is due to Cv is a universal constant. Or equivalently, the above bounds means a sample
complexity in Õ

(
dim(Θ) log( 1

δ )

(1−γ)2ε2

)
. Finally, we recall the policy performance has a bias εΘ,N in Corollary 1 due to

using function approximators. Considering this effect, we have the final statement.


