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APPENDIX: Practical Nonisotropic Monte Carlo Sampling in High Dimensions via
Determinantal Point Processes

8 Experiment Details

8.1 Code

Here we include some simple code to implement DPPMC using python 3.x.

1 i m p o r t numpy as np
2 from pydpp . dpp i m p o r t DPP
3
4 d = 10 # t h i s w i l l be t h e d i m e n s i o n a l i t y o f your problem
5 rho = 5 # t h i s i s a hyper�parame te r
6 cov = np . eye ( d ) # t h i s w i l l be your n o n i s o t r o p i c c o v a r i a n c e m a t r i x
7 mu = np . r e p e a t ( 0 , d )
8 A = np . random . m u l t i v a r i a t e n o r m a l (mu , cov , d ⇤ rho )
9

10 dpp = DPP(A)
11 dpp . c o m p u t e k e r n e l ( k e r n e l t y p e = ’ r b f ’ )
12 i d x = dpp . sample k ( d ) # r e t u r n i n g t o o r i g i n a l d i m e n s i o n a l i t y , o p t i o n a l
13 A = A[ i d x ]
14
15 # we now e v a l u a t e t h e s e samples .

This code is simple to include in any setting where samples are drawn from a nonisotropic distribution.

8.2 Optimal Choice of ⇢

(a) Cigar (b) Rastrigin

(c) Rosenbrock (d) Sphere

Figure 5: Comparison of CMA-ES without DPPMC vs. with DPPMC for ⇢ = 2, 5, 10, 20.

Here we demonstrate the impact of ⇢ by performing an ablation study using the CMA-ES experiments. In order
to measure the importance of this parameter, we test the following values: ⇢ = 2, 5, 10, 20, and measure the mean
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performance across three seeds after 100 function evaluations.

As we can see in Figure 5, in most cases an increase in ⇢ leads to a monotonic improvement in performance. This
however comes at an increase in computational cost, and as such it is important to consider the trade-off between the
cost of evaluating the function vs. the DPPMC algorithm when choosing an optimal ⇢ for a given problem. In our
experiments we choose ⇢ = 10 since this value is sufficient to achieve meaningful performance gains, demonstrating
the effectiveness of our approach.

8.3 Reinforcement Learning Experiments

We provide details on the reinforcement learning experiments as follows.

Benchmark Environments. Reinforcement learning tasks are identified by a state space S and an action space
A. The benchmark environments consist of HalfCheetah-v2 (|S| = 17, |A| = 6), Swimmer-v2 (|S| = 8, |A| = 2),
Reacher-v2 (|S| = 11, |A| = 2) and Walker2d-v2 (|S| = 17, |A| = 6). Each task takes the sensory inputs of the robot
as states st 2 S and motor/position controls as actions at 2 A. All environments are simulated via OpenAI gym
(Brockman et al., 2016).

Policy Architecture. We encode the policy ⇡✓ : S 7! A with feed-forward network parameter ✓. The architecture
varies across tasks: for Swimmer-v2 and Reacher-v2, we have two hidden layers each with 16 units; for HalfCheetah-v2
and Walker2d-v2, we have two hidden layers each with 32 units. Each hidden layer is combined with a tanh non-linear
function activation. The output layer does not have non-linear function activation. For each hidden layer, instead of a
fully-connected structure, we adopt a low displacement rank neural network (Choromanski et al., 2018c) for a compact
representation.

Implementations and Common Hyper-parameters. All ES algorithms are implemented with Numpy (Van Der Walt
et al., 2011). To make our implementations parallelizable, we have made heavy reference to the Ray open source project
(Moritz et al., 2018). At each iteration, the ES algorithms (including Guided ES, Trust Region ES and CMA-ES) all
require sampling m perturbation directions for function evaluations. We set m to be the dimension d of the policy
parameter ✓. Gradient based optimizations are all carried out using Adam Optimizer (Kingma and Ba, 2014) with best
learning rates chosen from ↵ 2 {0.5, 0.1, 0.05, 0.01}.

DPPMC Hyper-parameters. We use a fixed RBF-kernel for all experiments: recall that a RBF-kernel takes the form
K(x,y) = exp(�|x�y|2

2�2 ), we set � = 0.5. The kernel parameter � is manually set such that the DPPMC variants
achieve good performance while the computations remain numerically stable.

Hyper-parameters for Guided ES. We follow the recipe of Guided ES (Maheswaranathan et al., 2019) to set up
hyper-parameters. The DPPMC variant requires constructing a sample pool of size ⇢m, we choose ⇢ = 10 for our
experiments. The Guided ES achieves performance gains over vanilla ES by constructing non-isotropic distribution for
gradient sensing, which allows for exploring subspaces where the true gradients lie. We further improve upon Guided
ES with significant gains in sample efficiency.

Hyper-parameters for Trust Region ES. We follow the recipe of Trust Region ES (Choromanski et al., 2019b) to
set up hyper-parameters. Trust Region ES has two variants: (1) using ridge regression to compute update directions
(Ridge); (2) using Monte-Carlo samples to estimate update directions (MC). Both variants require re-using �m samples
and function evaluations from the previous iteration, here we set � = 0.2 so that the algorithm achieves ⇡ 20% sample
gains. On top of Trust Region ES, the DPPMC variant further improves sample efficiency as demonstrated in the main
paper. We refer readers to (Choromanski et al., 2019b) for a detailed description of the algorithm.
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9 Variance Reduction for Evolution Strategies using DPPs

The goal of this section is to show that it is possible to use DPPs to reduce the variance of Evolution Strategies gradient
estimators.

9.0.1 One dimensional variance reduction using DPPs

We start by showing an auxiliary sequence of one dimensional lemmas. We consider the problem of computing an
estimator of the sum ā of n real numbers a1, · · · , an. In Lemma 1 we first show that using DPPs it is always possible
to produce an unbiased estimator of the sum of a sequence of real numbers with less or equal variance than the i.i.d
estimator that samples each element ai of the sequence i.i.d. with probability pi. We then show in Lemma 2 that it is
possible to produce a DPP kernel K such that the corresponding sum estimator has strictly less variance than the i.i.d.
one.

We follow the discussion regarding Determinantal Point Process from Kulesza and Taskar (2012). Recall that a
Determinantal Point Pricess (DPP) P on a ground set X with |X | = N is a probability measure over power set 2X .
When S is a random subset drawn according to P , we have, for every A ⇢ X .

P (A ⇢ S) = det (KA)

for some real symmetric N ⇥ N matrix K indexed by the elements of X . Here KA = [Ki,j ]i,j2A and adopt
det(K;) = 1. K is known as the marginal kernel.

Notice that whenever A = {i}, P(i 2 S) = Ki,i and that P(i, j 2 S) = P(i 2 S)P(j 2 S)�K2
i,j .

We start by showing a basic variance reduction result regarding DPPs. Let a1, · · · , an be set of real numbers. Let ā be
their sum. We are interested in analyzing the following two estimators of ā:

1. âi.i.d =
Pn

i=1
ai✏i
pi

where ✏i are sampled independent from each other with ✏i ⇠ Ber(pi).

2. âDPP =
P

i2S
ai✏i
pi

where S is a subset of [n] sampled from a DPP with kernel K satisfying Ki,i = pi for all i.

Notice that E [âi.i.d] = ā and E [âDPP] = ā and therefore âi.i.d and âDPP are unbiased estimators of ā.

Lemma 1. If ai � 0 for all i, the estimator âDPP has smaller variance than âi.i.d whenever Kii = pi for all i.

Proof. Since âi.i.d and âDPP are unbiased, it is enough to compare the second moments of the said estimators.

E
⇥
â2DPP

⇤
= E

2

4
X

ij

aiaj✏i✏j
pipj

3

5

=
X

i,j

E [✏i✏j ] aiaj
pipj

=
X

i,j

(KiiKjj �K2
ij)aiaj

pipj

= E
⇥
â2i.i.d.

⇤
�
X

i 6=j

K2
i,jaiaj
pipj

 E
⇥
â2i.i.d.

⇤

The last inequality holds whenever ai � 0 for all i.
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We can also show that under appropriate conditions there exists a kernel matrix K such that Var(âi.i.d) > Var(âDPP)
such that the inequality is strict.

Lemma 2. If n � 3, pi > 0 for all iand there exists i such that pi < 1, then there exists a matrix K 2 Rn⇥n defining a
DPP over - not necessarily nonnegative- a1, · · · , an 2 R satisfying Ki,i = pi and such that Var(âi.i.d.) > Var(âDPP).

Proof. Let K be a matrix defining a DPP with Ki,i = pi for all i Following the exact same proof as in Lemma 1, we
conclude that Var(âi,i.d) > Var(âDPP) iff:

X

i 6=j

K2
i,jaiaj
pipj

> 0 (12)

We show the existence of a kernel matrix K for which the inequality 12 holds and Ki,i = pi for all i.

Indeed, let K 2 Rn⇥n be such that:

Ki,j =

8
><

>:

pi if i = j

✏ if aiaj

pipj
� 0

0 o.w.

For some ✏ > 0. Under this definition, notice that
P

i,j
K2

i,jaiaj

pipj
> 0 and notice that since 0 � diag(pi) � I , there

exists a choice of ✏ > 0 such that 0 � K � Id, thus defining a valid DPP kernel matrix K.

9.0.2 Towards variance reduction for vector estimators using DPPs.

In this section we extend the results of the previous section to the multi dimensional case of Monte Carlo gradient
estimators. We start with an auxiliary lemma that will be used in the variance reduction Theorems of the following
sections. The following Lemma characterizes the maximum number of vectors that can all be pairwise negatively
correlated. This Lemma will be used later on to argue the existence of a DPP kernel K for which its subsampling
estimator of the Evolution Strategies gradient estimator achieves less variance than the i.i.d. subsampling estimator.

Lemma 3. Let v1, · · · ,vM 2 Rd vectors such that hvi,vji < 0 for all i 6= j. Then M  d+ 1.

Proof. We proceed with a proof by contradiction. Let’s assume M � d+ 2. Let v1, · · · ,vd+1 be a subset of d+ 1
vectors of {vj}Mj=1. There exist a1, · · · , ad+1 2 R such that:

d+1X

i=1

aiv
i = 0

If ai � 0 for all i then hvd+2,
P

i aiv
ii =

P
i aihvd+2,vii < 0 which would result in a contradiction. If ai are not all

nonnegative, there exist disjoint subsets I ⇢ [d+ 2] and K ⇢ [d+ 2] such that I [ J = [d+ 2], and I \ J = ; and
I, J 6= ; and with ai � 0 for all i 2 I (with at least one ai > 0) and aj  0 (with at least one aj < 0) for all j 2 J
such that: X

i2I

aiv
i

| {z }
I

=
X

j2J

�ajv
j

| {z }
II

Therefore by assumption hI, IIi < 0 which would cause a contradiction since I = II .

Recall the gradient estimator corresponding to Evolution Strategies. If f : Rd ! R, the ES gradient estimator rf�(✓)
at ✓ equals:
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rf�(✓) = Ev⇠N (0,Id)


1

�
f(✓ + �v)v

�

We denote by r̂f�(✓) =
1
n�

Pn
i=1 f(✓ + �vi)vi where vi are all samples from a standard Gaussian N (0, Id).

9.0.3 Subsampling strategies in ES

In this section we consider subsampling strategies for Evolution strategies when we have a dictionary of N sensing
directions {vi}Ni=1. Let {pi}Ni=1 be the ensemble of probabilities with which to sample (according to a Bernoulli trial
with probability pi) each sensing i.

We recognize two cases:

1. Unbiased sampling In this case we consider a subsampled-importance sampling weighted version of the empirical
estimator r̂f�(✓) =

1
�N

PN
i=1 v

if(✓ + �vi) of the form r̂Uf�(✓) =
1

N�

PN
i=1

✏i
pi
vif(✓ + �vi).

2. Biased In this case we consider a subsampled version of the empirical estimator r̂f�(✓) of the form r̂Bf�(✓) =
1

�N

PN
i=1

✏i
wi

vif(✓ + �vi) where {wi}Ni=1 is a set of importance weights, not necessarily equal to {pi}.

The crucial observation behind these estimators is that the evaluation of f need not be performed at the points that
are not subsampled. This allows us to trade off computation with variance (or mean squared error). We would like to
achieve the optimal tradeoff.

Unbiased subsampling

The goal of this section is to show that for any i.i.d. subsampling strategy to build an unbiased estimator for the ES
gradient, there exists a DPP kernel such that the DPP unbiased subsampling estimator achieves less variance than the
i.i.d. one.

The main result of this section, Theorem 3 concerns the estimation of functions of the form F : Rd ! Rm as defined in
Section 1, and shows that for any fixed subsampling i.i.d. strategy (encoded by subsampling probabilities {pi}), there
exists a marginal kernel K whose corresponding estimator achieves the same mean but has (strictly) less variance. We
prove Theorem 4 which specializes Theorem 3 to the case of ES gradients. A simple notational change would render
the proof valid for Theorem 3.

The following corresponds to Theorem 1 in the main text.
Theorem 3. If N � d+ 2 and pi < 1 for all i, there exists a Marginal Kernel K 2 RN⇥N such that:

E{✏i}⇠DPP (K)

h
F̂ (✓)DPP

U

i
= E{✏i}⇠{Ber(pi)}

h
F̂ (✓)iidU

i

=
1

N

NX

i=1

h✓(v
i)

And:
Var(F̂ (✓)DPP

U ) < Var(F̂ (✓)iidU )

We show the corresponding result for the case when F = rf�(✓). The proof is exactly the same as in the case when
considering any other type of function F : Rd ! Rm defined as in Section 1.

Let K be a marginal kernel matrix defining a DPP whose samples we index as (✏1, · · · , ✏N ) with ✏i 2 {0, 1} and such
that the ensemble follows the DPP process. We consider the following subsampled ES estimator:

r̂DPP
U f�(✓) =

1

N�

X

i2S

✏i
pi
f(✓ + �vi)vi

Theorem 4. There exists a marginal kernel K 2 RN⇥N such that [MSE(r̂DPP
U f�(✓)) < [MSE(r̂Uf�(✓))
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Proof. Since E
h
r̂DPP

U f�(✓)
i
= E

h
r̂Uf�(✓)

i
, it is enough to show the desired statement for the square norms of

these vectors.

kr̂DPP
U f�(✓)k2 =

dX

j=1

 
1

�N

X

i2S

✏i
pi
f(✓ + �vi)vi(j)

!2

=
1

�2N2

dX

j=1

 
X

i2S

✏i
pi
f(✓ + �vi)vi(j)

!2

=
1

�2N2

dX

j=1

0

@
X

i,k2S

✏i✏k
pipk

f(✓ + �vi)f(✓ + �vk)vi(j)vk(j)

1

A

Therefore:

E
h
kr̂DPP

U f�(✓)k2
i
= E

2

4 1

�2N2

dX

j=1

0

@
X

i,k2S

✏i✏k
pipk

f(✓ + �vi)f(✓ + �vk)vi(j)vk(j)

1

A

3

5

=
1

�2N2

dX

j=1

0

@
X

i,k

E[✏i✏k]
pipk

f(✓ + �vi)f(✓ + �vk)vi(j)vk(j)

1

A

=
1

�2N2

dX

j=1

0

@
X

i 6=k

Ki,iKk,k �K2
i,k

pipk
f(✓ + �vi)f(✓ + �vk)vi(j)vk(j)

1

A+

1

�2N2

dX

j=1

 
NX

i=1

Ki,i

p2i
f2(✓ + �vi)

�
vi
�2

(j)

!

Let Ki,i = pi for all i. The expression above becomes:

E
h
kr̂DPP

U f�(✓)k2
i
= E

h
kr̂Uf�(✓)k2

i
� 1

�2N2

dX

j=1

0

@
X

i 6=k

K2
i,k

pipk
f(✓ + �vi)f(✓ + �vk)vi(j)vk(j)

1

A

= E
h
kr̂Uf�(✓)k2

i
� 1

�2N2

X

i 6=k

K2
i,k

pipk
f(✓ + �vi)f(✓ + �vj)

0

@
X

j

vi(j)vk(j)

1

A

= E
h
kr̂Uf�(✓)k2

i
� 1

�2N2

X

i 6=k

K2
i,k

pipk
f(✓ + �vi)f(✓ + �vj)hvi,vki

| {z }
I

Let V 2 Rd⇥N where the i�th column of V equals vi, and let D 2 RN⇥N a diagonal matrix such that Di,i =
f(✓+�vi)

pi�N
.

Let K0 2 RN⇥N be a matrix having zero diagonal entries and such that K0
i,j = Ki,j with i 6= j. Similarly to the proof

of Lemma 2, let’s focus on term I.

1

�2N2

X

i 6=k

K2
i,k

pipk
f(✓ + �vi)f(✓ + �vj)hvi,vki =

X

i 6=k

K2
i,k

�2N2pipk
f(✓ + �vi)f(✓ + �vj)hvi,vki

= h
�
K0
�2

,D>V>DVi
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We denote by
�
K0
�2 be the matrix K0 with entries squared. Where h

�
K0
�2

,D>V>DVi =

trace(
�
K0
�2

D>V>DV). Define K0 in this way, for i 6= j. Let ✏ > 0:

(K0)i,j =

(
✏ if f(✓ + �vi)f(✓ + �vj)hvi,vki > 0

0 o.w.

Let VD be the matrix with columns equal to vif(✓ + �vi) and define W = VD. Consider J = W>W and define
J0 be the matrix J without its diagonal entries. Since N � d + 2, Lemma 3 there must be at least two positive non
diagonal entries of J and therefore in this case h

�
K0
�2

,D>V>DVi > 0.

If Ki,i = pi < 1 for all i then following an argument similar to the proof of 2, we conclude there exists ✏ > 0 such that
0 � K � Id such that [MSE(r̂DPP

U f�(✓)) < [MSE(r̂Uf�(✓)) as desired.

Theorem 3, yields the following corollary (corresponding to Corollary 1 in the main text). Under i.i.d. uniform sampling
(pi = p for all i):

Corollary 2. Let v1, · · · ,vN ⇠ N (0, Id) be normally distributed sensings sampled i.i.d. Let r̂Uf�(✓) and
r̂DPP

U f�(✓) be subsampled gradients with pi = p < 1 for all i where r̂DPP
U f�(✓) is produced with a kernel

as in Theorem 1. The following hold:

E
h
r̂DPP

U f�(✓)
i
= E

h
r̂Uf�(✓)

i
= rf�(✓)

And:
[MSE(r̂DPP

U f�(✓)) < [MSE(r̂Uf�(✓))

This corollary implies that picking the right Kernel, subsampling perturbations from a DPP process when these
perturbations are all i.i.d. Gaussian vectors, yields an unbiased estimator of the smoothed gradient rf�(✓) with less
variance (in this case equal to the mean squared error) than a naive subsampled gradient estimator that subsamples the
{vi} perturbations each with probability p.

Biased subsampling

The goal of this section is to show that for any i.i.d. subsampling strategy to build a biased estimator for the ES gradient,
there exists a DPP kernel such that the DPP unbiased subsampling estimator achieves less mean squared error (MSE)
than the i.i.d. one.

Define the biased downsampled estimator as:

F̂ (✓)B =
1

N

NX

i=1

✏i
wi

h✓(v
i). (13)

Theorem 1 and Corollary 1 of the main text can be generalized to the case of biased estimators. Borrowing notation from
the previous section, and assuming access to an ensemble {wi} of importance weights, we get as a biased equivalent
version of Theorem 1:

Theorem 5. If N � d+ 2 and pi < 1 there exists a Marginal Kernel K 2 RN⇥N such that:

E{✏i}⇠DPP (K)

h
F̂ (✓)DPP

B

i
= E{✏i}⇠{Ber(pi)}

h
F̂ (✓)iidB

i
,

and furthermore MSE(F̂ (✓)DPP
B )  MSE(F̂ (✓)iidB ), where the comparison mean equals µ = F̂ (✓) = 1

N

PN
i=1 h✓(vi).
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Proof. The following equalities hold:

MSE(F̂ (✓)DPP
B ) = Var(F̂ (✓)DPP

B )+
���E
h
F̂ (✓)DPP

B � F̂ (✓)
i���

2

MSE(F̂ (✓)iidB ) = Var(F̂ (✓)iidB )+
���E
h
F̂ (✓)iidB � F̂ (✓)

i���
2

Since the expectations of F̂ (✓)iidB and F̂ (✓)DPP
B agree, and as a consequence of Theorem 1, we can produce a kernel K

such that:
Var(F̂ (✓)DPP

B ) < Var(F̂ (✓)iidB ),

the result follows.

As a consequence of Theorem 5, the biased downsampled versions r̂iid
B f�(✓) and r̂DPP

B f�(✓) of the ES gradient
estimator rf�(✓) satisfy an analogous version of Corollary 1 where Var is substituted by MSE.

The proofs of Theorem 3 and 5 can be used to produce an algorithm to find kernel matrix K reducing MSE. The results
of the previous section can be extended to the case of biased sampling estimators. These result from the case when the
importance weights are different from pi.

Similarly to the previous section, the following theorem holds. Defining r̂Bf�(✓) and r̂DPP
B f�(✓) as:

1. r̂Bf�(✓) =
1

�N

PN
i=1

✏i
wi

vif(✓+ �vi) where {wi}Ni=1 is a set of importance weights and ✏i ⇠ Ber(pi) for some
probabilities ensemble {pi}

2. r̂DPP
B f�(✓) =

1
N�

P
i2S

✏
wi

f(✓ + �vi)vi.

In this case, the corresponding version of Theorem 3 is:

Theorem 6. There exists a marginal kernel K 2 RN⇥N such that [MSE(r̂DPP
B f�(✓)) < [MSE(r̂Bf�(✓)).

Proof. The mean squared errors [MSE(r̂DPP
B f�(✓)) and [MSE(r̂Bf�(✓)) can be written as:

[MSE(r̂DPP
B f�(✓)) = Var(r̂DPP

B f�(✓)) +
���E
h
r̂DPP

B f�(✓))
i
�rf�(✓)

���
2

| {z }
I

[MSE(r̂Bf�(✓)) = Var(r̂Bf�(✓)) +
���E
h
r̂Bf�(✓))

i
�rf�(✓)

���
2

| {z }
II

The bias terms I and II are always equal since E
h
r̂Bf�(✓))

i
= E

h
r̂DPP

B f�(✓))
i
.

The remainder of the proof is exactly the same as in Theorem 1.

9.1 DPP Connections with orthogonality

In this section we flesh out some connections between structured sampling via DPPs and structured sampling via
orthogonal directions such as in Rowland et al. (2018). We show that in some way DPP structured sampling subsumes
orthogonal sampling. We start showing Lemma 4, leading to Theorem 7, (Theorem 2 in the main text).

In what follows assume X = {x1, · · · ,xN} with xi 2 Rd and let � : Rd ! RD be a possibly infinite feature map �.



Practical Nonisotropic Monte Carlo Sampling in High Dimensions via Determinantal Point Processes

Lemma 4. Let W 2 RN⇥N such that Wi,j = h�(xi),�(xj)i for some a D�dimensional feature map �. Let A ✓ [N ].
The nonzero eigenvalues of the principal minor WA equal the nonzero eigenvalues of

P
i2A �(xi)�>(xi).

Proof. Let A = {i1, · · · , i|A|} and define BA =
⇥
�(xi1) · · ·�(x|A|)

⇤
2 RD⇥|A|. It follows immediately that:

WA = B>
ABA

Assume the SVD decomposition of BA = U>
ADAVA with UA 2 RD⇥D, DA 2 RD⇥|A|, and VA 2 R|A|⇥|A|. And

thus:

WA = V>
A DAD

>
A| {z }

I

VA

Observe that:

X

i2A

�(xi)�>(xi) = BAB
>
A

And substituting the SVD decomposition of BA yields:

X

i2A

�(xi)�>(xi) = U>
A D>

ADA| {z }
II

UA

Since the nonzero entries of I and II are the same, we conclude the nonzero eigenvalues of WA and ofP
i2A �(xi)�>(xi) coincide.

We now show a relationship between orthogonality and DPPs.

Theorem 7. Let L 2 RN⇥N be an L�ensemble such that Li,j = h�(xi),�(xj)i, where k�(xi)k = 1 for all i 2 [N ].
Let k 2 N with k  N and assume there exist k samples xi1 , · · · ,xik in X satisfying h�(xij ),�(xil)i = 0 for all
j, l 2 [k]. If Pk denotes the DPP measure over subsets of size k of [N ] defined by L, the most likely outcomes from Pk

are the size k pairwise orthogonal subsets of X .

Proof. Recall that Pk / det(LA). Observe also that, since all eigenvalues of LA are nonnegative, if we assume the
determinant of LA to be nonnegative, by the arithmetic-geometric inequality:

(det(LA))
1/k  tr(LA)

k
= 1 (14)

Since the determinant equals the product of the eigenvalues while the trace is the sum. Equality holds iff all of the
eigenvalues are equal to 1. Let A be a subset of size k such that all points are pairwise orthogonal after the map �, then
det(LA = 1. Furthermore, if det(LA) = 1, then the set of points {�(xi)}i2A must be orthogonal.

As a consequence of inequality 14, the equality det(LA) = tk can only hold if all eigenvalues of LA equal 1. We show
this implies all the vectors must be orthogonal.

Let A = {i1, · · · , i|A|} and write L(t)
A = (BA)

> BA where BA =
⇥
�(xi1) · · ·�(xi|A|)

⇤
. As a consequence of Lemma

4, the nonzero eigenvalues of L(t)
A agree with the nonzero eigenvalues of ⌃ =

P
i2A �(xi)�>(xi).

Since by assumption k⌃k = t, and k�(xi)k = 1 for all i:

�>(xi)⌃�(xi)  1

Expanding this equation by substituting the value of ⌃, we get: �>(xi)⌃�(xi) =
P

j2Ah�(xj),�(xi)i2  1
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Since the term corresponding to j = i already equals 1, the remaining terms must be zero. This finishes the proof.

This result implies that the subsets of points of size k with the largest mass are those corresponding to pairwise
orthogonal ensembles. This finishes the proof.


