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Supplementary Material

A Using a different ambiguity set

Recall that X ∈ Rd is a zero-mean random vector with covariance matrix Σ ∈ S++
d and measure Q0, and

that we consider an iid random sample X1, · · · , Xn ∼ X, n > d, with empirical measure Qn. Since we
use the graphical loss function as in equation (3), we are interested in finding a tractable or closed-form
expression for the optimization problem

sup
Q: Dc′ (Q,Qn)≤δ

EQ[l(X;K)] (1)

with K ∈ S++
d . Ideally, the solution should be connected to the graphical lasso estimator, since it is one

of the most commonly-used sparse inverse covariance estimators in practice. The ambiguity set in this
formulation is specified by the collection of measures {Q | D′c′(Q,Qn) ≤ δ}, which we now describe. Given
two probability distributions Q1 and Q2 on Rd and some transportation cost function c′ : Rd×Rd → [0,∞)
(which we will specify below), we define the optimal transport cost between Q1 and Q2 as

D′c′(Q1, Q2) = inf{Eπ
[
c′ (u, v)

]
|π ∈ P

(
Rd × Rd

)
,

πu = Q1, πv = Q2}
(2)

where P
(
Rd × Rd

)
is the set of joint probability distributions π of (u, v) supported on Rd × Rd, and πu

and πv denote the marginals of u and v under π, respectively. In this paper, we are interested in cost
functions

c′(u, v) = ‖u− v‖ρq , (3)

with u, v ∈ Rd, ρ ≥ 1, q ∈ [1,∞].
Now, observe that the function l(·;K) : Rd → R is Borel measurable since it is a continuous function.

Then, we use the duality result from Proposition 4 of (Blanchet et al., 2016, version 2) and obtain

sup
P : D′c′ (Q,Qn)≤δ

EQ
[
l(X;K)

]
= inf

γ≥0

{
γδ +

1

n

n∑
i=1

(
sup
u∈Rd
{l(u;K)− γc′(u,Xi)}

)}
. (4)

Let ∆ := u−Xi. Then

sup
u∈Rd
{l(u;K)− γc(u,Xi)}

= sup
u∈Rd
{uTKu− log |K| − γ ‖u−Xi‖ρq}

= sup
∆∈Rd

{(∆ +Xi)
TK(∆ +Xi)− γ ‖∆‖ρq} − log |K|.

(5)

Replacing this expression back in (4), it may be difficult, if not impossible, to obtain a closed form
optimization problem over K. Even if such a simplification is possible, it will not provide the desired
connection to the graphical lasso estimator. That is why, in this paper, as outlined in section 2, we redefine
the ambiguity set to obtain a desired closed form as expressed in Theorem 2.1 in a more transparent way.
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B Proofs for the paper

B.1 Proof of Theorem 2.1

Proof. Consider K ∈ S++
d . Observe that the function l(·;K) : Sd → R is Borel measurable since it is a

continuous function. Then, we use the duality result for the DRO formulation from Proposition C.2 from
the appendix of this paper and obtain

sup
P : Dc(P,Pn)≤δ

EP
[
l(W ;K)

]
= inf

γ≥0

{
γδ +

1

n

n∑
i=1

(
sup
W∈Sd

{l(W ;K)− γc(W,Wi)}

)}
. (6)

Let ∆ := W −Wi. Then,

sup
W∈Sd

{l(W ;K)− γc(W,Wi)}

= sup
W∈Sd

{trace(KW )− log |K| − γ ‖vec(W )− vec(Wi)‖ρq}

= sup
∆∈Sd

{trace(K(∆ +Wi))− γ ‖vec(∆)‖ρq} − log |K|

= sup
∆∈Sd

{trace(K∆)− γ ‖vec(∆)‖ρq}+ trace(KWi)− log |K|

= sup
∆∈M(K)

{‖vec(∆)‖q ‖vec(K)‖p − γ ‖vec(∆)‖ρq}+ trace(KWi)− log |K|

(7)

with M(K) = {∆ ∈ Sd | trace(K∆) > 0, |∆ij |q = θ|kij |p for some θ > 0} so that the fourth line follows
from selecting a ∆ ∈ Sd (since K ∈ S++

d ) such that Holder’s inequality holds tightly (with 1
p + 1

q = 1).
In fact, Holder’s inequality holds tightly if and only if ∆ ∈M(K) (Steele, 2004, Chapter 9), even for the
limiting case q =∞, p = 1. Observe that there exist multiple ∆ ∈ Sd that can satisfy Holder’s inequality
tightly. As a consequence, we are still free to choose the magnitude of the q-norm of such vec(∆) (and
this is what we will use next).

Now, the argument inside the supremum in the last line of (7) is a polynomial function on ‖vec(∆)‖q.
We have to analyze two cases.

Case 1: ρ = 1. In this case we observe that, by setting ε(γ,K) = sup∆∈M(K){‖vec(∆)‖q (‖vec(K)‖p−
γ)}:
• if γ ≥ ‖vec(K)‖p, then ε(γ,K) = 0 (in particular, if γ = ‖vec(K)‖p, the optimizer is ∆ = 0d×d);
• if γ < ‖vec(K)‖p, then ε(γ,K) =∞;

so that, recalling (6), due to the outside infimum to be taken over γ ≥ 0; and so we must have that

sup
P : Dc(P,Pn)≤δ

EP
[
l(W ;K)

]
= inf

γ≥‖vec(K)‖p

{
γδ +

1

n

n∑
i=1

(trace(KWi)− log |K|)

}

from which we immediately obtain (8).
Case 2: ρ > 1. By differentiation and basic calculus (e.g., using the first and second derivative test)

we obtain that the maximizer

∆∗ = arg sup
∆∈M(K)

{‖vec(∆)‖q ‖vec(K)‖p − γ ‖vec(∆)‖ρq}
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is such that ‖vec(∆∗)‖q =
(‖vec(K)‖p

γρ

) 1
ρ−1

. Then,

sup
W∈Sd

{l(W ;K)− γc(W,Wi)} =
‖vec(K)‖

ρ
ρ−1
p

(γρ)
1
ρ−1

− γ
(‖vec(K)‖p

γρ

) ρ
ρ−1

+ trace(KWi)

− log |K|

= ‖vec(K)‖
ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1γ

1
ρ−1

+ trace(KWi)− log |K|.

(8)

Replacing this back in (6),

sup
P : Dc(P,Pn)≤δ

EP
[
l(W ;K)

]
= inf

γ≥0

{
γδ +

1

n

n∑
i=1

(
‖vec(K)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1γ

1
ρ−1

+ trace(KWi)− log |K|

)}

= inf
γ≥0

{
γδ + ‖vec(K)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1γ

1
ρ−1

+ trace

(
K

1

n

n∑
i=1

Wi

)
− log |K|

}

= inf
γ≥0

{
γδ + ‖vec(K)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1γ

1
ρ−1

}
+ trace(KAn)− log |K|.

(9)

Now, we observe that the argument inside the infimum in the last line of (9) is a function that grows to
infinity when γ → 0 or γ → ∞, so that the minimum is attained for some optimal γ. By using the first

and second derivative tests, we obtain that the minimizer is γ∗ =
‖vec(K)‖p

ρδ
ρ−1
ρ

. Then, replacing this back

in (9) and then this in (6), we finally obtain (8) after some algebraic simplification.

B.2 Proof of Lemma 3.1

Proof. Consider K ∈ S++
d and define g(K) = supP : Dc(P,Pn)≤δ EP

[
l
(
W ;K

)]
for a fixed δ. We prove (12),

by a direct application of Proposition 8 of (Blanchet et al., 2016, Appendix C), observing that we satisfy
the three conditions for its application:

(i) g is convex on S++
d and finite,

(ii) there exists b ∈ R such that the sublevel set κb = {K | g(K) ≤ b} is compact and non-empty,
(iii) EP [l(W ;K)] is lower semi-continuous and convex as a function of K throughout κb for any P ∈

{P | Dc(P,Pn) ≤ δ}.
First, we observe that

EP0 [l(W,K)] = EP0 [trace(KW )− log |K|] ≤ trace(KEP0 [W ]) <∞,

since EQ0(‖X‖22) <∞. Then, using Theorem 2.1, the function

g(K) = sup
P : Dc(P,Pn)≤δ

EP
[
l
(
W ;K

)]
= trace(KAn)− log |K|+ δ1/ρ ‖vec(K)‖p

is finite. Moreover, we also claim it is convex for all K ∈ S++
d . This follows from the fact that

trace(KAn) − log |K| and ‖vec(K)‖p, p ∈ [1,∞] are two convex functions on K ∈ S++
d , and from

the fact that the nonnegative weighted sum of two convex functions is another convex function (Boyd
and Vandenberghe, 2004). This proves (i).
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Now, we claim that g(K) is radially unbounded, i.e., g(K) → ∞ as ‖vec(K)‖p → ∞. To see this,
recall that trace(KAn) − log |K| is a differentiable convex function in K that is minimized whenever
K−1 = An, since An is invertible for n > d almost surely. Then,

g(K) = trace(KAn)− log |K|+ δ1/ρ ‖vec(K)‖p ≥ d− log |A−1
n |+ δ1/ρ ‖vec(K)‖p ,

from which it immediately follows that g(K)→∞ as ‖vec(K)‖p →∞.

Now, again, since g(K) is also convex and continuous in S++
d , we conclude that the level sets κb =

{K | g(K) ≤ b} are compact and nonempty as long as b > l(W ;K) + δ1/ρ ‖vec(K)‖p. This proves (ii).

Moreover, since l(W ;K) is convex and continuous on any K ∈ S++
d , it follows that EP [l(W ;K)] for any

P ∈ {P | Dc(P,Pn) ≤ δ} is also continuous and convex on any K ∈ S++
d , thus (iii) follows immediately.

B.3 Proof of Theorem 3.2

Proof. Consider K ∈ S++
d . Setting h(U ;K) = U − K−1, it is clear that we satisfy the conditions for

applying Proposition C.1 in the Appendix, and so we obtain

Rn(K) = sup
Λ∈Sd

{
− 1

n

n∑
i=1

sup
U∈Sd

{trace(Λ>(U −K−1))− ‖vec(U)− vec(Wi)‖ρq}

}
(10)

Now, letting ∆ := U −W>i

sup
U∈Sd

{trace(Λ>(U −K−1))−‖vec(U)− vec(Wi)‖ρq}

= sup
∆∈Sd

{trace(Λ>(∆ +Wi −K−1))− ‖vec(∆)‖ρq}

= sup
∆∈Sd

{trace(Λ>∆)− ‖vec(∆)‖ρq}+ trace(Λ>(Wi −K−1))

= sup
∆∈M(Λ)

{‖vec(Λ)‖p ‖vec(∆)‖q − ‖vec(∆)‖ρq}

+ trace(Λ>(Wi −K−1))

(11)

with M(Λ) as in the proof of Theorem 2.1, so that the third line follows from selecting a ∆ ∈ Sd such
that Holder’s inequality holds tightly (with 1

p + 1
q = 1), whose existence has been explained in the proof

of Theorem 2.1. Thus, we are still free to choose the magnitude of the q-norm of such vec(∆) (and this
is what we will use next).

Now, the argument inside the supremum in the last line of (11) is a polynomial function on ‖vec(∆)‖q.
We have to analyze two cases.

Case 1: ρ = 1. In this case we observe that, by setting ε(Λ) = sup∆∈Sd
{‖vec(∆)‖q (‖vec(Λ)‖p− 1)}:

• if ‖vec(Λ)‖p ≤ 1, then ε(Λ) = 0 (in particular, if ‖vec(Λ)‖p < 1, the optimizer is ∆ = 0d×d);
• if ‖vec(Λ)‖p > 1, then ε(Λ) =∞;

so that, recalling (10), we see that if ‖vec(Λ)‖p > 1, then Rn(K) = −∞. Then, we obtain that

Rn(K) = sup
Λ∈Sd:‖vec(Λ)‖p≤1

{
− 1

n

n∑
i=1

trace(Λ>(Wi −K−1)

}
= sup

Λ∈Sd:‖vec(Λ)‖p≤1

{
− trace(Λ>(An −K−1)

}
= sup

Λ∈Sd:‖vec(Λ)‖p≤1

{
vec(Λ)>vec(An −K−1)

}
=
∥∥vec(An −K−1)

∥∥
q
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where the third line results from the fact that Λ is a free variable so we can flip its sign, and the last
line follows from the the analysis of conjugate norms and the fact that Λ, An − K−1 ∈ Sd. We thus
obtained (16).

Case 2: ρ > 1. By differentiation and basic calculus (e.g., using the first and second derivative test)
we obtain that the maximizer

∆∗ = arg sup
∆∈Sd

{‖vec(∆)‖q ‖vec(Λ)‖p − γ ‖vec(∆)‖ρq}

is such that ‖vec(∆∗)‖q =
(‖vec(K)‖p

ρ

) 1
ρ−1

. Then, replacing this back in (10),

Rn(K) = sup
Λ∈Sd

{
− 1

n

n∑
i=1

(
‖vec(Λ)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1

+ trace(Λ>(Wi −K−1))

)}

= sup
Λ∈Sd

{
−‖vec(Λ)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1

− trace(Λ>(An −K−1))

}

= sup
Λ∈Sd

{
trace(Λ>(An −K−1))− ‖vec(Λ)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1

}

= sup
Λ∈Sd

{
‖vec(Λ)‖p

∥∥vec(An −K−1)
∥∥
q
− ‖vec(Λ)‖

ρ
ρ−1
p

ρ− 1

ρ
ρ
ρ−1

}
.

Again, by differentiation and basic calculus, we obtain that the maximizer Λ∗ is such that ‖vec(Λ∗)‖p =

ρ
∥∥vec(An −K−1)

∥∥ρ−1

q
. Replacing this value back in our previous expression, we get that Rn(K) =∥∥vec(An −K−1)

∥∥ρ
q
, and thus we showed (16).

C Applicability of the dual representations of the RWP function and
the DRO formulation

The dual representations of the RWP function and the DRO formulation for the case in which the space
of probability measures is P(Rd × Rd) is studied in the paper (Blanchet et al., 2016). In this paper, we
are interested in the case P(Sd × Sd). In other words, we consider the samples to be in Sd instead of Rd.
We want to emphasize that the derivations of these dual representations rely on the dual formulation of
the so called “problem of moments” or a specific class of “Chebyshev-type inequalities” referenced in the
work by Isii (1962). The derivation by Isii is actually more general in the sense that is applied to more
general probability spaces than the ones used in this paper and in (Blanchet et al., 2016) (in fact, it is
stated for general spaces of non-negative measures).

Throughout this section, we consider an integrable function h : Sd × Sd → Sd, and a lower semi-
continuous function c : Sd × Sd → [0,∞) such that c(U,U) = 0 for any U ∈ Sd and such that the
set

Ω :=
{

(U ′,W ′) ∈ Sd × Sd | c(U ′,W ′) <∞
}

is Borel measurable and non-empty. Also consider an iid random sample W1, · · · ,Wn ∼ W with W
coming from a distribution on P(Sd).

Now, let us focus first on the RWP function in the following proposition which parallels (Blanchet
et al., 2016, Proposition 3).
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Proposition C.1. Consider K ∈ S++
d . Let h(·,K) be Borel measurable. Also, suppose that 0d×d lies in

the interior of the convex hull of {h(U ′, C) | U ′ ∈ Sd}. Then,

Rn(K) = sup
Λ∈Sd

{
− 1

n

n∑
i=1

sup
U∈Sd

{trace(Λ>h(U ;K))− c(U,Wi)}

}
.

Proof. Consider the proof of (Blanchet et al., 2016, Proposition 3). If we:
• set the estimating equation by E[h(W ;K)] = 0d×d,
• set

Rn(K) = inf {Eπ[c(U,W )] | Eπ[h(U ;K)] = 0n×n, πW = Pn, π ∈ P(Sd × Sd)} ,

with πW denoting the marginal distribution of W ,
• consider the previously defined Ω,

then we obtain that, following the rest of this proof (and using (Isii, 1962, Theorem 1) with its special
case):

Rn(K) = sup
Λ∈Sd

{
− 1

n

n∑
i=1

sup
U∈Sd

{vec(Λ)>vec(h(U ;K))− c(U,Wi)}

}

= sup
Λ∈Sd

{
− 1

n

n∑
i=1

sup
U∈Sd

{trace(Λ>h(U ;K))− c(U,Wi)}

}
,

thus obtaining the dual representation of the RWP function.

The following proposition for the dual representation of the DRO formulation parallels (Blanchet
et al., 2016, Proposition 1).

Proposition C.2. For γ ≥ 0 and loss functions l(U ′;K) that are upper semi-continuous in U ′ ∈ Sd for
each K ∈ S++

d , let
φγ(Wi;K) = sup

U∈Sd

{l(U ;K)− γc(U,Wi))} . (12)

Then

sup
P : Dc(P,Pn)≤δ

EP
[
l(W ;K)

]
= min

γ≥0

{
γδ +

1

n

n∑
i=1

φγ(Wi;K)

}
.

Proof. The proof for the dual representation of the DRO for our domain of symmetric matrices is also
very similar to the one described in Proposition 4 of (Blanchet et al., 2016, version 2), just by following
appropriate similar changes as we did for the proof of C.1.

D Figures, tables and additional analysis for the numerical results
(Section 4 of the paper)

D.1 Matthews correlation coefficient analysis

Let true positives (TP) be the number of nonzero off-diagonal entries of Ω that are correctly identified,
false negatives (FN) be the number of its nonzero off-diagonal entries that are incorrectly identified as
zeros, false positives (FP) be the number of its zero off-diagonal entries that are incorrectly identified
as nonzeros, and true negatives (TN) be the number of its zero off-diagonal entries that are correctly
identified. Given the estimated precision matrix K̂, the Matthews correlation coefficient (MCC) (Powers,
2011) is defined as:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FP )
, (13)
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and, whenever the denominator is zero, it can be arbitrarily set to one. It can be shown that MCC ∈
[−1,+1], and +1 is interpreted as a perfect prediction (of both zero and nonzero values), 0 is interpreted
as prediction no better than a random one, and −1 is interpreted as indicating total disagreement between
prediction and observation.

MCC has been argued to be one of the most informative coefficients for assessing the performance of
binary classification (in this case, classifying if an entry of the precision matrix is zero or nonzero) since
it summarizes all information from the TP, TN, FP and FN quantities (Chicco, 2017; Powers, 2011), in
contrast to other measures like TPR and FPR.

D.2 Regularization parameters

All the plots related to the RS criterion for choosing λ have in their x-axis the values
α ∈ {0.10, 0.21, 0.33, 0.44, 0.56, 0.67, 0.79, 0.90}. We study the cases for sample sizes n ∈ {75, 200, 1000}.
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Figure 1: n = 75
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Figure 2: n = 200
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Figure 3: n = 1000

D.3 Performance figures for different choices of the regularization parameter

All the plots related to the RS and RWP criteria for choosing λ have in their x-axis the values α ∈
{0.10, 0.21, 0.33, 0.44, 0.56, 0.67, 0.79, 0.90}. We study the cases for sample sizes n ∈ {75, 200, 1000}.

In this supplemental section, we introduce two additional performance criteria, each one having the
intuitive interpretation of measuring the closeness of the estimated inverse covariance matrix K̂λ and the
true precision matrix Ω:

1. Stein’s loss: trace(Ω−1K̂λ)− log |Ω−1K̂λ| − d, which is zero whenever K̂λ = Ω.

2. Difference of inverse covariances:
‖K̂λ−Ω‖

F
d , with ‖·‖F being the Frobenius norm.

D.3.1 n = 75
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Figure 4: True positive rate (%)
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Figure 5: False detection rate (%)
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Figure 6: Stein’s loss
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Figure 7: Difference of inverse covariances
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Figure 8: True positive rate (%)
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Figure 9: False detection rate (%)
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Figure 10: Stein’s loss
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Figure 11: Difference of inverse covariances

D.3.3 n = 1000
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Figure 12: True positive rate (%)
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Figure 13: False detection rate (%)
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Figure 14: Stein’s loss
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Figure 15: Difference of inverse covariances
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