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Abstract

This supplementary material contains details
from Rk-means omitted from the main paper
due to space constraints.

A Background on Database Queries
and FAQs

Recent advancements in the database community have
produced new classes of query plans and join algo-
rithms Abo Khamis et al. (2017, 2016); Ngo (2018);
Olteanu and Schleich (2016) for the efficient evalua-
tion of general database queries. These general algo-
rithms hinge on the expression of a database query as
a functional aggregate query, or FAQ Abo Khamis et al.
(2016).

Loosely speaking, an FAQ is a collection of aggrega-
tions (be they sum, max, min, etc.) over a number
of functions known as factors3, in the same sense as
that used in graphical models. In particular, if there
was only one aggregation (such as sum), then an FAQ
is just a sum-product form typically used to compute
the partition function. An FAQ is more general as it
can involve many marginalization operators, one for
each variable, and they can interleave in arbitrary way.
Every relational database query can be expressed in
this way. Consider the example query of Section 1:

3A full formal definition of FAQs can be found in Abo
Khamis et al. (2016), but is not required for our work here
so we omit it.
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for this, the task of the database query evaluator is
to compute max(transactions.count) for every tuple
(i, s, t, p, y) that exists in the output. We can express
this as a function:

φ(i, s, t, p, y) =

max
c

max
i

max
s
ψP (i, t, p)ψT (i, s, c)ψS(s, y). (11)

In this we have three factors ψP (·), ψT (·), and ψS(·),
which correspond to the product, transactions, and
store tables, respectively. We define ψP (i, t, p) =
1 if the tuple (i, t, p) exists in the product ta-
ble and 0 otherwise; we define ψS(s, y) similarly.
We define ψT (i, s, c) = c if the tuple (i, s, c) ex-
ists in the transactions table and 0 otherwise.
Thus, given any tuple (i, s, t, p, y), we can compute
max(transactions.count)= φ(i, s, t, p, y).

In order to efficiently solve an FAQ (of which Equa-
tion (11) is but one example), the InsideOut algorithm
of Abo Khamis et al. (2016) may be used; InsideOut is
a variable elimination algorithm, inspired from vari-
able elimination in graphical model, with several new
twists. One twist is to adapt worst-case optimal join al-
gorithms Ngo et al. (2018); Veldhuizen (2012) to speed
up computations by exploiting sparsity in the data. An-
other twist is that the algorithm has to carefully pick
a variable order to minimize the runtime, while at the
same time respect the correctness and semantic of the
query. Unlike in the case of computing a sum-product
where the summation opeartors are commutative, in a
FAQ the operators may not be commutative.

To characterize the runtime of this algorithm, we must
first observe that each database query and thus FAQ
corresponds to a hypergraph H = {V, E}. The ver-
tices V of this hypergraph correspond to the vari-
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Figure 3: Example hypergraphH for the example query
and FAQ in Equation 11.

ables of the FAQ expression; in our example, we have
V = {i, s, t, p, y, c}. The hyperedges E , then, corre-
spond to each factor ψP (·), ψT (·), and ψS(·)—which
in turn correspond to the tables in the database. This
hypergraph H is shown in Figure 3.

Roughly, InsideOut proceeds by first selecting a variable
ordering σ, reordering the FAQ accordingly, and then
solving the inner subproblems repeatedly, in much the
same way variable elimination works for inference in
graphcal models Koller and Friedman (2009). The
runtime of InsideOut is dependent on a notion of width
of H called FAQ-width, or faqw(·). Fully describing
this width is beyond the scope of this paper and we
encourage readers to refer to Abo Khamis et al. (2016)
for full details. The FAQ-width is a generalized version
of fractional hypertree width of Grohe and Marx (2014)
(denoted by fhtw). When the FAQ query does not have
free variables, faqw = fhtw. Given some FAQ with
hypergraph H, via Section 4.3.4 of Abo Khamis et al.
(2017), InsideOut runs in time Õ(N faqwH(σ) +Z), where
we assume that the support of each factor4 is no more
than O(N), and Z is the number of tuples in the
output. As an example, the hypergraph of Figure 3
has faqwH(σ) = 1. Overall, InsideOut gives us the most
efficient known way to evaluate problems that can be
formulated as FAQs.

B Missing details from Section 3

B.1 Proposition 3.5

Proof of Prop. 3.5. As before the optimal transport
plan from P in to Q is such that each support point
s ∈ S is received by all x ∈X nearest to s compared
to other points in S. So,

W2
2(P in,Q) + Ω(M)

=

m∑
j=1

W2
2(Mj ,P

in
j ) + Ω(M) (12)

≤ α
m∑
j=1

(W2
2(M∗j ,P in

j ) + Ωj(M
∗
j )) (13)

≤ α(W2
2(M∗,P in) + Ω(M∗)). (14)

4Or in our case, the number of tuples in the table corre-
sponding to that factor.

The second to last inequality is due to the α-
approximation of (regularized) wkmeans1, and condition
that |supp(Mj)| ≥ |supp(M∗j )|. The last inequality fol-
lows from Proposition 3.2 and the definition of Ω. By
the triangle inequality of W2, as before

W2(P in,P ) (15)

≤W2(P in,Q) + W2(Q,P ) (16)

≤W2(P in,Q) +
√
γW2

2(Q,M∗) + γΩ(M∗)− Ω(P )

(17)

≤W2(P in,Q) +
(
2γW2

2(P in,Q) + 2γW2
2(P in,M∗)

+ γΩ(M∗)− Ω(P ))
1
2 . (18)

Hence, by Cauchy-Schwarz and combining with (14)
we obtain

W2
2(P in,P )

≤ 2

{
(1 + 2γ)W2

2(P in,Q) (19)

+ 2γW2
2(P in,M∗) + γΩ(M∗)− Ω(P )

}
(20)

≤ (2α+ 4γ + 4αγ)W2
2(P in,M∗)

+ (2α+ 2γ + 4αγ)Ω(M∗)

− (2 + 4γ)Ω(M)− 2Ω(P ). (21)

The conclusion is immediate by noting that Ω is a
non-negative function.

C Missing details from Section 4

C.1 Categorical variables

As we have mentioned, real-world relational database
queries often involve a significant number of categorical
variables, such as color, month, or city. The most com-
mon way to deal with categorical variables in practical
settings is to one-hot encode them, whereby a categori-
cal feature such as city is represented by an indicator
vector

xcity =
[
1city=c1 1city=c2 · · ·1city=cL

]
(22)

where {c1, . . . , cL} is the set of cities occuring in the
data. The subspace associated with these indicator vec-
tors is known as the categorical subspace of a categorical
variable. This one-hot representation substantially in-
creases the data matrix size via an increase in the
dimensionality of the data. For example, a dataset of
about 30 mostly categorical features with hundreds or
thousands of categories for each feature will have its
dimensionality exploded to the order of thousands with
one-hot encoding.
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The k-means subproblem within a categorical subspace
is solvable efficiently and optimally, without one-hot
encoding. This optimal solution can be computed in
the same time it takes to find the number of points in
each category, which is a vast improvement on either
an optimal dynamic program or Lloyd’s algorithm.
Furthermore, it helps keep m as low as the number of
database attributes in the query.

Consider a weighted k-means subproblem solved by
wkmeans1 defined on a categorical subspace induced by
a categorical featureK that has L categories. Then, the
instance is of the form (I, v), where I is the collection
of L indicator vectors 1e, one for each element e ∈
Dom(K). (One can think of I as the identity matrix
of order L.) Define the weight function v as

v(1e) =
∑

x∈X,xK=e

w(x). (23)

For any set F ⊆ Dom(K), let vF denote the vector
(v(1e))e∈F . Also, ‖vF ‖1 and ‖vF ‖2 denote the `1 and
`2 norm, respectively. It is useful to rewrite the cate-
gorical weighted k-means problem:
Proposition C.1. The categorical weighted k-means
instance (I, v) admits the following optimization objec-
tive:

OPT(I, v) = ‖v‖1 −max
F

∑
F∈F

‖vF ‖22
‖vF ‖1

, (24)

where F ranges over all partitions of Dom(K) into k
parts.

Proof. First, consider a subset F ⊆ Dom(K) of the cat-
egories; the centroid µ of (weighted) indicator vectors
1e, e ∈ F , can be written down explicitly:

µe =

{
0 e /∈ F
ve
‖vF ‖1

v ∈ F ,
(25)

The weighted sum of squared distances between 1e for
all e ∈ F to µ is∑

e∈F
(‖µ‖22 − µ

2
e + (µe − 1)2)ve

=
‖vF ‖22
‖vF ‖1

+
∑
e∈F

((µe − 1)2 − µ2
e)ve

=
‖vF ‖22
‖vF ‖1

+
∑
e∈F

(−2µe + 1)ve

= ‖vF ‖1 − ‖vF ‖
2
2 / ‖vF ‖1 .

Thus, the weighted k-means objective takes the form

min
F

∑
F∈F

(
‖vF ‖1 − ‖vF ‖

2
2 / ‖vF ‖1

)
(26)

= ‖v‖1 −max
F

∑
F∈F
‖vF ‖22 / ‖vF ‖1 , (27)

which concludes the proof.

In (24), note that ‖v‖1 is the total weight of input
points; hence, we can equivalently solve the inner max-
imization problem. With the categorical weighted k-
means objective in place, we can derive the optimal
clustering. To do so, We next need the following ele-
mentary lemma.

Lemma C.2. Suppose that x, a1, a2, b1, b2 > 0, b21 ≥
a1, b22 ≥ a2 and x ≥ max{a1/b1, a2/b2}. Then x +

a1+a2
b1+b2

≥ max

{
x2+a1
x+b1

+ a2
b2

, x
2+a2
x+b2

+ a1
b1

}
.

Proof. It suffices to establish x+ a1+a2
b1+b2

≥ x2+a1
x+b1

+ a2
b2
,

or equivalently

x− x2 + a1

x+ b1
≥ a2

b2
− a1 + a2

b1 + b2
,

which can be simplified as

x(b1 + b2 + a1/b1 − a2/b2) ≥ a1b2/b1 + a2b1/b2. (28)

To verify this inequality, consider two cases. If a1/b1 ≥
a2/b2, then LHS ≥ x(b1 + b2) ≥ (a2/b2)b1 + (a1/b1)b2.
On the other hand, if a2/b2 > a1/b1. Since b2−a2/b2 ≥
0,

LHS ≥ (a2/b2)(b1 + b2 + a1/b1 − a2/b2)

= a2b1/b2 + a2 + a1a2/(b1b2)− a2
2/b

2
2

= a2b1/b2 + a1b2/b1

+ (b2 − a2/b2)(a2/b2 − a1/b1)

≥ a2b1/b2 + a1b2/b1.

Thus the proof is complete.

Then, the optimal solution to the categorical k-means
instance is an immediate consequence:

Corollary C.3. Let (e1, . . . , eL) be a permutation of
Dom(K) such that ve1 ≥ ve2 ≥ . . . ≥ veL . Then for any
k ≥ 2 and any k-partition F of Dom(K), there holds

ve1 + . . .+ vek−1
+

∑L
i=k v

2
i∑L

i=k vi
≥
∑
F∈F

‖vF ‖22
‖vF ‖1

.

Proof. We prove the claim by induction on k. Let
F ∈ F be the set containing the element {e1}. If there
is only one element in F then we apply the induc-
tion hypothesis on the remaining terms. Otherwise,
F contains at least two elements. Let G ∈ F be an
arbitrary element of F where G 6= F . Define F ′ to
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be the partition obtained from F by replacing (F ,G)
with ({e1},F ∪G− {e1}). Then, Lemma C.2 can be
applied to get∑

F∈F

‖vF ‖22
‖vF ‖1

≤
∑
F∈F ′

‖vF ‖22
‖vF ‖1

.

Induction on the tail k − 1 terms completes the proof.

Theorem 4.1 follows trivially from the above corol-
lary. Corollary C.3 and the objective for k-means on a
single attribute in the equation of Proposition C.1 es-
tablishes precisely the structure of the optimal solution
for data consisting of a single categorical variable.

C.2 Reducing the coreset size with FDs

Next, we address the second call to wkmeans2: its run-
time is dependent on the size of the grid G, which can
be up to O(km), where m is the number of features
from the input. Databases often contain functional
dependencies (FDs), which we can exploit to reduce
the size of G. An FD is a dimension whose value
depends entirely on the value of another dimension.
For example, for a retailer dataset that includes geo-
graphic information, one might encounter features such
as storeID, zip, city, state, and country. Here, storeID func-
tionally determines zip, which determines city, which in
turns determines state, leading to country. This common
structure is known as an FD-chain, and appears often
in real-world FEQs.

If we were to apply Rk-means without exploiting the
FDs, the features storeID, zip, city, state, and country
would contribute a factor of k5 to the grid size. How-
ever, by using the functional dependency structure of
the database, we show that only a factor of 5k is con-
tributed to the grid size, because most of the k5 grid
points g have wgrid(g) = 0 as defined in (3). More
generally, whenever there is an FD chain of (simple)
functional dependencies including p features, their over-
all contribution to the grid size is a factor of O(kp)
instead of O(kp), and the grid points with non-zero
weights can be computed efficiently in time O(kp).
Lemma C.4. Suppose all d input features are categor-
ical and form an FD-chain. Then, the total number of
grid points g ∈ G with non-zero wgrid weight is at most
d(k − 1) + 1.

Proof. Suppose the features are K1, . . . ,Kd, where
Ki functionally determine Ki+1, and Dom(Ki) =
{ei1, ei2, · · · , eini

}. Without loss of generality, we also
assume that the elements in Dom(Ki) are sorted in
descending order of weights:

w(1ei1) ≥ w(1ei2) ≥ · · · ≥ w(1eini
). (29)

From Corollary C.3, we know the set Ci of k centroids
of each of the categorical subspace for Ki: there is
a centroid µij = 1eij for each j ∈ [k − 1], and then a
centroid µik of the rest of the indicator vectors. The ele-
ments eij for j ∈ [k−1] shall be called “heavy” elements,
and the rest are “light” elements.

Now, consider an input vector x = (x1, . . . ,xd) where
xi ∈ Dom(Ki). Under one-hot encoding, this vec-
tor is mapped to a vector of indicator vectors 1x :=
(1x1

, · · · ,1xd
). We need to answer the question: which

grid point in G = C1×· · ·×Cd is 1x closest to? Since
the `22-distance is decomposable into component sum,
we can determine the closest grid point by looking at
the closest centroid in Ci for 1xi

, for each i ∈ [d].

If xi ∈ {ei1, . . . , eik−1}, then the corresponding one-hot-
encoded version 1xi

is itself one of the centroids in Ci,
and thus it is its own closest centroid. Otherwise, the
closest centroid to 1xi is µik, because

∥∥1xi − µik
∥∥2
< 2,

and
∥∥1xi − µij

∥∥2
= 2 for every j ∈ [k − 1].

Let µi(xi) ∈ Ci denote the closest centroid inCi to 1xi .
The closest grid point to 1x is completely determined:
g = (µ1(x1), · · · ,µd(xd)). Furthermore, let i ∈ [d]
denote the smallest index such that xi is heavy. Then,
we can write g as

g = (µ1
k, · · · ,µi−1

k ,1xi ,µ
i+1(xi+1), · · · ,µd(xd))

(30)

Note that once xi is fixed, due to the FD-chain the
entire suffix (1xi ,µ

i+1(xi+1), · · · ,µd(xd) of g is deter-
mined. Hence, the number of different gs can only be
at most d(k− 1) + 1: there are d+ 1 choices for i (from
0 to d), and k − 1 choices for xi if i > 0.

Theorem 4.2 follows trivially from the above lemma,
because the `22-distance is the sum over the `22-distances
of the subspaces.

C.3 Analysis of Step 4 of Rk-means

Here we discuss the optimization and acceleration of
Step 4 of the Rk-means implementation as described in
Section 4. Recall that the categorical subspace k-means
problem is solved trivially using Theorem 4.1, where
we sort all the weights, and the heaviest k− 1 elements
form their own centroid, while the remaining vectors
are clustered together (the “light cluster”).

If Sj is a categorical subspace corresponding to a cat-
egorical variable K where Dom(K) = {e1, . . . , eL}.
Without loss of generality, assume w(1e1) ≥ · · · ≥
w(1eL), then the centroid of the light cluster is an
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L-dimensional vector c = (se)e∈Dom(K)

sei :=

{
0 i ∈ [k − 1]

w(1ei
)∑L

j=k w(1ej
)

i ≥ k (31)

This encoding is sound and space-inefficient.

Remember also that Step 4 clusters the coreset G using
a modified version of Lloyd’s weighted k-means that
exploits the structure of G and sparse representation
of categorical values. We show how to improve the dis-
tance computation ‖cj − µj‖2 for sub-space Sj , where
cj and µj are the j-th components of a grid point and
respectively of a centroid for G. Since this subspace
corresponds to a categorical variable K with, say, Lj
categories, it is mapped into Lj sub-dimensions. Let
cj = [s1, . . . , sLj

] and µj = (t1, . . . , tLj
). Using the ex-

plicit one-hot encoding of its categories, we would need
O(Lj) time to compute ‖cj − µj‖2 =

∑
`∈[Lj ](s`− t`)2.

We can instead achieve O(1) time as shown next. There
are k distinct values for cj by our coreset construction,
each represented by a vector of size Lj with one non-
zero entry for k − 1 of them and Lj − k + 1 non-zero
entries for one of them.

If cj = 1e is an indicator vector for some element e ∈ K
(e is one of the k − 1 heavy categories), then

‖cj − µj‖2 = ‖1e − µj‖2 = 1− 2te + ‖µj‖2 . (32)

If cj is a light cluster centroid,

‖cj − µj‖2 = ‖cj‖2 + ‖µj‖2 − 2 〈cj ,µj〉 . (33)

In (32), by pre-computing ‖µj‖2 we only spend O(1)-
time per heavy element e. In (33), by also pre-
computing ‖cj‖2 and 〈cj ,µj〉, and by noticing that
cj is (Lj − k + 1)-sparse, we spend O(Lj − k)-time
here. Overall, we spend time O(Lj) for computing
‖cj − µj‖2 per categorical dimension, modulo the pre-
computation time.

Step 4 thus requires O(|G|mk +
∑
j∈[m] Ljk) =

O(|G|mk + Dkm) per iteration, whereas a generic
approach would take time O(

∑
j∈[m] |G|kLj) =

O(|G|Dkm). Our modified weighted k-means algo-
rithm thus saves a factor proportional to the total
domain sizes of the categorical variables, which may
be as large as D.

C.4 Theorem 4.3

Proof of Theorem 4.3. Let N denote the maximum
number of tuples in any input relation of the FEQ,
|X| the number of tuples in the data matrix, fhtw the
fractional hypertree width of the FEQ t the number of
iterations of Lloyd’s algorithm, d denote the number

of features pre-one-hot encoding, r number of input
relations to the FEQ, D the real dimensionality of the
problem after one-hot-encoding.

We analyze the time complexity for each of the four
steps of the Rk-means algorithm.

Step 1 projects X into each subspace Sj and compute
the total weight of each projected point:

∀j ∈ [d] : wj(xSj
) :=

∑
x[d]\{Sj}

∏
F∈E

RF (xF ) (34)

Each of the d FAQs (34) in Step 1 can be computed in
time Õ(rd2N fhtw) using InsideOut, as we have reviewed
in Section A.

In Step 2, the optimal clustering in each dimension
takes time Õ(Lj) for each categorical variable j (whose
domain size is Lj , and O(kN2) for each continuous
variable, with an overall runtime of O(kdN2).

Step 3 constructs G, whose size is bounded by |X|
and by the FD result of Theorem 4.2. In practice,
this number can be much smaller since we skip the
data points whose weights are zero. To perform this
step we construct a tree decomposition of FEQ with
with equal fhtw (this step is data-independent, only
dependent on the size of FEQ). Then, from each value
xj of an input variable Xj , we determine its centroid
c(xj) which was computed in step 2. By conditioning
on combinations of (c1, . . . , cj), we can compute wgrid

one for each combiation in Õ(dN fhtw)-time, for a total
run time of Õ(rd|G|N fhtw).

Step 4 – as analyzed in Section C.3 – clusters G in
time O((|G|+D)kmt), where t is the number of itera-
tions of k-means used in Step 4. The most expensive
computation is due to the one-dimensional clustering
for the continuous variables and the computation of
the coreset.

To compare the total runtime with |X|, we only need
to note that |X| can be as large as Nρ∗ , where ρ∗
is the fractional edge covering number of the FEQ’s
hypergraph Ngo (2018). Depending on the query, ρ∗ is
always at least 1, and can be as large as the number
of features d. Furthermore, there are classes of queries
where fhtw is bounded by a constant, yet ρ∗ is un-
bounded Marx (2013). This means, for classes of FEQs
where ρ∗ > max{fhtw, 2} the ratio between |X| and Rk-
means’s runtime will be Õmega(Nρ∗−max{fhtw,2}/t),
which is unbounded.

For reference, we compare the asymptotic runtime of
Rk-means to the standard implementation of Lloyd’s
algorithm. The standard implementation contains two
steps: (1) compute the one-hot-encoded data matrix
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X, and (2) run Lloyd’s algorithm on X. The first
step, materializingX, takes time Õ(rd2N fhtw +D|X|).
The second step, running Lloyd algorithm, takes time
Õ(tkD|X|), as is well known. Thus, the standard
approach takes time Õ(rd2N fhtw + tkD|X|).

D Missing details from Section 5

We provide a more detailed description of the three
datasets introduced in Section 5.

Retailer has five relations: Inventory stores the number
of inventory units for each date, location, and stock
keeping unit (sku); Location keeps for each store: its
zipcode, the distance to the closest competitors, and
the type of the store; Census provides 14 attributes
that describe the demographics of a given zipcode,
including population size or average household income;
Weather stores statistics about the weather condition
for each date and store, including the temperature
and whether it rained; Items keeps track of the price,
category, subcategory, and category cluster of each sku.

Favorita has six relations: Sales stores the number of
units sold for items for a given date and store, and an
indicator whether or not the unit was on promotion
at this time; Items provides additional information
about the skus, such as the item class and price; Stores
keeps additional information on stores, like the city
they are located it; Transactions stores the number of
transaction for each date and store; Oil provides the
oil price for each date; and Holiday indicates whether
a given day is a holiday. The original dataset gave the
units_sold attribute with a precision of three decimals
places. This resulted in a very many distinct values
for this attribute, which has a significant impact on
the Step 2 of the Rk-means algorithm. We decreased
the precision for this attribute to two decimal places,
which decreases the number of distinct values by a
factor of four. This modification has no effect on the
final clusters or their accuracy.

Yelp has five relations: Review gives the review rating
that a user gave to a business and the date of the
review; User provides information about the users, in-
cluding how many reviews the made, when they join,
and how many fans they have; Business provides infor-
mation about the businesses that are reviewed, such
as their location and average rating; Category provide
information about the categories, i.e. Restaurant, and
respectively attributes of the business, Attributes is
an aggregated relation, which stores the number of
attributes (i.e., open late) that have been assigned to a
business. A business can be categorized in many ways,
which is the main reason why the size of the join is
significantly larger than the underlying relations.
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