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Abstract

M -estimators are ubiquitous in machine learn-
ing and statistical learning theory. They are
used both for defining prediction strategies
and for evaluating their precision. In this
paper, we propose the first non-asymptotic
“any-time” deviation bounds for general M -
estimators, where “any-time” means that the
bound holds with a prescribed probability for
every sample size. These bounds are non-
asymptotic versions of the law of iterated log-
arithm. They are established under general
assumptions such as Lipschitz continuity of
the loss function and (local) curvature of the
population risk. These conditions are satisfied
for most examples used in machine learning,
including those ensuring robustness to out-
liers and to heavy-tailed distributions. As an
example of application, we consider the prob-
lem of best arm identification in a stochastic
multi-armed bandit setting. We show that
the established bound can be converted into
a new algorithm, with provably optimal the-
oretical guarantees. Numerical experiments
illustrating the validity of the algorithm are
reported.

1 Introduction

Perhaps the most fundamental theorems in statistics
are the law of large numbers (LLN) and the central
limit theorem (CLT). Morally, they state that a sample
average converges almost surely or in probability to
the population average, and if one zooms in by multi-
plying by a square root factor, a much weaker form of
stochastic convergence still holds, namely, convergence
in distribution towards a Gaussian law. A fine interme-
diate result shows what happens in between the two
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scales: the law of iterated logarithm (LIL). By zooming
in slightly less than in the CLT, i.e., by rescaling the
sample average with a slightly smaller factor than in
the CLT, it is possible to gain a guarantee for infinitely
many sample sizes, almost surely. In practice, however,
the LIL has limited applicability, since it does not spec-
ify for which sample sizes the guarantee holds. The
goals of the present work are to lift this limitation, by
proving a LIL valid for every sample size, and holding
for general M -estimators, rather than for the sample
mean only.

The precise statement of the LIL, discovered by Khint-
chine (1924); Kolmogoroff (1929) almost a century ago,
is as follows: for a sequence of i.i.d. random variables
{Yi}i∈N with mean θ and variance σ2 <∞, the sample
averages Ȳn = (Y1 + . . .+ Yn)/n satisfy the relations

lim inf
n→∞

√
n (Ȳn − θ)
σ
√

2 ln lnn
= −1,

lim sup
n→∞

√
n (Ȳn − θ)
σ
√

2 ln lnn
= 1,

almost surely. This provides a guarantee on the de-
viations of the sample average as an estimator of the
mean θ since it yields that, with probability one, for
any constant c > 1, there exists an integer n0 ∈ N such
that |Ȳn − θ| ≤ cσ(2 ln lnn/n)1/2 for every n ≥ n0. As
compared to the deviation guarantees provided by the
central limit theorem, the one of the last sentence has
the advantage of being valid for any sample size large
enough. This advantage is gained at the expense of a
factor (ln lnn)1/2. Akin for the classic version of the
CLT, the applicability of the LIL is limited by the fact
that it is hard to get any workable expression of n0.

In the case of the CLT and its use in statistical learn-
ing, the drawback related to n0 was lifted by exploiting
concentration inequalities, such as the Hoeffding or
the Bernstein inequalities, that can be seen as non-
asymptotic versions of the CLT. For bounded ran-
dom variables, the aforementioned concentration in-
equalities imply that for a prescribed tolerance level
δ ∈ (0, 1), for every n ∈ N, the event1 An = {|Ȳn−θ| ≤

1Here C is a universal constant.
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C(ln(1/δ)/n)1/2} holds with probability at least 1 − δ.
Such a deviation bound is satisfactory in a batch set-
ting, when all the data are available in advance. In
contrast, when data points are observed sequentially,
as in online learning, or when the number of acquired
data points depends on the actual values of the data
points, the event of interest is ĀN = A1 ∩ . . . ∩ AN or
even a version of it in which N can be replaced by ∞.
One can use the union bound to ensure that ĀN has a
probability at least 1−Nδ but this is too crude. Fur-
thermore, replacing in An the confidence δ by δ/n2, we
get coverage 1−π2δ/6, valid for any sample size n, for an
interval of length O((lnn/n)1/2). This result, obtained
by a straightforward application of the union bound,
is sub-optimal. A remedy to such a sub-optimality—in
the form of a nonasymptotic version of the LIL—was
proposed by Jamieson et al. (2014) and further used
by Howard et al. (2018); Kaufmann and Koolen (2018);
Kaufmann et al. (2016). In addition, its relevance for
online learning was demonstrated by deriving guar-
antees for the best arm selection in a multi-armed
bandit setting. Note that these recent results apply
exclusively to the sample mean in the one-dimensional
setting; there is no equivalent of these bounds for other
types of (possibly multivariate) estimators.

In this work, we establish a non-asymptotic LIL in
a general setting encompassing many estimators, far
beyond the sample mean. More precisely, we focus on
the class of (penalized) M -estimators comprising the
sample mean but also the sample median, the quan-
tiles, the least-squares estimator, etc. Of particular
interest to us are estimators that are robust to outliers
and/or to heavy-tailed distributions. This is the case
of the median, the quantiles, the Huber estimator, etc.
(Huber, 1964; Huber and Ronchetti, 2009). It is well
known that under mild assumptions, M -estimators are
both consistent and asymptotically normal, i.e., suit-
ably adapted versions of the LLN and the CLT apply
to them (Collins, 1977; Portnoy, 1984; van der Vaart,
1998). Moreover, some versions of the LIL were also
shown for M -estimators (Arcones, 1994; He and Wang,
1995). They suffer, however, from the same limitations
as those explained above for the standard LIL. Our con-
tributions allow to circumvent these limitations by pro-
viding a general non-asymptotic LIL for M -estimators
both in one dimensional and in multivariate cases.

We apply the developed methodology to the problem
of multi-armed bandits when the rewards are heavy-
tailed or contaminated by outliers. In such a context,
Altschuler et al. (2018) tackled the problem of best
median arm identification; this corresponds to replacing
the average regret by the median regret. The relevance
of this approach relies on the fact that even a small
number of contaminated samples obtained from each

arm may make the corresponding means arbitrarily
large. In that setup, would it be possible to improve
the upper bounds on the sample complexity of their
algorithm—similarly to Jamieson et al. (2014)—by
using some finite-sample any-time version of the LIL
for empirical medians or, more generally, for robust
estimators? Our main results yield a positive answer
to this question and establish rate-optimality of the
proposed algorithm.

The rest of the paper is organized as follows. The
next section contains the statement of the LIL in a
univariate setting and provides some examples satis-
fying the required conditions. A multivariate version
of the LIL for penalized M -estimators is presented in
Section 3.3. An application to online learning is car-
ried out in Section 4.2, while a summary of the main
contributions and some future directions of research
are outlined in Section 6. Detailed proofs are deferred
to the supplementary material.

2 Uniform law of iterated logarithm
for univariate M-estimators

In this section, we focus on the case of univariate M -
estimators. This is a vast family that contains the
sample mean, the sample median and many other es-
timators. The relevance of M -estimators in contami-
nated models has been highlighted by several studies
(see Huber (1964); Maronna (1976) as well as the recent
work Loh (2017) and references therein).

2.1 Assumptions and main result

The precise setting considered in this section is the
following. Random variables Y, Y1, Y2, Y3, . . . are inde-
pendently drawn from a probability distribution PY
on some space Y. Let φ : Y ×Θ→ R be a given loss
function, where Θ is an open interval in R. Through-
out this work, we make the tacit assumption that the
random variable φ(Y, θ) has a finite expectation for all
θ ∈ Θ. The population and the empirical risks are then
defined, respectively, by the formulas

Φ(θ) = E [φ(Y, θ) ] , Φ̂n(θ) =
1

n

n∑
i=1

φ(Yi, θ),

where n ≥ 1 is an integer. We denote by θ∗ a minimizer
of Φ on Θ, and by θ̂n a minimizer of Φ̂n on Θ.

Assumption 2.1. The function φ(Y, ·) is convex PY -
almost surely and φ(Y, θ) → ∞ as θ approaches the
boundary of Θ, PY -almost surely (we say that the func-
tion φ(Y, ·) is convex and coercive).

Assumption 2.1 requires from the loss φ to be approx-
imately U-shaped and guarantees that θ∗ and θ̂n are
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well defined. To show that θ̂n converges fast enough
(with high probability) to θ∗, we will impose a local
positive-curvature assumption on the population risk.

Assumption 2.2. There exist two positive constants
r and α such that for all θ ∈ Θ with |θ − θ∗| ≤ r,
Φ(θ) ≥ Φ(θ∗) + (α/2)(θ − θ∗)2.

It is worth emphasizing here that this “local positive-
curvature” assumption needs to hold for the popula-
tion risk only. Clearly, a sufficient condition for As-
sumption 2.2 to hold is that Φ is strongly convex in a
neighborhood of θ∗. Finally, to be able to obtain non-
asymptotic guarantees that take the form of anytime
Gaussian concentration, we require from the process
θ 7→ φ(Y − θ) to be smooth and to have sub-Gaussian
tails.

Assumption 2.3. There exists a positive constant σ
such that the random variables φ(Y, θ) − φ(Y, θ∗) are
σ2(θ − θ∗)2-sub-Gaussian2 for all θ ∈ Θ.

One checks that Assumption 2.3 is fulfilled if φ(Y, ·)
is η-Lipschitz with a sub-Gaussian variable η. We
stress that the function φ is not assumed differentiable
and, more importantly, that Y is not necessarily sub-
Gaussian. We are now ready to state our first theorem
on the uniform concentration of M -estimators.

Theorem 1. Let Assumptions 2.1 to 2.3 hold. For
any δ ∈ (0, 1), set

tLIL
n,δ :=

3.3σ

α

√
1.1 ln lnn+ ln(15/δ) + 2.6

n
.

Let n0 = n0(α, r, δ) be the smallest integer n ≥ 12 for
which tLIL

n,δ ≤ r. Then,

P
(
∀n ≥ n0, |θ̂n − θ∗| ≤ tLIL

n,δ

)
≥ 1− δ. (1)

While the complete proof of Theorem 1 is postponed
to the supplementary material, let us make a quick
comment. In our proof, we show that it is enough to
establish any-time concentration inequalities for sums
of sub-Gaussian random variables. For partial sums of a
sequence of sub-Gaussian random variables, sharp any-
time concentration inequalities were recently proved in
Howard et al. (2018); Jamieson et al. (2014); Maillard
(2019). However, these bounds do not apply in our case,
since the terms in the sums arising in our proof change
with the size of the sum. In other words, our sums are
not partial sums of a given sequence of sub-Gaussian
random variables.

2See, e.g., Koltchinskii (2011, Section 3.1) for a definition
of centered sub-Gaussian random variables and their prop-
erties. We recall that a random variable is sub-Gaussian if
its centered version is sub-Gaussian.

The setting described in the beginning of this section
might seem disconnected from any application, since
it builds on an infinite set of independent random
variables. However, the validity of the bound for an
infinity of values of the sample size n makes it suitable
for using in situations where the sample size is random
and data-dependent. More precisely, the last theorem
implies that for any δ ∈ (0, 1) and for any random
variable N taking values in the set of natural numbers
N, we have, with probability larger than 1− δ,

|θ̂N − θ∗| ≤
3.3σ

α

√
1.1 ln lnN + ln(15/δ) + 2.6

N

For instance, if we assume that the acquisition of each
data point y has a cost ψ(y), the number N might
be given by N = max{n : ψ(Y1) + . . . + ψ(Yn) ≤ B},
where B is a given available budget.

2.2 Examples

We now present three common examples for which all
the assumptions presented above are satisfied. In all
these examples, Y = Θ = R.

Mean estimation Let φ(x, θ) = (x − θ)2. Assume
that Y is s2-sub-Gaussian. Then, one can check that
Assumptions 2.1 to 2.3 are all satisfied with r = +∞,
α = 2 and σ = 2s. For an in-depth analysis of this
particular case we refer to (Howard et al., 2018).

Median and quantile estimation Let φ(x, θ) =
|x− θ| − |x|. Assume that Y has a unique median θ∗

and that its cumulative distribution function F satisfies
|F (θ)− 1/2| ≥ (α/2)|θ − θ∗|, for all θ ∈ [θ∗ − r, θ∗ + r],
where α, r > 0 are fixed numbers. Then, θ∗ is the
unique minimizer of Φ and for all θ ∈ [θ∗ − r, θ∗ + r],
the increment Φ(θ)− Φ(θ∗) is equal to

2

∫ θ

θ∗
xdF (x)− (θ − θ∗) + 2

(
θF (θ)− θ∗F (θ∗)

)
(a)
= 2

∫ θ

θ∗
F (x) dx− (θ − θ∗),

where (a) is obtained by integration by parts. Hence,

Φ(θ)−Φ(θ∗) =
∫ θ
θ∗

(2F (x)− 1) dx ≥ α/2(θ− θ∗)2, yield-
ing Assumption 2.2. Moreover, since φ(Y, θ) is bounded
almost surely and 1-Lipschitz, for all θ ∈ R, Assump-
tion 2.3 is automatically true (with σ = 1).

The same arguments hold true if φ(x, θ) = τβ(x− θ)−
τβ(x), where τβ(x) = βx−x− with x− = min(x, 0) the
negative part. For this function φ, θ∗ is the β-quantile
of PY , for β ∈ (0, 1).

Huber’s M-estimators For c > 0, we define by
gc(x) = x2 if |x| ≤ c and gc(x) = c(2|x| − c) if |x| > c.
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Figure 1: Ratio tUB
n,δ′/t

LIL
n,δ for different sample sizes n

and confidence levels ν.

Let φ(x, θ) = gc(x− θ)− gc(x). This function gc being
2c-Lipschitz, Assumption 2.3 is satisfied with σ = 2c.
Assume that Y has a positive density f on R. Then,
it is easy to check that Φ is twice differentiable, with
Φ′′(θ) = 2 (F (θ + c)− F (θ − c) ) > 0, for all θ ∈ R,
where F is the cumulative distribution function of Y .
Hence, θ∗ is well-defined and unique, and if there exists
m > 0 such that f(x) ≥ m for x ∈ [θ∗−2c, θ∗+2c], then
Assumption 2.2 is satisfied with r = 2c and α = 4cm.

2.3 Comparison with union bound

Let Y1, . . . , Yn be i.i.d. random variables and let φ :
R×R −→ R be a loss such that assumptions of Theorem 1
are satisfied. Let θ̂n be the M -estimator associated
with the samples Y1, . . . , Yn and the loss φ. Using the
same trick we developed for the proof of Theorem 1
(see supplementary material) we obtain the following

tail bound : ∀n ≥ 1, P
(
|θ̂n − θ∗| > 2σ

α

√
2 ln(2/δ)/n

)
≤ δ.

Setting

tUB
n,δ :=

2σ

α

√
2 ln(2n1+ε/δ)

n
,

the union bound leads to

P
(
∀n ≥ 12 |θ̂n − θ∗| ≤ tUB

n,δ

)
≥ 1−

∞∑
n=12

δ

n1+ε
. (2)

Figure 1 shows the ratio of the sub-Gaussian upper
bound tUB

n,δ′ over the LIL upper bound tLIL
n,δ provided

by Theorem 1 for different levels of global confidence.
The parameters δ and δ′ are chosen to guarantee that
the right hand sides in both (1) and (2) are equal to
the prescribed confidence level 1 − ν. For tUB

n,δ′ , we
chose ε = 0.1, the results for other values of ε being
very similar. We observe that for most sample sizes n,
the LIL bound is tighter than the one obtained by the
union bound. In addition, the gap between the bounds
widens as the sample size grows.

3 Uniform LIL for M-estimators of a
multivariate parameter

We consider here the multivariate analog of the previous
problem. The goal is to predict a real-valued label using
a d-dimensional feature.

3.1 Assumptions and main result

We are given n independent label-feature pairs
(X1, Y1), . . . , (Xn, Yn), with labels Yi ∈ R and features
Xi ∈ Rd, drawn from a common probability distribu-
tion P. Let φn : R×R→ R be a given loss function and
ρn : Rd → R be a given penalty. We assume through-
out that the random variable φn(Y1,θ

>X1) has a finite
expectation, for every θ, with respect to the probability
distribution P.

For a sample (X1, Y1), . . . , (Xn, Yn), we define the pe-
nalized empirical and population risks

Φ̂n(θ) =
1

n

n∑
i=1

φn(Yi,θ
>Xi) + ρn(θ),

Φn(θ) = E
[
φn(Y1,θ

>X1)
]

+ ρn(θ).

Note that both the loss function φn and the penalty
ρn are allowed to depend on the sample size n. Since
our results are non-asymptotic, this dependence will
be reflected in the constants appearing in the law of
iterated logarithm stated below. We also define the pe-
nalized M -estimator θ̂n and its population counterpart
θ∗n by

θ̂n ∈ arg min
θ∈Rd

Φ̂n(θ) and θ∗n ∈ arg min
θ∈Rd

Φn(θ). (3)

Typical examples where such a formalism is applicable
are the maximum a posteriori approach and penalized
empirical risk minimization. Our goal is to establish a
tight non-asymptotic bound on the error of θ̂n, that is,
with high probability, valid for every n ∈ N.

The main result of this section is valid under the as-
sumptions listed below. We will present later on some
common examples in which all these assumptions are
satisfied.

Assumption 3.1. (Lipschitz loss) The function θ 7→
φn(y, θ) is Ln-Lipschitz, for every fixed y ∈ R.

Assumption 3.2. (Convex penalty) The function θ 7→
Φ̂n(θ) is convex almost surely.

Assumption 3.3. (Curvature of the population risk)
There exists a positive non-increasing sequence (αn)
such that, for any n ∈ N∗, for any w ∈ Rd, Φn(θ∗n +
w)− Φn(θ∗n) ≥ (αn/2)‖w‖22.

Assumption 3.4. (Boundedness of features) There
exists a positive constant B such that ‖X1‖2 ≤ B
almost surely.
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We will use the notation κn = Ln/αn and refer to this
quantity as the condition number. Note that all the
foregoing assumptions are common in statistical learn-
ing, see for instance Rakhlin et al. (2012); Sridharan
et al. (2009). They are helpful not only for proving
statistical guarantees but also for designing efficient
computational methods for approximating θ̂n.

Theorem 2. Let Assumptions 3.1 to 3.4 be satisfied
for every n ∈ N. Assume, in addition, that starting
from some integer n0 ≥ 6, the sequence κ2

n ln lnn/n is
decreasing. Define for any δ ∈ (0, 1), n ≥ n0,

tMVLIL
n,δ = 3.6κnB

√
ln lnn+ ln(50/δ) + 1√

n
.

Then, for any q ≥ 2 and δ ∈ (0, 1), it holds that

P
(
∀n ≥ n0, ‖θ̂n − θ∗n‖q ≤ tMVLIL

n,δ

)
≥ 1− δ.

3.2 Discussion

As an immediate consequence of Theorem 2 we get the
following result. Let N be a randomly chosen integer
that can depend on the infinite sequence {(Xi, Yi), i ∈
N∗} of random feature-label pairs drawn from P. We
observe only the first N elements of this sequence and
wish to make a prediction of the label Y at a point
x ∈ Rd. Assume that the best linear prediction is
of the form g(x>θ∗), where θ∗ is the minimizer of
the expected loss and g is a known, L-Lipschitz, link
function. Then, we can predict the label at x by
g(x>θ̂N ), where θ̂N is the empirical risk minimizer.
According to the last theorem, this predicted value
satisfies

|g(x>θ̂N )− g(x>θ)| ≤ L‖x‖2 t
MVLIL
N,δ ,

with probability at least 1− δ.

A bound for the case q ∈ [1, 2) can be obtained by
using the fact that the `q norm is upper bounded by
d(2−q)/(2q) times the `2 norm (Hölder’s inequality). The
resulting bound corresponds to the `2 bound multiplied
by this factor. Note this dependence on d is optimal,
even in batch setting.

As noted above, all the foregoing assumptions are com-
mon in statistical learning. For instance, if ρn(θ) =
λn‖θ‖22 is the ridge penalty (Hoerl and Kennard, 2000)
and φn is either the absolute deviation (φabs(y, y

′) =
|y − y′|, see for instance Wang et al. (2014)), the hinge
(φabs(y, y

′) = (1−yy′)+ with y ∈ [−1, 1]) or the logistic
(φlog(y, y

′) = ln(1 + e−yy
′
) with y ∈ [−1, 1]) loss, the

aforementioned assumptions are satisfied with Ln = 1
and αn = λn. One can also consider the usual squared
loss φ(y, y′) = (y − y′)2 under the additional assump-
tion that Y is bounded by a known constant By. Under

this condition, if the minimization problems in (3) are
constrained to the ball of radius R, Assumptions 3.1
and 3.3 are satisfied with αn = 1 and Ln = 2By +BR.
It should be noted that Assumption 3.3 is satisfied, for
instance, when Φn is strongly convex. Remarkably, as
opposed to some other papers (Hsu and Sabato, 2016;
Shalev-Shwartz et al., 2010), Theorem 2 requires this
assumption for the population risk only.

Assumption 3.4 can be replaced, with some extra work,
by sub-Gaussianity of ‖X‖2. The statement of this
extension and its proof can be found in Section 7.3.1.

3.3 Possible extensions

The conditions under which Theorem 2 holds can be
further relaxed. We have in mind the following two
extensions. First, the curvature condition can be re-
stricted to a neighborhood of θ∗n only, by letting Φn

grow linearly outside the neighborhood. Second, the
Lipschitz assumption on φn can be replaced by the
following one: for a constant β and a sub-Gaussian
random variable η, the function u 7→ φn(Y, u) − βu2

is η-Lipschitz. This last extension will allow us to
cover the case of squared loss without restriction to a
bounded domain. All these extensions are fairly easy
to implement, but they significantly increase the com-
plexity of the statement of the theorem. In this work,
we opted for sacrificing generality in order to get better
readability of the result.

Another interesting avenue for future research is the ex-
tension of the presented results to the high-dimensional
online setting, i.e., when the dimension might be larger
than the sample size. In the batch setting, an in-
depth analysis of M -estimators can be found in Ne-
gahban et al. (2012). It is also important in such a
high-dimensional setting to avoid the factor B in the
expression of tMVLIL

n,δ , since it might scale as
√
d.

Finally, we can consider a more general setting in which
the terms φ(Yi,θ

>Xi) are replaced by ψ(Zi, θ), where
Zi are i.i.d. random variables. The only change to
be made is in replacing Assumptions 3.1 and 3.4 by a
new assumption, that requires the function [ψ(Zi,θ)−
ψ(Zi,θ

′)] to be bounded by |V >i (θ − θ′)|, for all θ,
θ′, with a random vector Vi which has a bounded (or
sub-Gaussian) norm. This setting has the advantage
of being more general than the one adopted in Section
3. However, the relevant examples we have in mind at
correspond all to partial linear models.

4 Application to Bandits

In this section, we apply the univariate uniform law
of iterated logarithm established in Section 2 to the
multi-armed bandit problem. More precisely, we study
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the Best Arm Identification (BAI) problem in the fixed
confidence setting. It consists in identifying, for a given
confidence level and as fast as possible, which arm pro-
duces the highest expected outcome, (see Audibert
et al. (2010); Gabillon et al. (2012); Kaufmann et al.
(2016)). This means that we are able to collect data
by sampling from K unknown distributions P1, . . . ,PK
and our goal is to identify the distribution having the
largest expectation. Naturally, the same problem can
be formulated for finding the distribution with the
largest median, or the largest quantile of a given order.
In particular, such a formulation of the problem might
be of interest in cases where the expectations of the
outcomes of each arm may not be defined (rewards are
heavy-tailed) or are not meaningful (rewards are sub-
ject to some arbitrary contamination), see Altschuler
et al. (2018). We show in this section that theoretical
results of previous sections provide an extension of the
lil’UCB algorithm of Jamieson et al. (2014) to this
framework.

4.1 Robust Best Arm Identification (RBAI)

We consider a robust version of BAI, which we call
Robust BAI (RBAI). Suppose there are K arms, each
arm k ∈ [K] producing i.i.d. rewards

Y1,k, Y2,k, Y3,k, . . .
iid∼ Pk.

At each round n = 1, 2, . . ., the player chooses an
arm In ∈ [K] and receives the corresponding reward
YTIn (n−1),In , where Tk(n − 1) = 1(I1 = k) + . . . +
1(In−1 = k) is the number of times the arm k was
pulled during the rounds 1, . . . , n− 1.

For a given loss function φ : R× R→ R, convex with
respect to its second argument, we define

θk ∈ arg min
θ∈R

EPk [φ(Y, θ)].

From a statistical perspective, the problem under con-
sideration encompasses that of finding the maximum
point (by active learning) in a quantile regression prob-
lem (Chernozhukov, 2005). For instance, consider
the case of median regression. The aim is to maxi-
mize a function f : [0, 1] → R over a grid of points
x1, . . . , xK ∈ [0, 1], using noisy evaluations of f . At
each round n, we can choose one xk and observe the
value

Yn = f(xk) + ξn,

where {ξn} is a sequence of i.i.d. random variables
with median equal to zero. Clearly, this enters into the
framework described in the previous paragraph with
θk = f(xk) and each Pk is just a shifted-by-θk version
of the distribution of ξn.

We use the rewards of the k-th arm for estimating θk
by empirical risk minimisation: for every arm k ∈ [K]
and every sample size n ≥ 1, we let

θ̂k,n ∈ arg min
θ∈R

1

n

n∑
i=1

φ(Yi,k, θ).

With this notation, after n rounds, we are able to
compute the quantities θ̂k,Tk(n) for k ∈ [K]. These
quantities, combined with the confidence bounds fur-
nished by the LIL of Theorem 1, lead to M -estimator
lil’UCB algorithm described in Algorithm 13.

Algorithm 1 M-estimator lil’UCB.

Input ν, λ, γ > 0 and n0 ∈ N
1: Sample each arm n0 times
2: Set δ = ((

√
16ν + 9− 3)/16)2

3: for k in 1 : K do
4: Tk ← n0

5: Sample kth arm n0 times
6: Compute θ̂k,Tk

7: Set s(k)← θ̂k,Tk + γ
√

ln lnTk+ln(1/δ)
Tk

8: end for
9: n← Kn0

10: while (1 + λ) maxk∈[K] Tk < 1 + λn do
11: I ← arg maxk∈[K] s(k)
12: Sample arm I
13: Update TI ← TI + 1, n← n+ 1
14: Compute θ̂I,TI

15: Set s(I)← θ̂I,TI + γ
√

ln lnTI+ln(1/δ)
TI

16: end while
Output arg maxk∈[K] Tk

4.2 Main results

To state the theoretical results, let k∗ =
argmaxk∈[K] θk be the subscript corresponding to the
best arm. We assume k∗ to be unique, and we define,
for k 6= k∗, the sub-optimality gaps ∆k = θk∗ − θk. We
introduce the quantities

H1 =
∑
k 6=k∗

1

∆2
k

, H2 =
∑
k 6=k∗

ln
(
2 + ln+(1/∆2

k)
)

∆2
k

.

Those quantities play a key role in characterizing the
complexity of the BAI problem.

Theorem 3. Let θ 7→ φ(y, θ) be a convex function
for every y ∈ R and let the distributions Pk satisfy
Assumptions 2.2 and 2.3 with parameters α, σ > 0. For
any ν ∈ (0, 0.2) and β ∈ (0, 4.8), there exist positive
constants4 λ and C such that with probability at least

3λ, γ and n0 should be seen as tuning parameters for
which our theoretical results give some guidance.

4λ and C depend only on β and σ/α.
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1 − ν, Algorithm 1, used with parameters ν, λ, γ =
4.4(1 + β)σ/α and n0 ≥ 12, stops after at most

Kn0 + C
(
H1 ln(1/ν) + H2

)
steps and returns the best arm.

Note that (ln 2)H1 ≤ H2. Therefore, for a fixed confi-
dence level ν, the number of pulls provided by Theo-
rem 3 is O(H2). The next result shows that this order
of magnitude is optimal.

Theorem 4. Consider the RBAI framework with fixed
confidence δ ∈ (0, 1/2) described above and assume
K = 2. Let θ1, θ2 ∈ R be such that ∆ = |θ1 − θ2| > 0.
Let φ(y, θ) = φ0(|y − θ|) for some function φ0 and the
arm distributions be N (θ1, 1) and N (θ2, 1). Then, any
algorithm that finds after T rounds the best arm with
probability at least 1− δ, for all values of ∆ > 0, must
satisfy

lim sup
∆→0

E[T ]

∆−2 ln ln(∆−2)
≥ 2− 4δ.

Proofs of these two theorems are provided in the sup-
plementary material.

5 Numerical experiments

To illustrate the results of the previous section, we con-
ducted the following experiment. We chose the values
of θk’s according to the “α-model” from Jamieson et al.
(2014) with α = 0.3. It imposes an exponential decay
on the parameters, that is θk = 1−(k/K)

α
. Along with

these parameters, we consider three reward generating
processes:

• Gaussian rewards, where Yi,k
iid∼ N (θk, σ

2),

• Gaussian rewards subject to Cauchy contamina-

tion, where Yi,k
iid∼ (1−ε)N (θk, σ

2)+εCauchy(θk)
for ε = 5%,

• Student rewards, where Yi,k
iid∼ t2(θk) (i.e., Student

distribution with 2 degrees of freedom).

Note that all these processes are median centered at
θk’s. In the case of Gaussian and Student rewards,
they are also mean-centered at θk, while in the case of
contaminated Gaussian rewards the mean is not defined.
To test the robustness of the compared algorithms,
we tuned their parameters to fit the Gaussian reward
scenario.

In this set-up, we compared the original lil’UCB algo-
rithm from Jamieson et al. (2014)—see also Jamieson
and Nowak (2014) for a more comprehensive experimen-
tal evaluation—and the M -estimator lil’UCB described
in Algorithm 1, where θ̂k,n is the empirical median of
rewards from arm k up to time n. This corresponds

to the M -estimator associated with the absolute devia-
tion loss. This version of the M -estimator lil’UCB is
hereafter referred to as median lil’UCB or med-lil’UCB.

In order to conduct a fair comparison, we assigned the
same values to parameters shared by both procedures
and set the values as in Jamieson et al. (2014): β = 1,
λ = (1 + 2/β)2, σ = 0.5, ε = 0.01 and ν = 0.1. Note
that, as underlined in Jamieson et al. (2014), the choice
of λ does not fit their theoretical result. This choice
is justified by the fact that λ should theoretically be
proportional to (1+2/β)2 with a constant converging to
1 when the confidence approaches 0. For our algorithm
we chose γ = 2 and n0 = 20.

The results, for several values of K (the total number
of arms), obtained by 200 independent runs of each
algorithm in all the three settings, are summarized
in Figure 2 and in Table 1. Numbers reported in Ta-
ble 1 represent the proportion of times each algorithm
succeeded to find the best arm, while Figure 2 displays
the number of pulls for each algorithm. Table 1 shows
that lil’UCB performed poorly on the non-Gaussian
models. For contaminated Gaussian rewards, the per-
formance of lil’UCB deteriorates as the number of arms
grows, while it does not seem to be affected by the
number of arms in the case of Student rewards : it
identifies correctly the best arm for only around 60% of
the runs in this last case. In contrast, median lil’UCB
performs well in all the three scenarios, giving perfect
identification over all runs.

Table 1: Proportion of correct best arm identification
(over 200 runs per scenario/algorithm).

K Algorithm Gauss Contam. Student

2
lil’UCB 1.00 0.81 0.61
med-lil’UCB 1.00 1.00 1.00

4
lil’UCB 1.00 0.75 0.61
med-lil’UCB 1.00 1.00 1.00

8
lil’UCB 1.00 0.69 0.63
med-lil’UCB 1.00 1.00 1.00

16
lil’UCB 1.00 0.66 0.60
med-lil’UCB 1.00 1.00 1.00

32
lil’UCB 1.00 0.57 0.61
med-lil’UCB 1.00 1.00 1.00

64
lil’UCB 1.00 0.54 0.62
med-lil’UCB 1.00 1.00 1.00

128
lil’UCB 1.00 0.44 0.60
med-lil’UCB 1.00 1.00 1.00

The curves in Figure 2 represent the median number of
pulls over the 200 runs while the colored areas around
the curves are delimited by the 10% and 90% quantiles
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Figure 2: Total number of pulls done by the median lil’UCB and the lil’UCB algorithms for K ∈
{2, 4, 8, 16, 32, 64, 128}.
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Figure 3: Total number of pulls done by the median lil’UCB and the median UCB based on the union bound.

of the number of pulls over these 200 runs. We observe
that the spread of the number of pulls of lil’UCB is
large for non-Gaussian models, while the curves for me-
dian lil’UCB are almost identical in the three models
of rewards. The number of pulls for median lil’UCB
is higher than the number of pulls for lil’UCB in the
Gaussian and Student models. However, in the contam-
inated Gaussian model, lil’UCB might require more
pulls when the number of arms is large.

Moreover, we noticed that the performance of our
procedure is not sensitive to the level of contami-
nation : we conducted the same experiment with
ε ∈ {5, 10, 20, 40, 60} and in all cases our procedure is
100% successful in finding the best arm. Furthermore,
the number of pulls does not increase when ε increases.
In contrast, the performance of the original lil’UCB
procedure drops down to 35% of correct identification
when ε = 60% and there are 4 arms. Finally, we ob-
served that if we replace the LIL by the naive union
bound in our algorithm, the detection accuracy remains
the same, but the running time increases (between 10%
and 30%), see Figure 3.

These experiments illustrate the lack of robustness of

lil’UCB to heavy tailed rewards and the effective robust-
ness of median lil’UCB. Since this robustness comes
with a higher number of pulls, median lil’UCB should
be preferred to vanilla lil’UCB only if one suspects
non-Gaussian or heavy-tailed rewards.

6 Conclusion and further work

We have proved a nonasymptotic law of iterated loga-
rithm for general M -estimators both in univariate and
in multivariate settings. These results can be seen as
off-the-shelf deviation bounds that are uniform in the
sample size and, therefore, suitable for online learning
problems and problems in which the sample size may
depend on the observations. There are several avenues
for future work. For simplicity, in the multivariate
case, the population risk was assumed to be above an
elliptic paraboloid on the whole space. First in our
agenda is to replace this condition by a local curvature
one. A second interesting line of research is to establish
an any-time deviation bound for sequential estimators
such as the online gradient descent. It would also be of
interest to obtain “in-expectation” bounds of the same
type as those in (Shin et al., 2019).
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Supplementary material to “A nonasymptotic law of iterated log-
arithm for general M-estimators”

7 Proofs

This section contains the proofs of the theorems stated and discussed in the main body of the paper. Some
technical lemmas used in the proofs of this section are postponed to Section 8.

7.1 Notations

We begin by introducing notations we will use throughout the proofs. For any positive real number x, we define
dxe as the smallest integer greater than or equal to x. We denote by Sd−1 the d-dimensional unit Euclidean
sphere, i.e., Sd−1 = {v ∈ Rd : ‖v‖2 = 1}. The natural logarithm function (i.e., base e logarithm) is denoted by ln.
We write vectors and matrices in bold font, we use lower-case symbols for the former and upper-case symbols for
the latter. When we write Xi we mean the j-th column of the matrix X. We denote by ‖X‖F the Frobenius
norm of the matrix X, ‖X‖2F = Tr(XX>). For a vector v, ‖v‖∞ stands for maxj |vj |. For any integer K ∈ N, we
set [K] = {1, . . . ,K}.

7.2 Proof of Theorem 1

For any integer n ≥ 12, define the sequence

t(n) =
3.3σ

α
√
n

√
1.1 ln lnn+ ln(15/δ) + 2.6.

Note that it is a non-increasing sequence and converges to 0. Denote by n0 the smallest positive integer n ≥ 12
such that t(n) ≤ r. For k ≥ 1 and β = 1.1, let nk = dβnk−1e. To ease notation, we set tk = t(nk). We also define
the integer intervals Ik = [nk, nk+1) ∩ N. We wish to upper bound the probability of the event

A =

∞⋃
n=n0

An, where An =
{
θ̂n − θ∗ > t(n)

}
.

For n ≥ 1 and t ∈ (0, r], define the random variables

Sn(t) = n
(

Φ̂n(θ∗)− Φ(θ∗)
)
− n

(
Φ̂n(θ∗ + t)− Φ(θ∗ + t)

)
.

For any integers k ≥ 0, n ∈ Ik, the event An is included in the event Bn = {Sn(tk+1) ≥ (α/2)nkt
2
k+1}. Indeed, the

fact that the sequence (t(n)) is non-increasing, the convexity of the function Φ̂n (see Figure 4 for an illustration
of the second implication) and Assumption 2.2 yield, for integers k ≥ 0, n ∈ Ik,

θ̂n > θ∗ + t(n) =⇒ θ̂n > θ∗ + tk+1

=⇒ Φ̂n(θ∗) ≥ Φ̂n(θ∗ + tk+1)

=⇒ Sn(tk+1)/n ≥ Φ(θ∗ + tk+1)− Φ(θ∗)

=⇒ Sn(tk+1) ≥ α

2
nkt

2
k+1.

Combining the previous observation with a union bound yield

P

( ∞⋃
n=n0

An

)
≤
∞∑
k=0

P

( ⋃
n∈Ik

An

)
≤
∞∑
k=0

P

( ⋃
n∈Ik

Bn

)
.

Furthermore, letting xk = (α/2)nkt
2
k+1, we get, for any positive λ,

P

( ⋃
n∈Ik

Bn

)
≤ P

(
sup
n∈Ik

Sn(tk+1) ≥ xk
)
≤ P

(
sup
n∈Ik

exp {λSn(tk+1)} ≥ eλxk
)
.
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θ∗ θ∗ + t θ̂n

Φ̂n

Φ̂n(θ∗)

Φ̂n(θ∗ + t) Φ̂n(θ̂n)

θ

Figure 4: Illustration of the shape of the function Φ̂n.

The stochastic process (Sn(tk+1))n∈Ik is a discrete martingale. Hence, by Jensen’s inequality, for all λ > 0,
(exp(λSn(tk+1)))n∈Ik is a discrete submartingale. Therefore, Markov’s inequality followed by Doob’s maximal
inequality implies

P

( ⋃
n∈Ik

Bn

)
≤ e−λxkE

[
sup
n∈Ik

exp {λSn(tk+1)}
]
≤ e−λxkE

[
exp

{
λSnk+1

(tk+1)
}]
.

Since the random variable Snk+1
(tk+1) is the sum of nk+1 independent σ2t2k+1-sub-Gaussian random variables

(Assumption 2.3), we have a simple upper bound on the moment generating function of Snk+1
(tk+1) which yields

P

( ⋃
n∈Ik

Bn

)
≤ exp

{
−λxk + (λ2σ2/2)nk+1t

2
k+1

}
.

Choosing λ = xk/(σ
2nk+1t

2
k+1) and recalling that β = 1.1 (which ensures βnk/nk+1 ≥

√
0.88), we obtain

P

( ⋃
n∈Ik

Bn

)
≤ exp

{
− x2

k

2σ2nk+1t2k+1

}
≤ exp

{
−
α2n2

kt
2
k+1

8σ2nk+1

}
≤ exp

{
−

0.88α2nk+1t
2
k+1

8β2σ2

}
.

Replacing tk+1 by its expression,

t2k+1 =

(
3.3σ

α

)2
1.1 ln lnnk+1 + ln(15/δ) + 2.6

nk+1
,

and using the inequality lnnk+1 ≥ ln(βk+1n0) ≥ (k + 27) lnβ we arrive at

P

( ⋃
n∈Ik

Bn

)
≤ exp

{
−

0.88× 3.32 ×
(
1.1 ln lnnk+1 + ln(15/δ) + 2.6

)
8β2

}
≤ exp

{
−
(
1.1 ln(k + 27) + 1.1 ln lnβ + ln(15/δ) + 2.6

)}
≤ δ

15
exp {−1.1 ln(k + 27)} =

δ

15(k + 27)1.1
.

Finally, using the fact that

∞∑
k=0

1

(k + 27)1.1
≤
∫ ∞

26

x−1.1 dx =
26−0.1

0.1
≤ 7.5,

we get P
(
∃n ≥ n0, θ̂n > θ∗ + t(n)

)
≤ δ/2. Similarly, one obtains P

(
∃n ≥ n0, θ̂n < θ∗ − t(n)

)
≤ δ/2, and

Theorem 1 follows from a union bound combined with the two previous inequalities.

Remark 1. Several high probability uniform bounds on the sum of sub-Gaussian random variables have been
proved (see, e.g., Howard et al. (2018); Jamieson et al. (2014); Maillard (2019)). However, those bound do not
apply in our case since the elements of the sum change with the size of the sum.
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n0 β Cmult Cadd

1.1 3.35 5.4
6 1.05 3.3 6

1.01 3.3 7.6
1.1 3.3 5.3

12 1.05 3.1 6
1.01 3.1 7.6
1.1 3.25 5.3

20 1.05 3.1 6
1.01 3 7.6
1.1 3.2 5.3

50 1.05 3.1 6
1.01 2.9 7.6
1.1 3.2 5.3

80 1.05 3 6
1.01 2.9 7.5

Table 2: Effect of the choice of n0 and β on the constants in tLIL = Cmult
σ
α

√
1.1 ln lnn+ln(1/δ)+Cadd

n
.

7.3 Proof of Theorem 2

Let β = 1.1. Throughout the proof, we consider the sequence of integers {nk : k ∈ N} defined by nk+1 = dβnke
(recall that n0 ≥ 6). We also introduce the sequence of integer intervals Ik = [nk, nk+1) ∩ N and the sequence
(t(n))n∈N defined by

t(n) = (39/11)κnB

√
ln lnn+ ln(50/δ) + 1√

n
, for n ≥ 1.

To avoid double subscripts, we write t(nk) = tk for any integer k. We wish to upper bound the probability of the
event

Aq =

∞⋃
n=n0

Aqn, where Aqn =
{
‖θ∗n − θ̂n‖q > t(n)

}
.

Reduction to the case q = 2 Since for any real number q ≥ 2 and vector x ∈ Rd, ‖x‖q ≤ ‖x‖2, an upper
bound on the probability of A2 implies an upper bound on the probability pf Aq for any q ≥ 2. Therefore it is
sufficient to obtain an upper bound for the case q = 2. For simplicity we write A := A2 and An := A2

n from now
on.

For every w ∈ Rp, we define the random variables

Sn(w) = n
(

Φ̂n(θ∗n)− Φn(θ∗n)
)
− n

(
Φ̂n(θ∗n −w)− Φn(θ∗n −w)

)
, n ≥ 1.

The following result is a consequence of the convexity of Φ̂n.

Lemma 7.1. Under Assumptions 3.1 to 3.3, for any k ∈ N and n ∈ Ik, the event An is included in the event

Bn :=

{
sup

w∈tk+1Sd−1

[
Sn(w)− (αn/2)nt2k+1

]
≥ 0

}
.

Combining Lemma 7.1 with the union bound gives

P (A) ≤ P
( ⋃
k≥0

⋃
n∈Ik

Bn
)
≤
∑
k≥0

P
( ⋃
n∈Ik

Bn
)
.
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Let k be an integer. Since the sequence {αn}n is non-increasing we have, for any integer n ∈ Ik, αn ≥ αnk+1
.

Setting β = 1.1 we have nk/nk+1 ≥ 11/13 for n ≥ 6. Thus, for any positive real λ,

P
( ⋃
n∈Ik

Bn
)
≤ P

(
sup
n∈Ik

sup
w∈tk+1Sd−1

[
Sn(w)− αn

2
nkt

2
k+1

]
≥ 0

)
≤ P

(
sup
n∈Ik

sup
w∈tk+1Sd−1

[
Sn(w)−

11αnk+1

26
nk+1t

2
k+1

]
≥ 0

)
≤ P

(
sup
n∈Ik

sup
w∈tk+1Sd−1

exp

{
λ

(
Sn(w)−

11αnk+1

26
nk+1t

2
k+1

)}
≥ 1

)
.

The stochastic process
(

supw∈tk+1Sd−1 exp
{
λ
(
Sn(w)− 11αnk+1

nk+1t
2
k+1/26

)})
, n ∈ N∗, is a submartingale with

respect to its natural filtration. Therefore, Doob’s maximal inequality for submartingales yields,

P
( ⋃
n∈Ik

Bn
)
≤ inf
λ≥0

E

[
sup

w∈tk+1Sd−1

exp

{
λ

(
Snk+1

(w)−
11αnk+1

26
nk+1t

2
k+1

)}]
. (4)

The next lemma uses classic tools from empirical processes theory such as the symmetrization trick and the
contraction principle to bound the expectation from (4).

Lemma 7.2. Under Assumption 3.1, given a positive integer m and three positive real numbers t, α and λ,
letting t′ = (2mα/L)t, we have,

inf
λ≥0

E
[

sup
w∈tSd−1

exp
{
λ
(
Sm(w)− αmt2

)}]
≤ inf
λ≥0

E
[

sup
w∈t′Sd−1

exp
{
λ
(
w>Xε− (t′)2/2

)}]
,

where ε is a n-dimensional vector of i.i.d. Rademacher random variables independent of the matrix X ∈ Rd×n
whose columns are the observations vectors X1, . . . ,Xn.

Let us introduce the additional notation

sk+1 =
11nk+1

13κnk+1

tk+1.

Applying Lemma 7.2 with m = nk+1, α = 11αnk+1
/26 and t = tk+1 gives

P
( ⋃
n∈Ik

Bn
)
≤ inf
λ≥0

E

[
sup

w∈sk+1Sd−1

exp
{
λ(w>Xε− s2

k+1/2)
}]

= inf
λ≥0

E [exp {λsk+1‖Xε‖2}] e−λs
2
k+1/2. (5)

The last line follows from the simple identity ‖x‖2 = sup‖y‖2=1 y
>x valid for any vector x ∈ Rd. We now state a

lemma to bound the quantity Ee‖Xε‖2 for deterministic matrix X.

Lemma 7.3. Let X be a d× n deterministic matrix and ε be an n-dimensional vector with i.i.d. Rademacher
entries. Then the following inequality holds

Ee‖Xε‖2 ≤ 2e(3‖X‖F+‖X‖2F)/2.

Combining Lemma 7.3 and (5), we get

P
( ⋃
n∈Ik

Bn
)
≤ inf
λ≥0

E
[
eλ(‖Xε‖2−s2k+1/2)

]
≤ 2E exp

{
1

2
inf
λ≥0

[
(λsk+1)2‖X‖2F − (λsk+1)(sk+1 − 3‖X‖F)

]}
(6)

= 2E exp

{
1

2
inf
λ≥0

[
λ2‖X‖2F − λ(sk+1 − 3‖X‖F)

]}
.
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Choosing λ∗ = (sk+1 − 3‖X‖F)+/(2‖X‖2F) and upper bounding the infimum over all positive λ’s by the value at
λ∗, we arrive at the inequality

P
( ⋃
n∈Ik

Bn
)
≤ 2 exp

{
−1

8

( sk+1

‖X‖F
− 3
)2

+

}
≤ 2 exp

{
−1

8

( sk+1

B
√
nk+1

− 3
)2

+

}
.

In the last step above we have used the inequality ‖X‖F ≤
√
nk+1B. Replacing sk+1 and tk+1 by their expressions,

we get

1

8

( sk+1

B
√
nk+1

− 3
)2

+
=

1

8

( 11nk+1tk+1

13Bκnk+1

√
nk+1

− 3
)2

+

=
1

8

(11
√
nk+1tk+1

13Bκnk+1

− 3
)2

+

= (9/8)
(

ln lnnk+1 + ln(50/δ)
)
.

Using the inequality lnnk+1 ≥ ln(βk+1n0) ≥ (k + 19) lnβ we arrive at

P

( ⋃
n∈Ik

Bn

)
≤ exp

{
−(9/8)

(
ln(k + 19) + ln lnβ + ln(50/δ)

)}
≤ 0.21δ

(k + 19)9/8
.

Using the fact that

∞∑
k=0

1

(k + 19)9/8
≤
∫ ∞

18

x−9/8 dx = 8× 18−1/8 ≤ 5.58,

we get P
(
∃n ≥ n0, ‖θ̂n − θ∗n‖2 ≥ t(n)

)
≤ δ. To conclude, it suffices to note that tMVLIL

n,δ ≥ t(n) for every n ∈ N∗.

7.3.1 Extension to sub-Gaussian norm

The boundedness of the features (Assumption 3.4) can be relaxed to a sub-Gaussian assumption5 on the norm of
the features, stated as follows :

Assumption 7.1. ‖X1‖2 is σ-sub-Gaussian for some σ > 0 : Ee‖X1‖22/σ
2 ≤ 2.

We now restate Theorem 2 with this new assumption.

Theorem 5. Let Assumptions 3.1 to 3.3 and 7.1 be satisfied for every integer n ∈ N∗. Assume, in addition, that
starting from some integer n0 ≥ 1, the sequence κ2

n ln lnn/n is decreasing. Then, for any q ≥ 2 and δ ∈ (0, 1), there
exist positive absolute constants c, c′, c′′, such that

P

(
∀n ≥ n0, ‖θ̂n − θ∗n‖q ≤ cκnσ

√
ln lnn+ ln(c′/δ) + c′′√

n

)
≥ 1− δ.

Proof. In the proof we denote by c, c′, c′′... positive absolute constants, their values may change from one line
to another. We use the symbol . to mean ”less than or equal to, up to an absolute constant”. Under this
new assumption, the proof is exactly the same as for Theorem 2 up to (6). Let k be an integer. Applying
Cauchy-Schwarz inequality at this point yields

E
[

inf
λ>0

e2λ2‖X‖2F−λ(sk+1−3‖X‖F )

]
≤ inf
λ>0

e−λsk+1

[
Ee4λ2‖X‖2F

]1/2 [
Ee6λ‖X‖F

]1/2
For i = 1, . . . , nk+1, let zi := ‖Xi‖2 and define the random vector z := (z1, . . . , znk+1

). Note that we have
‖X‖F = ‖z‖2 and that the coordinates of the random vector z are independent σ-sub-Gaussian random variables.

5We refer the reader to Vershynin (2018, Section 2.5) for equivalent definitions and details on sub-Gaussian random
variables.
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In particular it implies that ‖z‖2 is a
√
nk+1σ-sub-Gaussian random variable. Indeed, Jensen’s inequality applied

to the concave map (x 7→ x1/nk+1) gives

Ee‖z‖
2
2/(
√
nk+1σ)2 ≤

(
E
nk+1∏
i=1

ez
2
i /σ

2

)1/nk+1

,

then the independence of the coordinates assumption allows us to switch the product and the expectation and
the resulting quantity is upper bounded by 2 thanks to the sub-Gaussian assumption on the coordinates.

Bounding the first expectation Vershynin (2018, Proposition 2.5.2 (iii)) gives a bound on the moment-
generating function of a squared sub-Gaussian random variable. Using the independence assumption to switch
the product and the expectatione before applying this proposition to each squared coordinate z2

i independently,
we get, for any |λ| . σ−1,

Ee2λ2‖z‖22 =

nk+1∏
i=1

(
Ee2λ2z2i

)nk+1

≤ ecnk+1σ
2λ2

.

where c is an absolute constant.

Bounding the second expectation The centering lemma (Vershynin, 2018, Lemma 2.6.8) states that if a
random variable is sub-Gaussian, then its centered version is sub-Gaussian with same sub-Gaussian variance proxy,
up to an absolute constant. Therefore the centered random variable ‖z‖2 − E‖z‖2 is a c

√
nk+1σ-sub-Gaussian

random variable with c an absolute constant. Applying Vershynin (2018, Proposition 2.5.2 (v)) to control the
moment-generating function of a centered sub-Gaussian random variable, we get

Ee6λ(‖z‖2−E‖z‖2) ≤ ecλ
2nk+1σ

2

(7)

Finally, Jensen’s inequality followed by a control on the L2 norm of a sub-Gaussian random variable (Vershynin,
2018, Proposition 2.5.2 (ii)) yield

E‖z‖2 ≤
√
nk+1

√
Ez2

1 .
√
nk+1σ. (8)

Combining (7) and (8), we get

Ee6λ‖z‖2 ≤ e6λE‖z‖2Ee6λ(‖z‖2−E‖z‖2) ≤ ecλ
2nk+1σ

2+c′λ
√
nk+1σ.

Combining the bounds on expectations

E
[

inf
λ>0

e2λ2‖X‖2F−λ(sk+1−3‖X‖F )

]
≤ inf

0<λ.σ−1
exp{cnk+1σ

2λ2 + c′λ
√
nk+1σ − λsk+1}.

The non-negative minimizer of the polynomial inside the exponential is given by λ∗ =
(sk+1−c′

√
nk+1σ)+

cnσ2 . It
satisfies the upper bound constraint (up to taking bigger constants) : since sk+1 is of order

√
nk+1σ, λ∗ is of

order (
√
nk+1σ)−1. This yields the following upper bound, valid for any integer k,

P

( ⋃
n∈Ik

Bn

)
≤ 2 exp

{
−
(

sk+1

c
√
nk+1σ

− c′
)2

+

}
.

Note that, replacing σ by B, it is the same upper bound we get in the bounded case, up to absolute constants.
Recalling that sk+1 = c nk+1

κnk+1
tk+1, we have

P

( ⋃
n∈Ik

Bn

)
≤ 2 exp

{
−
(
c

√
nk+1tk+1

σκnk+1

− c′
)2

+

}
.
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Letting

t(n) = cκnσ

√
ln lnn+ ln(c′/δ) + c′′

n
,

for some suitable absolute positive constants c, c′ and c′′, we get

P

( ⋃
n∈Ik

Bn

)
.

δ

(k + c′)γ
,

with γ > 1 an absolute constant. If the absolute constants are set suitably we finally obtain

P
(
∃n ≥ n0, ‖θ̂n − θ∗n‖2 ≥ t(n)

)
≤ δ.

7.4 Proof of Theorem 3

In this section, we provide the proof of the upper bound established for the proposed algorithm in the problem of
best arm identification for multi-armed bandit. We start with two technical lemmas, then we provide two other
lemmas that constitute the core technical part of the proof of Theorem 3. Finally, in Section 7.4.3, we put all the
pieces together and present the proof of the theorem.

7.4.1 Preliminary lemmas

We state and prove two elementary lemmas which we will need for the proof of Theorem 3.

Lemma 7.4. For t ≥ 2, c > 0 and 0 < ω ≤ 0.15, we have

1

t
ln

(
ln t

ω

)
≥ c =⇒ t ≤ 1

c
ln

(
2 ln(1/(2cω))

ω

)
.

Proof. Let f(t) = 1
t ln

(
ln t
ω

)
, defined for any t ≥ 2 and t∗ = 1

c ln
( 2 ln(1/(2cω))

ω

)
. It suffices to show that f(t∗) ≤ c.

Indeed, since the function f is decreasing, it implies that f(t) < c for any t > t∗ which is the contrapositive of
the claimed implication. Using the definition of f and t∗ we have,

f(t∗) ≤ c ⇐⇒ ln

(
ln(t∗)

ω

)
≤ t∗c

⇐⇒ t∗ ≤
1

(2cω)2

⇐⇒ ln

(
2 ln(1/(2cω))

ω

)
≤ 1

4cω2
.

The last inequality is clearly true since ln(x) ≤ x
2 on (0,∞) and this proves our claim.

Lemma 7.5. For t ≥ 2, s ≥ e, c ∈ (0, 1], 0 < ω ≤ δ ≤ e−e/2, we have,

1

t
ln

(
ln t

ω

)
≥ c

s
ln

(
ln s

δ

)
=⇒ t ≤ s

c

ln(2/ω) + ln ln(1/2cω)

ln(1/δ)
.

Proof. Lemma 7.4 immediately implies that

ct

s
≤ ln(2/ω) + ln [ln s+ ln(1/2cω)− ln ln(ln s/δ)]

ln(1/δ) + ln ln(s)
.
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Using the fact that ln ln(ln s/δ) ≥ 1 and the following fact

s ≥ e =⇒ ln s− 1 ≥ 0

=⇒ ln s− 1 ≤ e(ln s− 1)

=⇒ ln s− 1 ≤ (ln s− 1) ln(1/2cω)

=⇒ ln s+ ln(1/2cω)− 1 ≤ ln s ln(1/cω)

=⇒ ln s+ ln(1/2cω)− ln ln(ln s/δ) ≤ ln s ln(1/2cω),

we have

ct

s
≤ ln(2/ω) + ln ln(1/2cω) + ln ln s

ln(1/δ) + ln ln s
.

We conclude by applying the inequality a ≥ b, x > 0 =⇒ x+a
x+b ≤ a/b with a = ln(2/ω) + ln ln(1/2cω), b = ln(1/δ)

and x = ln ln s.

7.4.2 Main lemmas

Without loss of generality, we assume hereafter that the arms’ parameters are ranked in decreasing order:
θ1 ≥ θ2 ≥ . . . ≥ θK . We define the function

U(n, ω) =
4.4σ

α

√
1

n
ln

(
1 ∨ lnn

ω

)
, n ∈ N∗, ω ∈ (0, 1),

and the events

Ek(ω) =
{
∀n ≥ n0(ω) it holds that |θ̂k,n − θk| ≤ U(n, ω)

}
,

where n0(ω) is the smallest integer n ≥ 15 for which U(n, ω) ≤ r. According to Theorem 1, we have P
(
Ek(ω){

)
≤

15ω for every k ∈ [K], w ∈ (0, 0.001). The proof of Theorem 3 is essentially the combination of two lemmas.
The first lemma states that with high probability the number of times each sub-optimal arm is pulled is not too
large. The second lemma shows that the algorithm indeed stops at some time and returns the best arm with high
probability.

Lemma 7.6. Let β ∈ (0, 4.8), δ ∈ (0, 0.001) and κ = (2 + β)2(4.4σ/α)2. For every n ≥ 1, with probability at least
1− 16δ,

K∑
k=2

Tk(n) ≤ n0(δ)(K − 1) + 150κH1 ln(1/δ) +

K∑
k=2

κ
ln(2 max{1, ln(κ/(2∆2

kδ))})
∆2
k

Proof. The proof is carried out in two steps. In the first step, we upper bound the number of pulls on events for
which the rewards are well behaved. In the second step we resort to standard concentration arguments to show
that the events considered in the first step happen with high probability.

Step 1. Let k > 1, ω ∈ (0, 1) and E(n, k, δ, ω) = E1(δ)∩ Ek(ω)∩ {In = k}. Throughout this step, we assume that
E(n, k, δ, ω) holds true and that n ≥ Kn0(δ) (i.e., the warm-up stage is over). This yields

θk + U(Tk(n), ω) + (1 + β)U(Tk(n), δ) ≥ θ̂k,Tk(n) + (1 + β)U(Tk(n), δ) (Ek(ω) holds)

≥ θ̂1,T1(n) + (1 + β)U(T1(n), δ) (In = k)

≥ θ1. (E1(δ) holds)

Since the function U is decreasing in its second argument, we deduce from the last inequality that

∆k := θ1 − θk ≤ (2 + β) max
{
U(Tk(n), ω), U(Tk(n), δ)

}
≤ (2 + β)U

(
Tk(n),min(ω, δ)

)
.
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For κ = (2 + β)2(4.4σ/α)2 and c = ∆2
k/κ, Lemma 7.4 implies that

Tk(n) ≤ κ
∆2
k

ln

(
2 ln(κ/(2∆2

k min(ω,δ)))

min(ω, δ)

)
=

κ
∆2
k

ln

(
2

δ

)
+

κ
∆2
k

ln

(
ln(κ/2∆2

kδ) + ln(1/ω)− ln min(1/δ, 1/ω)

(1 + ln(1/ω)) min(1/δ, 1/ω)

)
+

κ
∆2
k

ln

(
1 + ln(1/ω)

ω

)
≤ κ

∆2
k

ln

(
2

δ

)
+

κ
∆2
k

ln

(
ln(κ/2∆2

kδ) + ln(1/ω)

1 + ln(1/ω)

)
+

κ
∆2
k

ln

(
1 + ln(1/ω)

ω

)
≤ τk +

κ
∆2
k

ln

(
1 + ln(1/ω)

ω

)
≤ τk +

2κ
∆2
k

ln (1/ω) .

with τk = κ
∆2
k

ln ((2/δ) max{1, ln(κ/2∆2
kδ)}). Since Tk(n) increases only when k is pulled, the above argument

shows that the following inequality is true for any time n ≥ 1 :

Tk(n)1{E1(δ) ∩ Ek(ω)} ≤ n0(δ) + τk +
2κ
∆2
k

ln (1/ω) . (9)

Indeed, let mn = max{m ≤ n : Im = k} be the last time the arm k is pulled among first n rounds. If mn > Kn0(δ)
then

Tk(n)1{E1(δ) ∩ Ek(ω)} = Tk(mn)1{E(mn, k, δ, ω)} ≤ τk +
2κ
∆2
k

ln(1/ω).

Otherwise, mn ≤ Kn0(δ), which means that the arm k has not been pulled after the warm-up stage. Therefore,

Tk(n)1{E1(δ) ∩ Ek(ω)} = Tk(Kn0)1{E1(δ) ∩ Ek(ω)} ≤ n0(δ) ≤ n0(δ) + τk +
2κ
∆2
k

ln (1/ω) .

Step 2. We define the random variable Ωk := max{ω ∈ [0, 0.001] : Ek(ω) holds true}. Theorem 1 guarantees
that it is well defined and that P(Ωk < ω) = P(Ek(ω) is wrong) ≤ cω with c = 15. Furthermore, one can rewrite
eq. (9) as

Tk(n)1{E1(δ)} ≤ n0(δ) + τk +
2κ
∆2
k

ln (1/Ωk) .

Therefore, for any x > 0,

P

(
K∑
k=2

Tk(n) > x+

K∑
k=2

(τk + n0(δ))

)
≤ P

(
E1(δ){

)
+ P

({
K∑
k=2

Tk(n) > x+

K∑
k=2

(τk + n0(δ))

}⋂
E1(δ)

)

≤ cδ + P

(
K∑
k=2

2κ
∆2
k

ln (1/Ωk) > x

)
.

Define the random variables Zk = 2κ
∆2
k

ln (1/Ωk), for k ∈ [K]\{1}. Observe that these are independent non-negative

random variables and since P(Ωk < ω) ≤ cω, it holds that

P(Zk > x) = P(Ωk < exp{−x∆2
k/(2κ)}) ≤ c exp(−x/ak),

with ak = 2κ/∆2
k for every x ≥ 3ak ln 10. Observing that

EZk =

∫ +∞

0

P (Zk > x) dx ≤ 3ak ln 10 + c

∫ +∞

3ak ln 10

e−x/ak dx ≤ 0.5cak
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and applying a basic concentration inequality for the sum of sub-exponential random variables (see Lemma 8.1),
we have,

P

(
K∑
k=2

(Zk − 0.5cak) > z

)
≤ P

(
K∑
k=2

(Zk − EZk) > z

)

≤ exp

(
−min

{
z2

8c‖a‖22
,

z

4‖a‖∞

})
≤ exp

(
−min

{
z2

8c‖a‖21
,

z

4‖a‖1

})
.

Putting everything together with z = 4c‖a‖1 ln(1/δ), x = z + 0.5c‖a‖1 one obtains, for n ≥ 1

P

(
K∑
k=2

Tk(n) >

K∑
k=2

(
10κc ln(1/δ)

∆2
k

+ τk + n0(δ)

))
≤ 16δ

and the claim of the lemma follows.

Lemma 7.7. Let β ∈ (0, 4.8), δ ∈ (0, 0.001) and cβ =
(

2+β
β

)2
. If

λ ≥ %

1− 15δ −
√
δ1/4 ln(1/δ)

, with % = cβ
ln (2 ln(cβ/2δ)/δ)

ln(1/δ)
,

then, for all k = 2, . . . ,K and n = 1, 2, . . . we have Tk(n) < n0(δ)+λ
∑
` 6=k T`(n) with probability at least 1−6

√
δ.

Proof. Let k > `. Assuming that Ek(ω) and E`(δ) hold true and that In = k, one has, for n ≥ Kn0(δ),

θk + U(Tk(n), ω) + (1 + β)U(Tk(n), δ) ≥ θ̂k,Tk(n) + (1 + β)U(Tk(n), δ)

≥ θ̂`,T`(n) + (1 + β)U(T`(n), δ)

≥ θ` + βU(T`(n), δ).

This implies (2 + β)U(Tk(n),min(ω, δ)) ≥ βU(T`(n), δ). Applying Lemma 7.5 with c = c−1
β one obtains that if

Ek(ω) and E`(δ) hold true and In = k then

Tk(n) ≤ cβ
ln (2 ln(cβ/2 min(ω,δ))/min(ω, δ))

ln(1/δ)
T`(n). (10)

Since Tk(n) only increases when k is played, then, for all n ≥ 1,

(Tk(n)− n0(δ))1 (Ek(ω) ∩ E`(δ)) ≤ cβ
ln (2 ln(cβ/2 min(ω,δ))/min(ω, δ))

ln(1/δ)
T`(n).

Using (10) with ω = δk−1 we see that

1{Ek(δk−1)} 1

k − 1

k−1∑
`=1

1{E`(δ)} > 1− α =⇒ (1− α)(Tk(n)− n0(δ)) ≤ %
∑
` 6=k

T`(n).

The above implication leads to the following inequalities

P
(
∃(k, n) ∈ {2, . . . ,K} × N∗ : (1− α)(Tk(n)− n0(δ)) ≥ %

∑
` 6=k

T`(n)

)

≤ P
(
∃k ∈ {2, . . . ,K} : 1{Ek(δk−1)} 1

k − 1

k−1∑
`=1

1{E`(δ)} ≤ 1− α
)

≤
K∑
k=2

P
(
Ek(δk−1){

)
+

K∑
k=2

P
(

1

k − 1

k−1∑
`=1

1 (E`(δ)) ≤ 1− cδ − (α− cδ)
)
.
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Since E1 (E`(δ)) ≥ 1− cδ with c = 15, using separately a union bound and Hoeffding’s inequality, we get

P
(

1

k − 1

k−1∑
`=1

1 (E`(δ)) ≤ 1− cδ − (α− cδ)
)
≤ min

(
c(k − 1)δ, exp(−2(k − 1)(α− cδ)2

)
.

Define R = e−2δ1/4 ln(1/δ) and j = dln{2δ3/4(1−R)}/ lnRe. One can check that

1−R = 1− e2δ1/4 ln δ ≥ 0.64δ1/4 ln(1/δ),

which leads to

j − 1 ≤ − ln{2δ3/4(1−R)}
2δ1/4 ln(1/δ)

≤ − ln{1.28δ ln(1/δ)}
2δ1/8 ln(1/δ)

≤ (1/2)δ−1/4.

Setting α = cδ +
√
δ1/4 ln(1/δ), we have

P
(
∃(k, n) ∈ {2, . . . ,K} × N∗ :

(
1− cδ −

√
δ1/4 ln(1/δ)

)(
Tk(n)− n0(δ)

)
≥ %

∑
` 6=k

T`(n)

)

≤
K∑
k=2

{
cδk−1 + min

(
c(k − 1)δ, e−2(k−1)δ1/4 ln(1/δ)

)}
≤ c δ

1− δ
+
cδ

2
j2 +

Rj

1−R
≤ 15.2δ + 7.5δj2 + 2δ3/4 ≤ 6

√
δ.

This completes the proof of the lemma.

7.4.3 Putting all lemmas together

Let ν be the confidence level from Theorem 3 and let δ satisfy the relation ν = 16δ + 6
√
δ. Note that this implies√

δ = (
√

16ν + 9− 3)/16, which is the value of δ given in Algorithm 1. On the one hand, Lemma 7.6 states that,
with probability at least 1− 16δ, the total number of times the suboptimal arms are sampled does not exceed
(K − 1)n0(δ) + κ (150H1 ln(1/δ) + H2) where κ = ((2 + β)4.4σ/α)2. On the other hand, Lemma 7.7 states that
with probability at least 1− 6

√
δ, if the parameter λ is large enough, only the optimal arm will meet the stopping

criterion and therefore, the number of pulls from the optimal arm is equal to n0(δ) + λ
∑
k≥2 Tk(n). Combining

those two lemmas, we have that with probability at least 1− 16δ − 6
√
δ, the optimal arm meets the stopping

criterion and the total number of pulls does not exceed (1 + λ)Kn0(δ) + (1 + λ)κ (150H1 ln(1/δ) + H2).

7.5 Proof of Theorem 4

Since φ0 is symmetric, the means of the two arms θ1 and θ2 coincide with the parameters of interest and so, the
gap ∆ coincides with the difference in means, i.e., ∆ = |θ1 − θ2|. Therefore, finding the best arm amounts to
finding the arm with the best mean and the result is equivalent to (Jamieson et al., 2014, Corollary 1), which in
turn is a consequence of the following result by Farrell (1964).

Theorem 6. (Farrell, 1964, Theorem 1) Let X1, X2, ... be i.i.d. Gaussian random variables with unknown mean
∆ 6= 0 and variance 1. Consider testing whether ∆ > 0 or ∆ < 0. Let Y ∈ {−1, 1} be the decision of any such
test based on T samples (possibly a random number) and let δ ∈ (0, 1/2). If sup∆ 6=0 P (Y 6= sign(∆)) ≤ δ, then

lim sup
∆−→0

Eδ[T ]

δ−2 ln ln ∆−2
≥ 2− 4δ.

8 Proofs of postponed lemmas

Proof of Lemma 7.1 Let k ≥ 1, n ∈ Ik and define

v∗n :=
θ∗n − θ̂n
‖θ∗n − θ̂n‖2

∈ Sd−1, θ̄n := θ∗n − tk+1v
∗
n and pn :=

tk+1

‖θ∗n − θ̂n‖2
.
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Simple algebra yields

θ̄n = pnθ̂n + (1− pn)θ∗n.

Furthermore, since the sequence (t(n)) is non-increasing on each interval Ik,

‖θ∗n − θ̂n‖2 > t(n) =⇒ pn ∈ (0, 1).

Therefore, on the event An, by convexity of Φ̂n,

inf
w∈tk+1Sd−1

Φ̂n(θ∗n −w) ≤ Φ̂n(θ̄n) ≤ (1− pn)Φ̂n(θ∗n) + pnΦ̂n(θ̂n) ≤ Φ̂n(θ∗n).

Finally, after a centering step, the curvature of the population risk yields the stated result.

Proof of Lemma 7.2 A modified version6 of the symmetrization inequality yields

E
[

sup
w∈tSd−1

exp
{
λ
(
Sm(w)− αmt2

)}]
≤ E

[
sup

w∈tSd−1

exp
{

2λ(S′m(w)− αmt2)
}]
,

where S′m(w) is the symmetrized version of Sm(w), defined by

S′m(w) =

m∑
i=1

εi
{
φ(Yi,X

>
i θ
∗)− φ(Yi,X

>
i (θ∗ −w))

}
.

We define the set R =
{
tX>v : v ∈ Sd−1

}
⊂ Rm and the functions ϕi : R→ R by

ϕi : r 7→
[
φ(Yi,X

>
i θ
∗)− φ(Yi,X

>
i θ
∗ − r)

]
/L, i = 1, . . . ,m.

These functions ϕi are contractions (Assumption 3.1) such that ϕi(0) = 0. The contraction principle (Koltchinskii,
2011, Theorem 2.2) gives

E
[

sup
w∈tSd−1

exp
{

2λ(S′m(w)− αmt2)
}]
≤ E

[
sup

w∈tSd−1

exp
{

2λ(Lw>Xε− αmt2)
}]
.

Setting t′ = (2mα/L)t and λ′ = (L
2
/mα)λ, we arrive at

E
[

sup
w∈tSd−1

exp
{

2λ(S′m(w)− αmt2)
}]
≤ E

[
sup

w∈t′Sd−1

exp
{
λ′(w>Xε− (t′)2/2)

}]
.

Finally, since the positive real numbers λ and λ′ are positively proportional, taking the infimum over all positive
λ is exactly the same as taking the infimum over all positive λ′.

Proof of Lemma 7.3 The following inequality is always true, Ee‖Xε‖2 ≤ e‖X‖FE
[
e(‖Xε‖2−‖X‖F )+

]
. Using the

fact that for a non-negative random variable η, Eη =
∫ +∞

0
P (η > t)dt, we have

E
[
e(‖Xε‖2−‖X‖F )+ − 1

]
=

∫ +∞

0

P
(
e(‖Xε‖2−‖X‖F )+ > t+ 1

)
dt

=

∫ +∞

0

P (‖Xε‖2 > ‖X‖F + ln(t+ 1)) dt

≤
∫ +∞

0

exp

(
−
(

ln(t+ 1)
)2

2‖X‖2F

)
dt.

6The version we use here can be found, for instance, in (Lecué and Rigollet, 2014, Eq. (2.3)).
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The last inequality follows from an application of the bounded difference inequality, see (Boucheron et al., 2013,
Theorem 6.2, Example 6.3) for more details. Using the change of variable u = ln(t+ 1) ⇐⇒ t = eu − 1, we get∫ +∞

0

exp

(
− (ln(t+ 1))2

2‖X‖2F

)
dt =

∫ +∞

0

exp

(
u− u2

2‖X‖2F

)
du

=

∫ +∞

0

exp

(
− 1

2‖X‖2F
(u− ‖X‖2F )2 +

‖X‖2F
2

)
du

≤
√

2π‖X‖F exp
(
‖X‖2F /2

)
FN (0,1)(‖X‖F ),

where FN (0,1) is the cdf of the standard normal distribution. Therefore,

Ee‖Xε‖2 ≤ e‖X‖F
(

1 +
√

2π‖X‖F exp
(
‖X‖2F /2

)
FN (0,1)(‖X‖F )

)
≤ exp

{
(‖X‖2F + 3‖X‖F )/2

}
sup
y≥0

(
e−(y+y2)/2 +

√
2π ye−y/2FN (0,1)(y)

)
≤ 1.86 exp

{
(‖X‖2F + 3‖X‖F )/2

}
.

This completes the proof of the lemma.

Bounding the sum of random variables with sub-exponential right tails

Lemma 8.1. Let X1, . . . , Xn be independent, non-negative, random variables such that there exist positive
constants c and a1, . . . , an satisfying

P (Xi > x) ≤ ce−x/ai , ∀x > 0, i = 1, . . . , n.

Then, for any real positive t,

P

(
n∑
i=1

(Xi − EXi) > t

)
≤ exp

(
−min

(
t2

8‖a‖22
,

t

4‖a‖∞

))
.

Proof Defining ψi(λ) := logEeλ(Xi−EXi), i = 1, . . . , n, Markov inequality and the independence hypothesis give

P

(
n∑
i=1

(Xi − EXi) > t

)
≤ inf
λ>0

e−λt
n∏
i=1

eψi(λ). (11)

Using the inequality lnu ≤ u− 1 valid for any positive real u, we have

ψi(λ) := lnEeλXi − λEXi ≤ E
[
eλXi − λXi − 1

]
.

Let φ(u) = eu − u− 1. The monotone convergence theorem guarantees that for any λ > 0,

Eφ(λXi) =
∑
p≥2

λp

p!
EXp

i .

Since the Xi’s are non-negative, we have, for any integer p ≥ 2 and for any index i = 1, . . . , n,

EXp
i =

∫ +∞

0

P
(
Xi > t1/p

)
dt ≤ cp

∫ +∞

0

tp−1e−
t/aidt = capi p!.

Therefore, for any λ ∈ (0, 1/2ai)

ψi(λ) ≤ Eφ(λXi) ≤ 2c(λai)
2. (12)

Plugging (12) into (11) yields

P

(
n∑
i=1

(Xi − EXi) > t

)
≤ inf
λ∈(0,1/2ai)

exp
(
2c‖a‖22λ2 − λt

)
.
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The minimum above is attained in

λ∗ = min

(
t

4c‖a‖22
,

1

2‖a‖∞

)
.

This yields the stated upper bound

P

(
n∑
i=1

(Xi − EXi) > t

)
≤ exp

(
−min

(
t2

8‖a‖22
,

t

4‖a‖∞

))
and the claim of the lemma follows.
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