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A Identifying Differences Between
Two Multivariate Distributions

Here we show how our regression approach can be used
to identify and visualize locally significant differences
between two multivariate distributions P0 and P1 de-
fined over a “feature space” X ; we denote samples from
the respective distributions by S0 and S1. In this ex-
ample, which is adapted from Kim et al. (2016), S0 and
S1 are both real observed data (galaxy images), but
in our LFI setting S0 would represent a sample from
the simulator or target likelihood L(x; θ) at a fixed pa-
rameter value θ, and S1 would represent a sample from
the emulator or approximate likelihood L̂(x; θ) (for the
same parameter value). The goal would then be to iden-
tify with statistical confidence the regions in X which
may be under- or over-represented in S1 (as compared
to S0). Our techniques can also be used to validate
and diagnose output from generative adversarial net-
works (GANs) and other so-called implicit generative
models Mohamed and Lakshminarayanan (2016); e.g.,
this type of analysis could be relevant for recent GAN
models of galaxy images (Ravanbakhsh et al., 2017)
and weak lensing convergence maps (Mustafa et al.,
2019).

Galaxy Morphology Example

Here we consider galaxies in the COSMOS, EGS,
GOODS-North and UDS fields from CANDELS pro-
gram (Grogin et al., 2011; Koekemoer et al., 2011).
The available data consist of seven morphology sum-
mary statistics from 2736 galaxies, together with their
star formation rates (SFR). We first sort the galaxies
according to their star formation rates, and we define
two populations — with “high” SFR (Y = 1) versus
“low” SFR (Y = 0) — by taking the top and bottom
25th quantiles, respectively. Figure 5 shows a random
subset of 12 galaxies from each sample.

To compare the two populations in distribution, we
use 65% of the data to train a random forests regres-
sion, and the remaining 35% for testing. For every test
point x (that is, for every galaxy images in the test
set), we compute the absolute difference |m̂(x) − π̂1|
between the estimated regression function and the pro-
portion of high-SFR galaxies in the training sample.
We then calculate whether the difference |m̂(x)− π̂1|
is statistically significant according to a permutation

Algorithm 4 Local Test in Feature Space

Input: i.i.d. training data from two populations

{Xi, Yi}ni=1; testing data {Xj}Jj=1; number of permutations

M ; significance level α; a regression method m̂

Output: p-values {pj}Mj=1 for testing signifi-

cance of difference |m̂(Xj) − π̂1| for every test

point

1: π̂1 = 1/n
∑n
i=1 Yi;

2: Train regression method m̂ on training data
{Xi, Yi}ni=1;

3: Calculate the test statistics on each of the test
points

ν̂(Xj) = (m̂(Xj)− π̂1)2;

4: for k in 1, ...,M do
5: Randomly permute Y1, ..., Yn and train regression

method on permuted data m̂(k);
6: Calculate the test statistics on the permuted

data {ν̂(k)(Xj) = (m̂(k)(Xj)− π̂1)2}Jj=1;
7: end for
8:

9: Approximate permutation p-values pj for every test
point Xj :

pj =
1

M + 1

M∑
k=1

(
1 + I(ν̂(k)(Xj) > ν̂(Xj))

)

10: Apply a multiple test procedure to control false
discovery rate;

11: return {pj}Jj=1

test with a false discovery rate correction at α = 0.05
via Benjamini-Hochberg’s method. The details of the
local test in feature space are outlined in Algorithm 4.

Figure 6 shows examples of galaxies associated with
the highest significant difference |m̂(x)− π̂1|; galaxies
that are more representative of one sample than the
other. In Figure 7 we visualize the test data via a
two-dimensional diffusion map (Coifman et al., 2005),
where we color the test points that occur in regions of
feature space where the local differences in the two dis-
tributions are statistically significant. The blue points
have m̂(x) > π̂1; these “high-SFR regions” are asso-
ciated with extended, disturbed galaxy morphologies.
The red points have m̂(x) < π̂1; these “low-SFR re-
gions” are associated with concentrated, undisturbed
morphologies. These results are consistent with what
astronomers would expect, and illustrate the utility of
the regression statistic |m̂(x)− π̂1| in describing differ-
ences of two samples in a potentially high-dimensional
feature space. For further details, see (Kim et al., 2016;
Freeman et al., 2017).
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(a) (b) 

Figure 5: Examples of galaxies from (a) the low-SFR sample S0 versus (b) the high-SFR sample S1.

Figure 6: Galaxies in the test set with the highest significant difference |m̂(x)− π̂1| according to our local test in
feature space, Algorithm 4. (a) Galaxies that are more representative of the low-SFR sample S0, and (b) galaxies more
representative of the high-SFR sample S1. The first group of galaxies presents undisturbed and concentrated morphologies,
while the latter galaxies appear more extended and/or disturbed. This is in line with what is expected by astronomers
when comparing actual low-SFR and high-SFR galaxies.

B Proofs for the Global Test

In this section we first provide sufficient assumptions
for Theorem 1 to hold. Corollary 1 then follows by
the fact that both Kolmogorov-Smirnoff and Cramér-
von Mises test statistic are statistically consistent (i.e.,
satisfy Assumptions 3 and 4).

Definition 1. Let S(DB,nsim
) be the test statistic for

the global test. Also, denote by S(UB) the test statistic

when UB = (U1, . . . , UB), with U1, . . . , UB
i.i.d.∼ U(0, 1).

Assumption 1. Let D =
{
θ : µL̂(·;θ) 6= µL·(θ)

}
,

where µL̂(·;θ) (µL(·;θ)) is the measure over X induced

by L(·; θ) (L̂(·; θ)). Assume that µr(D) > 0, where µr
is the measure over Θ induced by r(θ).

Assumption 2. Assume that if θ1 ∈ D, then the local

test is such that pnsim

θ1

P−−−−−−→
nsim−→∞

0. Moreover, if θ1 /∈ D,

then the local test is such that pnsim

θ1
∼ U(0, 1).

Assumption 3. For every 0 < α < 1, the test statistic

S is such that F−1
S(UB)(1− α)

B−→∞−−−−−→ 0.

Assumption 4. Under Assumptions 1 and 2, there
exists a > 0 such that the test statistic S satisfies

S(DB,nsim
)

P−−−−−−−−→
B,nsim−→∞

a.

Assumption 1 states that the set of parameter values
where the likelihood function is incorrectly estimated
has positive mass under the reference distribution. As-
sumption 2 states that the test chosen to perform the
local comparisons is statistically consistent and that its
p-value has uniform distribution under the null hypoth-
esis. Assumptions 3 and 4 state that the test statistic
for the global comparison in step 5 of Algorithm 2
is statistically consistent, i.e., (i) it approaches zero
under the null hypothesis when B increases, and (ii) it
converges to a positive number if the null hypothesis is
false. Under these four assumptions, we can guarantee
statistical consistency.

Lemma 1. Let F̂DB,nsim
be the empirical cumulative

distribution of the p-values in DB,nsim ,

KS(DB,nsim
) = sup

0≤z≤1
|F̂DB,nsim

(z)− z|,

be the Kolmogorov-Smirnoff test statistic and

CVM(DB,nsim
) =

∫ 1

0

(
F̂DB,nsim

(z)− z
)2

dz
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Figure 7: Results of two-sample testing of point-wise differences between high- and low-SFR galaxies in a seven-dimensional
morphology space. The red color indicates regions where the density of low-SFR galaxies are significantly higher, and the
blue color indicates regions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional
diffusion map. Figure adapted from Kim et al. (2018).

be the Cramér-von Mises test statistic. Both KS and
CVM satisfy Assumptions 3 and 4.

Proof of Lemma 1. Let U ∼ U(0, 1). From the law
of large numbers,

KS(UB) = sup
0≤z≤1

|F̂UB
(z)− z| a.s.−−−−−→

B−→∞

sup
0≤z≤1

|P(U ≤ z)− z| = 0,

which proves the first statement of the theorem. Simi-
larly, for every nsim ∈ N,

KS(DB,nsim
) = sup

0≤z≤1
|F̂DB,nsim

(z)− z| a.s.−−−−−→
B−→∞

sup
0≤z≤1

|P(pnsim

θ1
≤ z)− z|. (2)

Now, Under Assumption 2, for every θ1 ∈ D,

P(pnsim

θ1
≤ z|θ1)

nsim−→∞−−−−−−→ 1

uniformly over z ∈ (0, 1). Thus, under Assumption 1,
for every 0 < εz < 1 − z, there exists nsim ∈ N such

that, for every n′sim > nsim,

P(p
n′sim
θ1
≤ z) = P(p

n′sim
θ1
≤ z|θ1 ∈ D)P(θ1 ∈ D)+

P(p
n′sim
θ1
≤ z|θ1 /∈ D)P(θ1 /∈ D)

≥ (1− εz)P(θ1 ∈ D) + zP(θ1 /∈ D)

= (1− εz + z − z)P(θ1 ∈ D) + zP(θ1 /∈ D)

= (1− εz − z)P(θ1 ∈ D) + z (3)

It follows from Equations 2 and 3 and by taking εz =
(1− z)/2 that

sup
0≤z≤1

|P(p
n′sim
θ1
≤ z)− z| ≥ sup

0≤z≤1
(1− εz − z)P(θ1 ∈ D)

≥ P(θ1 ∈ D) sup
0≤z≤1

(1− z)
2

=
P(θ1 ∈ D)

2
,

and hence

lim
n′sim−→∞

sup
0≤z≤1

|P(p
n′sim
θ1
≤ z)− z| ≥ P(θ1 ∈ D)

2
> 0,

which concludes the proof for the KS statistic. The
proof for the CVM statistic is analogous.

Proof of Theorem 1. Assumption 2 implies that φS
is such that

φS(DB,nsim
) = 1 ⇐⇒ S(DB,nsim

) ≥ F−1
S(UB)(1− α).
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It follows that

P (φS(DB,nsim
) = 1)

= P
(
S(DB,nsim

)− F−1
S(UB)(1− α) ≥ 0

)
≥ P

(
|S(DB,nsim

)− a− F−1
S(UB)(1− α)| ≤ a

)
B,nsim−→∞−−−−−−−−→ 1,

where the last line follows from Assumptions 3 and
4.

Proof of Corollary 1. It follows directly from The-
orem 1 and Lemma 1.

C Proofs for Two-Sample Testing via
Regression

Lemma 2. Suppose that we have a regression estimate
satisfying

sup
m∈M

E
∫
S

(m̂(x)−m(x))
2
dPX(x) ≤ C0δn. (4)

We reject the null hypothesis when T̂ ′ ≥ tα where tα =
2 max{C0, 1/4}α−1δn. Then for any α, β ∈ (0, 1/2),
there exists a universal constant C1 such that

• Type I error: P0

(
T̂ ′ ≥ tα

)
≤ α and

• Type II error: sup
m∈M(C1δn)

P1

(
T̂ ′ < tα

)
≤ β

for a sufficiently large n.

Proof of Lemma 2. We start with analyzing the
type I error of the test.

• Type I Error Control

Under the null hypothesis, Markov’s inequality shows
that

P0

(
T̂ ′ ≥ tα

)
≤ E0[T̂ ′]

tα

≤ 2

tα
(E0

[∫
S

(m̂(x)− π1)
2
dPX(x)

]
+ E0

[
(π̂1 − π1)

2
]
)

≤ 2

tα

(
C0δn + π1(1− π1)n−1

)
≤ 2 max{C0, 1/4}δn

tα
= α.

Hence the result follows. Next, we control the type II
error.

• Type II Error Control

Based on the inequality (x−y)2 ≤ 2(x−z)2 +2(z−y)2,
we lower bound the test statistic as

T̂ ′ =
1

n

2n∑
i=n+1

(m̂(Xi)− π̂1)
2

≥ 1

2n

2n∑
i=n+1

(m(Xi)− π̂1)
2

− 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2

(5)

≥ 1

4n

2n∑
i=n+1

(m(Xi)− π1)
2 − 1

2
(π1 − π̂1)2

− 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2
. (6)

Define the events A1,A2,A3 such that

A1 =
{

(π1 − π̂1)2 < C2δn

}
,

A2 =
{ 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2
< C3δn

}
,

A3 =
{∣∣∣ 1
n

2n∑
i=n+1

(m(Xi)− π1)
2 − E

[
(m(X)− π1)2

] ∣∣∣
<

1

2
E
[
(m(X)− π1)2

] }
.

Using Markov’s inequality, we have

P (Ac1) ≤ π1(1− π1)

C2nδn
,

P (Ac2) ≤ 1

C3δn
E
[∫

S

(m̂(x)−m(x))2dPX(x)

]
≤ C0

C3
,

by the condition in (4). For the third event, denote
∆n = E

[
(m(X)− π1)2

]
and use Chebyshev’s inequal-

ity to have

P (Ac3) ≤ 4

n∆2
n

Var
(
(m(X)− π1)2

)
≤ 4

n∆2
n

E
[
(m(X)− π1)4

]
≤ 4

n∆2
n

E
[
(m(X)− π1)2

]
since |m(X)− π1| ≤ 1

≤ 4

C1nδn
,

where the last inequality uses the assumption that
∆n ≥ C1δn. Hence, we obtain

P ((A1 ∩ A2 ∩ A3)c) ≤ P (Ac1) + P (Ac2) + P (Ac3) < β,
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by choosing sufficiently large C1, C2, C3 > 0 with the
assumption that δn ≥ n−1. Using (6), the type II error
of the regression test is bounded by

P1(T̂ ′ < tα)

≤ P1

( 1

4n

2n∑
i=n+1

(m(Xi)− π1)
2 − 1

2
(π1 − π̂1)2

− 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2
< tα

)

≤ P1

( 1

4n

2n∑
i=n+1

(m(Xi)− π1)
2 − 1

2
(π1 − π̂1)2

− 1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2
< tα,A1 ∩ A2 ∩ A3

)
+ P1 ((A1 ∩ A2 ∩ A3)c)

≤ P1 (∆n < C4δn) + β,

where C4 can be chosen by C4 = 4C2 + 8C3 +
16 max{C0, 1/4}/α. Now by choosing C1 > C4 for
sufficiently large n, the type II error can be bounded
by an arbitrary β > 0. Hence the result follows.

Proof of Theorem 2. The exact type I error control
of the permutation test is well-known (see e.g. Chapter
15 of Lehmann and Romano, 2006). Hence we focus
on the type II error control.

Let η = (η1, . . . , ηn)> be a permutation of
{1, . . . , n}. Now conditioned on the data X2n =
{(X1, Y1), . . . , (X2n, Y2n)}, we denote the probability
and expectation over permutations by Pη[·] = Pη[·|X2n]
and Eη[·] = Eη[·|X2n] respectively. Then by Markov’s
inequality

Pη
(
T̂ ′ ≥ t∗α

)
= Pη

(
1

n

2n∑
i=n+1

(m̂η(Xi)− π̂1)
2 ≥ t∗α

)

≤ 1

t∗αn

2n∑
i=n+1

Eη
[
(m̂η(Xi)− π̂1)2

]
,

where m̂η(x) =
∑n
i=1 wi(x)Yηi . Since

∑n
i=1 wi(x) = 1

for any x ∈ S,

Eη [m̂η(x)] =

n∑
i=1

wi(x)Eη[Yηi ] =

n∑
i=1

wi(x)π̂1 = π̂1.

Further note that

Eη
[
(m̂η(x)− π̂1)2

]
=

n∑
i1=1

n∑
i2=1

wi1(x)wi2(x)Eη
[
(Yηi1 − π̂1)(Yηi2 − π̂1)

]
(7)

≤
n∑
i=1

w2
i (x)Eη

[
(Yηi − π̂1)2

]
= π̂1(1− π̂1)

n∑
i=1

w2
i (x) ≤ 1

4

n∑
i=1

w2
i (x),

where the first inequality uses
Eη
[
(Yηi1 − π̂1)(Yηi2 − π̂1)

]
≤ 0 when i1 6= i2.

Note that the permutation samples are not i.i.d. and
thus in order to use the condition in (4) which holds for
i.i.d. samples, we will associate the upper bound in (8)
with i.i.d. samples. To do so, let (Y ∗1 , . . . , Y

∗
n ) be i.i.d.

Bernoulli random variables with parameter p = 1/2
independent of {X1, . . . , X2n}. Then

EY ∗
[
(m̂(x)− 1/2)2|X1, . . . , X2n

]
= EY ∗

[( n∑
i=1

wi(x)Y ∗i − 1/2
)2∣∣X1, . . . , X2n

]

= EY ∗
[( n∑

i=1

wi(x)(Y ∗i − 1/2)
)2∣∣X1, . . . , X2n

]

=

n∑
i1=1

n∑
i2=1

wi1(x)wi2(x)EY ∗ [(Y ∗i1 − 1/2)(Y ∗i2 − 1/2)]

=
1

4

n∑
i=1

w2
i (x).

Therefore, we obtain

Eη
[
(m̂η(x)− π̂1)2

]
≤ EY ∗

[
(m̂(x)− 1/2)2|X1, . . . , X2n

]
which in turn implies that

Pη
(
T̂ ′ ≥ t∗α

)
≤

≤ 1

t∗αn

2n∑
i=n+1

EY ∗
[
(m̂(Xi)− 1/2)2|X1, . . . , X2n

]
.

So the critical value of the permutation distribution is
bounded by

t∗α ≤
1

αn

2n∑
i=n+1

EY ∗
[
(m̂(Xi)− 1/2)2|X1, . . . , X2n

]
.
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Next, define the event

A =

{
1

n

2n∑
i=n+1

EY ∗
[
(m̂(Xi)− 1/2)2|X1, . . . , X2n

]
≤ C ′2δn

}
. (8)

Now, because we assume that

sup
m∈M

E
∫
S

(m̂(x)−m(x))
2
dPX(x) ≤ C0δn, (9)

by Markov’s inequality it holds that

P (Ac)

≤ P
( 1

n

2n∑
i=n+1

EY ∗
[
(m̂(Xi)− 1/2)2|X1, . . . , X2n

]
> C ′2δn

)
≤ C0

C ′2
.

As a result, the type II error of the permutation test is
bounded by

P1

(
T̂ ′ < t∗α

)
≤ P1

(
T̂ ′ < t∗α,A

)
+ P1 (Ac)

≤ P1

(
T̂ ′ < C ′2

α
δn

)
+
C0

C ′2
.

Now we choose C ′2 sufficiently large so that

C0

C ′2
<
β

2
.

Next we follow the proof of Lemma 2 to show that

P1

(
T̂ ′ < C ′2

α
δn

)
<
β

2
,

which completes the proof.

D Goodness-of-Fit Regression Test
via Monte Carlo Sampling

If the total number of test simulations from L(x; θ0) is
small, but the cost of drawing samples from the emu-
lator model L̂(x; θ0) is negligible, then we can instead
of a two-sample permutation test perform a goodness-
of-fit test, where we draw several independent Monte
Carlo (MC) samples of size ne from L̂(x; θ0) to pro-

duce a set of values {T̂ (m)}Mm=1 that are used as a null

distribution to test the hypothesis L(x; θ0) = L̂(x; θ0).
(See Algorithm 5 for details; here f(x) denotes the like-
lihood L(x; θ0) of the simulator at θ = θ0, and fe(x)

denotes the approximate likelihood L̂(x; θ0) of the em-
ulator at the same parameter value.) If the emulations

are cheap, we can choose ne � nsim as well as a large
number M. To cite Friedman (Friedman, 2004, Section
IV), the goodness-of-fit approach has “the potential for
increased power [compared to two-sample testing] at
the expense of having to generate many Monte Carlo
samples, instead of just one”.

Corollary 2 states that our main result (Theorem 2)
still holds for the repeated MC sampling scheme. To
simplify the proof, we again use sample splitting for fit-
ting the regression versus computing the test statistic.

Corollary 2. Suppose that the regression estimator
m̂(·) satisfies

sup
m∈M

E
∫
X

(m̂(x)−m(x))2dPX(x) ≤ C0δn, (10)

where C0 is a positive constant, δn = o(1), δn ≥ n−1

andM is a class of regression m(x) containing constant
functions. Given M such that α > (M + 1)−1, let us
define the test via Monte Carlo sampling by

φMC = I

{
1

M + 1

(
1 +

M∑
i=1

I(T̂ (i)
split > T̂split)

)
≤ α

}
.

Then for fixed α ∈ (0, 1) and β ∈ (1−α) and sufficiently
large nsim and ne, there exists a constant C1 such that

Type I error: P0(φMC = 1) ≤ α,

Type II error: sup
m∈M(C1δn)

P1(φMC = 0) ≤ β,

against the class of alternatives M(C1δn) =
{
m ∈M :∫

X (m(x)− π1)2dPX(x) ≥ C1δn
}

.

Remark. Here in contrast to the permutation ap-
proach, we do not assume that the regression is a linear
smoother.

D.1 Proof of Corollary 2

We first prove the type I error control and then turn
to the type II error control.

• Type I error.

With slight abuse of notation, let us write

φMC(T ) = I

{
1

M + 1

(
1 +

M∑
i=1

I(T̂ (i)
split > T )

)
≤ α

}
,

so that φMC(T̂split) = φMC. By construction, it can be
checked that

1

M

M∑
i=1

φMC(T̂ (i)
split) ≤ α.
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Furthermore we know that T̂split is equal in distribution

to T̂ (i)
split for any i = 1, . . . ,M under the null hypothesis.

Thus

1

M

M∑
i=1

E0[φMC(T̂ (i)
split)] = E0[φMC] ≤ α,

which verifies the type I error control.

• Type II error.

For this part of the proof, we closely follow the proof
of Theorem 2.2 in Kim et al. (2018). We let denote
the empirical distribution of Monte Carlo samples
T̂ (1), . . . , T̂ (M) by

FM (t) =
1

M

M∑
i=1

I(T̂ (i) ≤ t) for all t ∈ R.

Then, by letting αM = α(M + 1)/M − 1/M , we can
see that φMC = 1 if and only if FM (t) ≥ 1 − αM . In
other words, we reject the null hypothesis if and only if

T̂split ≥ c1−αM
,

where c1−αM
is the upper 1−αM quantile of FM . One

can obtain an upper bound for this quantile by applying
Markov’s inequality as

c1−αM
≤ 1

αM

(
1

M

M∑
i=1

T̂ (i)
split

)
.

Having this observation in mind and putting ∆n =
E[(m(X) − π1)2], let us define the events A1,A2,A3

such that

A1 =

{
1

M

M∑
i=1

T̂ (i)
split ≤ 3β−1C0δn

}
,

A2 =

{
1

n

2n∑
i=n+1

(m̂(Xi)−m(Xi))
2 ≤ 3β−1C0δn

}
and

A3 =

{∣∣∣∣ 1n
2n∑

i=n+1

(m(Xi)− π1)2 −∆n

∣∣∣∣ ≤ ∆n/2

}
.

Then applying Markov’s inequality together with con-
dition (10) yields P(Ac1) ≤ β/3 and P(Ac2) ≤ β/3.
Moreover, as shown in Kim et al. (2018), we have
P(Ac3) ≤ 4/(C1nδn). Combining these via the union

bound, we see that the type II error is bounded by

P
(
T̂split < c1−αM

)
= P

(
T̂split < c1−αM

, A1

)
+ P

(
T̂split < c1−αM

, Ac1
)

≤ P
(
T̂split < 3α−1

M β−1C0δn

)
+ P(Ac1)

≤ P
(
T̂split < 3α−1

M β−1C0δn

)
+
β

3
.

For the last line, based on the inequality (x − y)2 ≤
2(x− z)2 + 2(z − y)2, we further see that

P
(
T̂split < 3α−1

M β−1C0δn

)
≤ P

(( 1

2n

2n∑
i=n+1

(m(Xi)− π1)2

− 1

n

n∑
i=n+1

(m̂(Xi)−m(Xi))
2
)
< 3α−1

M β−1C0δn,

A2 ∩ A3

)
+ P (Ac2 ∪ Ac3)

≤ P
(
∆n < 6(1 + α−1

M )β−1C0δn
)

+
β

3
+

4

C1nδn
.

Then by taking C1 sufficiently large, the proof is com-
plete.

E Example 1 (Consistency of Global
Test)

In Example 1, we tested the null hypothesis that
L̂(x; θ) = L(x; θ) for data simulated according to
θ ∼ Gamma(1, 1), and x = x1, ..., x1000|θ ∼ Beta(θ, θ).
Figure 9 (left) shows the true likelihood L(x; θ) for
some different values of θ but a fixed x (for simplicity),
comparing these functions to the likelihood approxima-
tion L̂(x; θ) ∝ 1. Such an approximation is valid when
θ = 1, as Beta(1, 1) is indeed just the uniform distri-
bution, whereas the approximation is clearly wrong for
the other values of θ ∼ Gamma(1, 1).

F Example 2 (Power of Two-Sample
Test via Regression)

The practical implications of Theorem 2 are that for
a two-sample test via regression one should base the
test on the regression method with the smallest mean
integrated squared error (MISE) so as to achieve a
more powerful test. Table 2 illustrates this for the
three settings in Example 2 (Section 2.3): random
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Algorithm 5 Goodness-of-Fit Regression Test via Monte
Carlo Sampling

Input: i.i.d. sample S of size nsim from distribution with

density f ; emulator model with density fe; size of Monte

Carlo sample ne; number of additional Monte Carlo samples

M ; a regression method m̂

Output: p-value for testing if f(x) = fe(x) for every x ∈
X
1: Let n = nsim + ne.
2: Sample Se = {X∗1, . . . ,X∗ne

} from fe.
3: Define an augmented sample {Xi, Yi}ni=1, where
{Xi}ni=1=S ∪ Se, and Yi = I(Xi ∈ Se).

4: Calculate the test statistic T̂ in Equation 1.
5: for m ∈ {1, . . . ,M} do

6: Sample S(m) = {X(m)
1 , . . . ,X

(m)
nsim} from f , under

the null hypothesis H0 :f = fe.

7: Sample S(m)
e = {X∗(m)

1 , . . . ,X
∗(m)
ne } from fe.

8: Define a new augmented sample {Xi, Yi}ni=1,

where {Xi}ni=1=S(m) ∪ S(m)
e , and Yi = I(Xi ∈

S(m)
e ).

9: Refit m̂ and calculate the test statistic on the
new augmented sample to obtain T̂ (m) from the
null distribution f = fe.

10: end for
11: Compute the Monte Carlo p-value by p =

1
M+1

(
1 +

∑M
m=1 I(T̂ (m) > T̂ )

)
.

12: return p

forest achieves a smaller MISE than nearest neighbor
(NN) regression across all settings and, as Figure 2
shows, it also consistently attains a higher power.

Setting / Regression Method Random Forest NN
(a) Bernoulli 0.19 0.73
(b) Scaling 0.35 2.31

(c) Mixture of Gaussians 0.27 1.64

Table 2: Integrated mean squared error (MISE) for re-
gression methods used for two-sample testing in Figure 2.
Random forest has the smallest MISE in regression; it also
yields the test with highest power, as implied by Theorem
2.

As pointed out in the related work section, classifier
two-sample testing methods have also been used for two-
sample testing by dichotomizing the regression function
and using the classification accuracy as a test statistic.
Such dichotomization might result in a loss of power
with respect to the respective regression test in certain
settings (for more examples, see Kim et al. (2018)). In
Figure 8 we consider the same settings as in Example 2,
but now also computing the power of the classification
accuracy test from Lopez-Paz and Oquab (2017) for
both random forest and nearest neighbor classification.

The regression test achieves comparable results across
the different settings, providing slight improvements
in some cases, e.g., with respect to the local power at
D = 100 (left column). Note that our global procedure
can incorporate classification accuracy tests as well, but
would then not be able to identify locally significant
differences in feature space as in Section A.
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Figure 8: Test power at D = 100 (left column) and as a
function of dimension D (right column) in the same Ex-
ample 2 settings, i.e., for (a) Bernoulli, (b) Scaling and
(c) Mixture of Gaussians. We include the results for our
regression test with random forests (RF) and nearest neigh-
bors (NN), as well as the corresponding results using the
classification accuracy test of Lopez-Paz and Oquab (2017)
with RF and NN (labeled as C2ST-RF and C2ST-NN,
respectively).

G Approximate P-Values and
Confidence Regions

Consider testing H0 : θ ∈ Θ0. Let λ(x) be the likeli-
hood ratio statistic for testing H0, i.e.,

λ(x) =
supθ∈Θ0

L(x; θ)

supθ∈Θ L(x; θ)
.

We estimate λ(x) using the estimated likelihood:

λ̂(x) =
supθ∈Θ0

L̂(x; θ)

supθ∈Θ L̂(x; θ)
.

The estimated p-value is then

p̂(x) = sup
θ∈Θ0

Pθ(λ̂(X) > λ̂(x))

If Θ0 = {θ0}, p̂(x) can be estimated using data that are
simulated under θ = θ0. If |Θ0| > 1, the distribution
of the test statistic can be approximated using the χ2

approximation for the likelihood ratio test (Casella and
Berger, 2002). Confidence intervals may be obtained
by inverting the hypothesis tests (Casella and Berger,
2002).
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Figure 9: Left: The true likelihood for different values of the parameter θ, compared to the approximation L̂(x; θ) ∝ 1.
The approximation is clearly wrong when θ 6= 1. Right: Location of the 50 parameter settings for the peak count data
simulations using CAMELUS, where the blue region indicates the parameter range values and the red diamond indicates the
fiducial point θ0.

H Peak Count Data Example

The KL divergence for model comparison is estimated
by:

KL(L, L̂) = −E

[
log

(
L̂(x; θ)

L(x; θ)

)]
= −E

[
log
(
L̂(x; θ)

)]
+K

≈ − 1

n

m∑
j=1

nj∑
i=1

log
(
L̂(xij ; θj)

)
+K

where K does not depend on L̂; {θj}mj=1 with m = 50

denotes the parameters used by the simulator; {xij}
nj

i=1

(with nj = 200 for all θj) denotes the test simulations
at θj ; and

∑m
j=1 nj = n is the total number of test

simulations.

Figure 9, right, shows the grid of 50 parameters set-
tings θ = (Ωm, σ8) which we use for the CAMELUS batch
simulations. The blue shaded region represents the
parameter regions from which the parameters are sam-
pled around the fiducial cosmology θ0 (indicated by a
red diamond).

For the conditional MAF, at both ntrain = 200 and
ntrain = 500 we used 10% of the training data as val-
idation. During training we assessed validation loss
and we stopped the training early if the validation loss
was not improving for 30 epochs. We explored archi-
tectures with {5, 10, 15, 20} autoregressive layers and
2{4,..,10} hidden units, with the best performing having
10 autoregressive layers and either 512 or 1024 hidden
units.
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