
Modular Block-diagonal Curvature Approximations
for Feedforward Architectures

Felix Dangel Stefan Harmeling Philipp Hennig
University of Tübingen
fdangel@tue.mpg.de

Heinrich Heine University
Düsseldorf

harmeling@hhu.de

University of Tübingen and
MPI for Intelligent Systems, Tübingen

ph@tue.mpg.de

Abstract

We propose a modular extension of backprop-
agation for the computation of block-diagonal
approximations to various curvature matri-
ces of the training objective (in particular,
the Hessian, generalized Gauss-Newton, and
positive-curvature Hessian). The approach re-
duces the otherwise tedious manual derivation
of these matrices into local modules, and is
easy to integrate into existing machine learn-
ing libraries. Moreover, we develop a compact
notation derived from matrix differential cal-
culus. We outline different strategies applica-
ble to our method. They subsume recently-
proposed block-diagonal approximations as
special cases, and are extended to convolu-
tional neural networks in this work.

1 Introduction

Gradient backpropagation is the central computational
operation of contemporary deep learning. Its modular
structure allows easy extension across network archi-
tectures, and thus automatic computation of gradients
given the computational graph of the forward pass (for
a review, see Baydin et al., 2018). But optimization
using only the first-order information of the objective’s
gradient can be unstable and slow, due to “vanishing”
or “exploding” behaviour of the gradient. Incorporat-
ing curvature, second-order methods can avoid such
scaling issues and converge in fewer iterations. Such
methods locally approximate the objective function E
by a quadratic E(x)+δx>(x∗−x)+ 1

2 (x∗−x)>C(x∗−x)
around the current location x, using the gradient
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δx = ∂E/∂x and a positive semi-definite (PSD) cur-
vature matrix C — the Hessian of E or approximations
thereof. The quadratic is minimized by

x∗ = x+ ∆x with ∆x = −C−1δx . (1)

Computing the update step requires that the C∆x =
−δx linear system be solved. To accomplish this task,
providing a matrix-vector multiplication with the cur-
vature matrix C is sufficient.

Approaches to second-order optimization: For
some curvature matrices, exact multiplication can be
performed at the cost of one backward pass by auto-
matic differentiation (Pearlmutter, 1994; Schraudolph,
2002). This matrix-free formulation can then be lever-
aged to solve (1) using iterative solvers such as the
method of conjugate gradients (CG) (Martens, 2010).
However, since this linear solver can still require multi-
ple iterations, the increased per-iteration progress of
the resulting optimizer might be compensated by in-
creased computational cost. Recently, a parallel version
of Hessian-free optimization was proposed in (Zhang
et al., 2017), which only considers the content of Hes-
sian sub-blocks along the diagonal. Reducing the Hes-
sian to a block diagonal allows for parallelization, tends
to lower the required number of CG iterations, and
seems to improve the optimizer’s performance.

There have also been attempts to compute parts of
the Hessian in an iterative fashion (Mizutani and Drey-
fus, 2008). Storing these constituents efficiently often
requires an involved manual analysis of the Hessian’s
structure, leveraging its outer-product form in many
scenarios (Naumov, 2017; Bakker et al., 2018). Recent
works developed different block-diagonal approxima-
tions (BDA) of curvature matrices that provide fast
multiplication (Martens and Grosse, 2015; Grosse and
Martens, 2016; Botev et al., 2017; Chen et al., 2018).

These works have repeatedly shown that, empirically,
second-order information can improve the training of

Code available at github.com/f-dangel/hbp.

https://github.com/f-dangel/hbp
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Figure 1: Standard feedforward network architecture, i.e. the repetition of affine transformations parameterized
by θ(i) = (W (i), b(i)) followed by elementwise activations. Arrows from left to right and vice versa indicate the
data flow during forward pass and gradient backpropagation, respectively.

deep learning problems. Perhaps the most important
practical hurdle to the adoption of second-order opti-
mizers is that they tend to be tedious to integrate in
existing machine learning frameworks because they re-
quire manual implementations. As efficient automated
implementations have arguably been more important
for the wide-spread use of deep learning than many con-
ceptual advances, we aim to develop a framework that
makes computation of Hessian approximations about
as easy and automated as gradient backpropagation.

Contribution: This paper introduces a modular for-
malism for the computation of block-diagonal approxi-
mations of Hessian and curvature matrices, to various
block resolutions, for feedforward neural networks. The
framework unifies previous approaches in a form that,
similar to gradient backpropagation, reduces implemen-
tation and analysis to local modules. Following the
design pattern of gradient backprop also has the advan-
tage that this formalism can readily be integrated into
existing machine learning libraries, and flexibly modi-
fied for different block groupings and approximations.

The framework consists of three principal parts:

1. a modular formulation for exact computation of
Hessian block diagonals of feedforward neural nets.
We achieve a clear presentation by leveraging the
notation of matrix differential calculus (Magnus
and Neudecker, 1999).

2. projections onto the positive semi-definite cone by
eliminating sources of concavity.

3. backpropagation strategies to obtain (i) exact cur-
vature matrix-vector products (with previously
inaccessible BDAs of the Hessian) and (ii) further
approximated multiplication routines that save
computations by evaluating the matrix representa-
tions of intermediate quantities once, at the cost
of additional memory consumption.

The first two contributions can be understood as an
explicit formulation of well-known tricks for fast mul-

tiplication by curvature matrices using automatic dif-
ferentiation (Pearlmutter, 1994; Schraudolph, 2002).
However, we also address a new class of curvature
matrices, the positive-curvature Hessian (PCH) intro-
duced in Chen et al. (2018). Our solutions to the latter
two points are generalizations of previous works (Botev
et al., 2017; Chen et al., 2018) to the fully modular
case, which become accessible due to the first contri-
bution. They represent additional modifications to
make the scheme computationally tractable and obtain
curvature approximations with desirable properties for
optimization.

2 Notation

We consider feedforward neural networks composed
of ` modules f (i), i = 1, . . . , `, which can be repre-
sented as a computational graph mapping the input
z(0) = x to the output z(`) (Figure 1). A module f (i)
receives the parental output z(i−1), applies an opera-
tion involving the network parameters θ(i), and sends
the output z(i) to its child. Thus, f (i) is of the form
z(i) = f (i)(z(i−1), θ(i)). Typical choices include elemen-
twise nonlinear activation without any parameters and
affine transformations z(i) = W (i)z(i−1) + b(i) with pa-
rameters given by the weights W (i) and the bias b(i).
Affine and activation modules are usually considered as
a single conceptual unit, one layer of the network. How-
ever, for backpropagation of derivatives it is simpler to
consider them separately as two modules.

Given the network output z(`)(x, θ(1,...,`)) of a datum x
with label y, the goal is to minimize the expected risk
of the loss function E(z(`), y). Under the framework of
empirical risk minimization, the parameters are tuned
to optimize the loss on the training set Q =

{
(x, y)Ni=1

}
,

min
θ(1,...,`)

1

|Q|
∑

(x,y)∈Q

E(z(`)(x), y) . (2)

In practice, the objective is typically further approxi-
mated stochastically by drawing a mini-batch B ⊂ Q
from the training set. We will treat both scenarios
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Figure 2: Forward pass, gradient backpropagation, and
Hessian backpropagation for a single module. Arrows
from left to right indicate the data flow in the forward pass
z = f(x, θ), while the opposite orientation indicates the
gradient backpropagation by Equation (4). We suggest
to extend this by the backpropagation of the Hessian as
indicated by Equation (7).

without further distinction, since the structure relevant
to our purposes is that Equation (2) is an average of
terms depending on individual data points. Quantities
for optimization, be it gradients or second derivatives
of the loss with respect to the network parameters, can
be processed in parallel, then averaged.

3 Main contribution

First-order auto-differentiation for a custom module
requires the definition of only two local operations,
forward and backward, whose outputs are propagated
along the computation graph. This modularity facili-
tates the extension of gradient backpropagation by new
operations, which can then be used to build networks
by composition. To illustrate the principle, we consider
a single module from the network of Figure 1, depicted
in Figure 2, in this section. The forward pass f(x, θ)
maps the input x to the output z by means of the
module parameters θ (to simplify notation, we drop
layer indices). All quantities are assumed to be vector-
shaped (tensor-valued quantities can be vectorized, see
Section A of the Supplements). Optimization requires
the gradient of the loss function with respect to the
parameters, ∂E(θ)/∂θ = δθ. We will use the shorthand

δ· = ∂E(·)
∂ vec(·)

. (3)

During gradient backpropagation the module receives
the loss gradient with respect to its output, δz, from
its child. The backward operation computes gradients
with respect to the module parameters and input, δθ
and δx from δz. Backpropagation continues by send-
ing the gradient with respect to the module’s input
to its parent, which proceeds in the same way (see
Figure 1). By the chain rule, gradients with respect
to an element of the module’s input can be computed
as δxi =

∑
j(
∂zj/∂xi)δzj . The vectorized version is

compactly written in terms of the Jacobian matrix
Dz(x) = ∂z(x)/∂x>, which contains all partial deriva-
tives of z with respect to x. The arrangement of partial
derivatives is such that [Dz(x)]j,i = ∂zj(x)/∂xi, i.e.

δx = [Dz(x)]
>
δz . (4)

Analogously, the parameter gradients are given by δθi =∑
j
∂zj
∂θi

δzj , i.e. δθ = [Dz(θ)]
>
δz, which reflects the

symmetry of both x and θ acting as input to the module.
Implementing gradient backpropagation thus requires
multiplications by (transposed) Jacobians.

We can apply the chain rule a second time to obtain
expressions for second-order partial derivatives of the
loss function E with respect to elements of x or θ,

∂2E(x)

∂xi∂xj
=

∂

∂xj

(∑
k

∂zk
∂xi

δzk

)

=
∑
k,l

∂zk
∂xi

∂2E(z)

∂zk∂zl

∂zl
∂xj

+
∑
k

∂2zk
∂xi∂xj

δzk ,

(5)

by means of ∂/∂xj =
∑
l(
∂zl/∂xj)∂/∂zl and the product

rule. The first term of Equation (5) propagates cur-
vature information of the output further back, while
the second term introduces second-order effects of the
module itself. Using the Hessian matrix HE(x) =
∂2E(x)/(∂x>∂x) of a scalar function with respect to a
vector-shaped quantity x, the Hessian of the loss func-
tion will be abbreviated by

HE(·) = H· = ∂2E(·)
∂ vec(·)>∂ vec(·)

, (6)

which results in the matrix version of Equation (5),

Hx = [Dz(x)]
>Hz [Dz(x)] +

∑
k

[Hzk(x)] δzk . (7)

Note that the second-order effect introduced by the
module itself via Hzk(x) vanishes if fk(x, θ) is linear
in x. Because the layer parameters θ can be regarded
as inputs to the layer, they are treated in exactly the
same way, replacing x by θ in the above expression.

Equation (7) is the central functional expression herein,
and will be referred to as the Hessian backpropagation
(HBP) equation. Our suggested extension of gradient
backpropagation is to also send the Hessian Hz back
through the graph. To do so, existing modules have to
be extended by the HBP equation: Given the Hessian
Hz of the loss with respect to all module outputs, an
extended module has to extract the Hessians Hθ,Hx
by means of Equation (7), and forward the Hessian
with respect to its input Hx to the parent module which
proceeds likewise. In this way, backprop of gradients
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Figure 3: Extension of backprop to Hessians. It yields diagonal blocks of the full parameter Hessian.

can be extended to compute curvature information in
modules. This corresponds to BDAs of the Hessian that
ignore second-order partial derivatives of parameters
in different modules. Figure 3 shows the data flow.
The computations required in Equation (7) depend
only on local quantities that are, mostly, already being
computed during gradient backpropagation.1

Before we proceed, we highlight the following aspects:

• The BDA of the Hessian need not be PSD. But
our scheme can be modified to provide PSD cur-
vature matrices by projection onto the positive
semi-definite cone (see Subsection 3.1).

• Instead of evaluating all matrices during back-
propagation, we can define matrix-vector products
recursively. This yields exact curvature matrix
products with the block diagonals of the Hessian,
the generalized Gauss-Newton (GGN) matrix and
the PCH. Products with the first two matrices can
also be obtained by use of automatic differentiation
(Pearlmutter, 1994; Schraudolph, 2002). We also
get access to the PCH which, in contrast to the
GGN, considers curvature information introduced
by the network (see Subsection 3.1).2 For stan-
dard neural networks, only second derivatives of
nonlinear activations have to be stored compared
to gradient backpropagation.

• There are approaches (Botev et al., 2017; Chen
et al., 2018) that propagate matrix representations
back through the graph in order to save repeated
computations in the curvature matrix-vector prod-
uct. The size of the matrices Hz(i) passed between
layer i+1 and i scales quadratically in the number
of output features of layer i. For convolutional

1 By Faà di Bruno’s formula (Johnson, 2002) higher-
order derivatives of function compositions are expressed re-
cursively in terms of the composites’ lower-order derivatives.
Recycling these quantities can give significant speedup com-
pared to repeatedly applying first-order auto-differentiation,
which represents one key aspect of our work.

2Implementations of HBP for exact matrix-vector prod-
ucts can reuse multiplication by the (transposed) Jacobian
provided by many machine learning libraries. The second
term of (7) needs special treatment though.

layers and in case of batched input data, the di-
mension of these quantities exceeds computational
budgets. In line with previous schemes (Botev
et al., 2017; Chen et al., 2018), we introduce addi-
tional approximations for batch learning in Sub-
section 3.2. A connection to existing schemes is
drawn in the Supplements B.4.

HBP can easily be integrated into current machine
learning libraries, so that BDAs of curvature informa-
tion can be provided automatically for novel or exist-
ing second-order optimization methods. Such methods
have repeatedly been shown to be competitive with
first-order methods (Martens and Grosse, 2015; Grosse
and Martens, 2016; Botev et al., 2017; Zhang et al.,
2017; Chen et al., 2018).

Relationship to matrix differential calculus:
To some extent, this paper is a re-formulation of earlier
results (Martens and Grosse, 2015; Botev et al., 2017;
Chen et al., 2018) in the framework of matrix differen-
tial calculus (Magnus and Neudecker, 1999), leveraged
to achieve a new level of modularity. Matrix differen-
tial calculus is a set of notational rules that allow a
concise construction of derivatives without the heavy
use of indices. Equation (7) is a special case of the
matrix chain rule of that framework. A more detailed
discussion of this connection can be found in Section A
of the Supplements, which also reviews definitions gen-
eralizing the concepts of Jacobian and Hessian in a way
that preserves the chain rule. The elementary building
block of our procedure is a module as shown in Figure 2.
Like for gradient backprop, the operations required for
HBP can be tabulated. Table 1 provides a selection of
common modules. The derivations, which again lever-
age the matrix differential calculus framework, can be
found in Supplements B, C, and D.

3.1 Obtaining different curvature matrices

The HBP equation yields exact diagonal blocks
Hθ(1), . . . ,Hθ(`) of the full parameter Hessian. They
can be of interest in their own right for analysis of the
loss function, but are not generally suitable for second-
order optimization in the sense of (1), as they need
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Table 1: Hessian backpropagation for common modules used in feedforward networks. I denotes the identity
matrix. We assign matrices to upper-case (W,X, . . . ) and tensors to upper-case sans serif symbols (W,X, . . . ).

OPERATION FORWARD HBP (Equation (7))

Matrix-vector z(x,W ) = Wx Hx = W>(Hz)W ,
multiplication HW = x⊗ x> ⊗Hz
Matrix-matrix Z(X,W ) = WX HX = (I ⊗W )>HZ(I ⊗W ) ,
multiplication HW = (X> ⊗ I)>HZ(X> ⊗ I)
Addition z(x, b) = x+ b Hx = Hb = Hz
Elementwise z(x) = φ(x) , Hx = diag[φ′(x)]Hz diag[φ′(x)] + diag[φ′′(x)� δz]
activation zi(x) = φ(xi)

Skip-connection z(x, θ) = x+ y(x, θ) Hx = [I + Dy(x)]>Hz[I + Dy(x)] +
∑
k[Hyk(x)]δzk ,

Hθ = [Dy(θ)]>Hz[Dy(θ)] +
∑
k[Hyk(θ)]δzk

Reshape/view Z(X) = reshape(X) HZ = HX
Index select/map π z(x) = Πx , Πj,π(j) = 1 , Hx = Π>(Hz)Π
Convolution Z(X,W) = X ?W , HJXK = (I ⊗W )HZ(I ⊗W )

Z(W, JXK) = W JXK , HW = (JXK> ⊗ I)>HZ(JXK> ⊗ I)

Square loss E(x, y) = (y − x)>(y − x) Hx = 2I
Softmax cross-entropy E(x, y) = −y> log [p(x)] Hx = diag [p(x)]− p(x)p(x)>

neither be PSD nor invertible. For application in opti-
mization, HBP can be modified to yield semi-definite
BDAs of the Hessian. Equation (7) again provides the
foundation for this adaptation, which is closely related
to the concepts of KFRA (Botev et al., 2017), BDA-
PCH (Chen et al., 2018), and, under certain conditions,
KFAC (Martens and Grosse, 2015). We draw their
connections by briefly reviewing them here.

Generalized Gauss-Newton matrix: The GGN
emerges as the curvature matrix in the quadratic ex-
pansion of the loss function E(z(`)) in terms of the
network output z(`). It is also obtained by linearizing
the network output z(`)(θ, x) in θ before computing the
loss Hessian (Martens, 2014), and reads

G(θ) =
1

|Q|
∑

(x,y)∈Q

[
Dz(`)(θ)

]>
HE(z(`))

[
Dz(`)(θ)

]
.

To obtain diagonal blocks G(θ(i)), the Jacobian can
be unrolled by means of the chain rule for Jaco-
bians (Supplements, Theorem A.1) as Dz(`)(θ(i)) =[
Dz(`)(z(`−1))

] [
Dz(`−1)(θ(i))

]
. . . Continued expansion

shows that the Hessian HE(z(`)) of the loss function
with respect to the network output is propagated back
through a layer by multiplication from left and right
with its Jacobian. This is accomplished in HBP by ig-
noring second-order effects introduced by modules, that
is by setting the Hessian of the module function to
zero, therefore neglecting the second term in Equa-
tion (7). In fact, if all activations in the network are
piecewise linear (e.g. ReLUs), the GGN and Hessian
blocks are equivalent. Moreover, diagonal blocks of the

GGN are PSD if the loss function is convex (and thus
HE(z(`)) is PSD). This is because blocks are recursively
left- and right-multiplied with Jacobians, which does
not alter the definiteness. Hessians of the loss func-
tions listed in Table 1 are PSD. The resulting recursive
scheme has been used by Botev et al. (2017) under the
acronym KFRA to optimize convex loss functions of
fully-connected neural networks with piecewise linear
activation functions.

Positive-curvature Hessian: Another concept of
positive semi-definite BDAs of the Hessian (that ad-
ditionally considers second-order module effects) was
studied in Chen et al. (2018) and named the PCH.
It is obtained by modification of terms in the second
summand of Equation (7) that can introduce concavity
during HBP. This ensures positive semi-definiteness
since the first summand is semi-definite, assuming the
loss Hessian HE(z(`)) with respect to the network out-
put to be positive semi-definite. Chen et al. (2018)
suggest to eliminate negative curvature of a matrix by
computing the eigenvalue decomposition and either dis-
card negative eigenvalues or cast them to their absolute
value. This allows the construction of PSD curvature
matrices even for non-convex loss functions. In the
setting of Chen et al. (2018), the PCH can empirically
outperform optimization using the GGN. In usual feed-
forward neural networks, the concavity is introduced
by nonlinear elementwise activations, and corresponds
to a diagonal matrix (Table 1). Thus, convexity can
be maintained during HBP by either clipping negative
values to zero (PCH-clip), or taking their magnitude
in the diagonal concave term (PCH-abs).
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Fisher information matrix: If the network defines
a conditional probability density r(y|z(`)) on the labels,
maximum likelihood learning for the parameterized den-
sity pθ(y|x) will correspond to choosing a negative log-
likelihood loss function, i.e. E(z(`), y) = − log r(y|z(`)).
Common loss functions like square and cross-entropy
loss can be interpreted in this way. Natural gradient
descent (Amari, 1998) uses the Fisher information ma-
trix F(θ) = Epθ(y|x) [(d log pθ(y|x)/dθ) (d log pθ(y|x)/dθ>)]
as a PSD curvature matrix approximating the Hes-
sian. It can be expressed as the log-predictive den-
sity’s expected Hessian under r itself: Fr(z

(`)) =
−Er(y|z(`))

[
H log r(y|z(`))

]
. Assuming truly i.i.d. sam-

ples x, the log-likelihood of multiple data decomposes
and results in the approximation

F(θ) ≈ 1

|Q|
∑

(x,y)∈Q

[
Dz(`)(θ)

]>
Fr(z

(`))
[
Dz(`)(θ)

]
.

In this form, the computational scheme for BDAs of
the Fisher resembles the HBP of the GGN. However, in-
stead of propagating back the loss Hessian with respect
to the network, the expected Hessian of the negative
log-likelihood under the model’s predictive distribution
is used. Martens and Grosse (2015) use Monte-Carlo
sampling to estimate this matrix in their KFAC op-
timizer. Relations between the Fisher and GGN are
discussed in (Pascanu and Bengio, 2013; Martens, 2014);
for square and cross-entropy loss, they are equivalent.

3.2 Batch learning approximations

In our HBP framework, exact multiplication by the
block of the curvature matrix of parameter θ in a mod-
ule comes at the cost of one gradient backpropagation
to this layer. The multiplication is recursively defined in
terms of multiplication by the layer output Hessian Hz.
If it were possible to have an explicit representation
of this matrix in memory, the recursive computations
hidden in Hz could be saved during the solution of
the linear system implied by Equation (1). Unfortu-
nately, the size of the backpropagated exact matrices
scales quadratically in both the batch size3 and the
number of layer’s output features. However, instead of
propagating back the exact Hessian, a batch-averaged
version can be used instead to circumvent the batch
size scaling (originating from Botev et al. (2017)). In
combination with structural information about the pa-
rameter Hessian, this strategy is used in Botev et al.
(2017); Chen et al. (2018) to further approximate cur-
vature multiplications, using quantities computed in a

3 If samples are processed independently in every module,
these matrices have block structure and scale linearly in
batch size. Quadratic scaling is caused by transformations
across different samples, like batch normalization.

single backward pass and then kept in memory for ap-
plication of the matrix-vector product. We can embed
these explicit schemes into our modular approach. To
do so, we denote averages over a batch B by a bar, for
instance 1/|B|

∑
(x,y)∈B HE(θ) = HE(θ). The modified

backward pass of curvature information during HBP
for a module receives a batch average of the Hessian
with respect to the output, Hz, which is used to formu-
late the matrix-vector product with the batch-averaged
parameter Hessian Hθ. An average of the Hessian with
respect to the module input, Hx, is passed back. Exist-
ing work (Botev et al., 2017; Chen et al., 2018) differs
primarily in the specifics of how this batch average
is computed. In HBP, these approximations can be
formulated compactly within Equation (7). Relations
to the cited works are discussed in more detail in the
Supplements B.4. The approximations amounting to
relations used by Botev et al. (2017) read

Hx ≈ [Dz(x)]
>Hz [Dz(x)] +

∑
k

[Hzk(x)] δzk , (8)

and likewise for θ. In case of a linear layer z(x) =
Wx+b, this approximation implies the relationsHW =
x⊗ x> ⊗Hz, Hb = Hz, and Hx = W>(Hz)W . Mul-
tiplication by this weight Hessian approximation with
a vector v is achieved by storing x⊗ x>, Hz and per-
forming the required contractions v 7→ (x⊗ x>⊗Hz)v.
Note that this approach is not restricted to curvature
matrix-vector multiplication routines only. Kronecker
structure in the approximation gives rise to optimiza-
tion methods relying on direct inversion.

A cheaper approximation, used in Chen et al. (2018),

Hx ≈ [Dz(x)]
>
Hz [Dz(x)] +

∑
k

[Hzk(x)] δzk , (9)

leads to the modified relation HW = x⊗ x> ⊗Hz for
a linear layer. As this approximation is of the same
rank as Hz, which is typically small, CG requires only
a few iterations during optimization. It avoids large
memory requirements for layers with numerous inputs,
since it requires x be stored instead of x⊗ x>.

Transformations that are linear in the module parame-
ters (e.g. linear and convolutional layers), possess con-
stant Jacobians with respect to the module input for
each sample (see Table 1). Hence, in a network consist-
ing of only these layers, both Equation (8) and (9) yield
the same backpropagated HessiansHx. This still leaves
the degree of freedom for choosing the approximation
scheme in the analogous equations for θ.

Remark: Both strategies for obtaining curvature ma-
trix BDAs (implicit exact matrix-vector multiplications
and explicit propagation of approximated curvature)
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are compatible. Regarding the connection to cited
works, we note that the maximally modular structure
of our framework changes the nature of these approxi-
mations and allows a more flexible formulation.

4 Experiments & Implementation

We illustrate the usefulness of incorporating curvature
information with the two outlined strategies by experi-
ments with a fully-connected and a convolutional neural
network (CNN) on the CIFAR-10 dataset (Krizhevsky,
2009). Following the guidelines of Schneider et al.
(2019), the training loss is estimated on a random sub-
set of the training set of equal size as the test set. Each
experiment is performed for 10 different random seeds
and we show the mean values with shaded intervals of
one standard deviation. For the loss function we use
cross-entropy. Details on the model architectures and
hyperparameters are given in Supplements E.

Training procedure and update rule: In com-
parison to a first-order optimization procedure, the
training loop with HBP has to be extended by a single
backward pass to backpropagate the batch-averaged
or exact loss Hessian. This yields matrix-vector prod-
ucts with a curvature estimate C(i) for each parameter
block θ(i) of the network. Parameter updates ∆θ(i) are
obtained by applying CG to solve the linear system4[

αI + (1− α)C(i)
]

∆θ(i) = −δθ(i) , (10)

where α acts as a step size limitation to improve ro-
bustness against noise. The CG routine terminates if
the ratio of the residual norm and the gradient norm
falls below a certain threshold or the maximum number
of iterations has been reached. The solution returned
by CG is scaled by a learning rate γ, and parameters
are updated by the relation θ(i) ← θ(i) + γ∆θ(i).

Fully-connected network, batch approxima-
tions, and sub-blocking: The flexibility of HBP is
illustrated by extending the results in Chen et al. (2018).
Investigations are performed on a fully-connected net-
work with sigmoid activations. Solid lines in Figure 4
show the performance of the Newton-style optimizer
and momentum SGD in terms of the training loss and
test accuracy. The second-order method is capable to
escape the initial plateau in fewer iterations.

The modularity of HBP allows for additional paral-
lelism by splitting the linear system (10) into smaller
sub-blocks, which then also need fewer iterations of
CG. Doing so only requires a minor modification of the

4We use the same update rule as Chen et al. (2018) since
we extend some of the results shown within this work.
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Figure 4: SGD and different Newton-style optimizers
based on the PCH-abs with batch approximations. The
same fully-connected neural network of (Chen et al.,
2018) was used to generate the solid baseline results.
Our modular approach allows further splitting the pa-
rameter blocks into sub-blocks that can independently
be optimized in parallel (dashed lines).

parameter Hessian computation by (7). Consequently,
we split weights and bias terms row-wise into a specified
number of sub-blocks. Performance curves are shown
in Figure 4. In the initial phase, the BDA can be split
into a larger number of sub-blocks without suffering
from a loss in performance. The reduced curvature in-
formation is still sufficient to escape the initial plateau.
However, larger blocks have to be considered in later
stages to further reduce the loss efficiently.

The fact that this switch in modularity is necessary
is an argument in favor of the flexible form of HBP,
which allows to efficiently realize such switches: For
this experiment, the splitting for each block was artifi-
cially chosen to illustrate this flexibility. In principle,
the splitting could be decided individually for each
parameter block, and even changed at run time.

Convolutional neural network, matrix-free ex-
act curvature multiplication: For convolutions,
the large number of hidden features prohibits back-
propagating a curvature matrix batch average. Instead,
we use exact curvature matrix-vector products provided
within HBP. The CNN possesses sigmoid activations
and cannot be trained by SGD (cf. Figure 5a). For
comparison with another second-order method, we ex-
periment with a public KFAC implementation (Martens
and Grosse, 2015; Grosse and Martens, 2016, see Sup-
plements E for details).
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Figure 5: (a) Comparison of SGD, Adam, KFAC, and Newton-style methods with different exact curvature
matrix-vector products (HBP) on a CNN with sigmoid activations (see Supplements E). SGD cannot train the
net. (b) Wall-clock time comparison (on an RTX 2080 Ti GPU; same colors realize different random seeds).

The matrix-free second-order methods progress fast in
the initial stage of the optimization. However, progress
in later phases stagnates. This may be caused by the
limited sophistication of the update rule (10): If a
small value for α is chosen, the optimizer will perform
well in the beginning (GGN, α1). As the gradients
become smaller, and hence more noisy, the step size
limitation is too optimistic, which leads to a slow-down
in optimization progress. A more conservative step
size limitation improves the overall performance at the
cost of fewer initial progress (GGN, α2). In the train-
ing phase where damping is “effective”, our illustrative
methods, and KFAC, exhibit better progress per itera-
tion on the objective than the first-order competitor
Adam, underlining the usefulness of curvature even if
only computed block-wise.

For an impression on performance in terms of run
time, Figure 5b compares the wall-clock time of one
matrix-free method and the baselines. The HBP-based
optimizer can compete with existing methods and offers
potential for further improvements, like sub-blocking
and parallelized CG. Despite the more adaptive na-
ture of second-order methods, their full power seems
to still require adaptive damping, to account for the
quality of the local quadratic approximation and re-
strict the update if necessary. The importance of these
techniques to properly adapt the Newton direction has
been emphasized in previous works (Martens, 2010;
Martens and Grosse, 2015; Botev et al., 2017) that aim
to develop fully fletched second-order optimizers. Such
adaptation, however, is beyond the scope of this text.

5 Conclusion

We have outlined a procedure to compute block-
diagonal approximations of different curvature matri-
ces for feedforward neural networks by a scheme that
can be realized on top of gradient backpropagation. In
contrast to other recently proposed methods, our imple-
mentation is aligned with the design of current machine
learning frameworks and can flexibly compute Hessian
sub-blocks to different levels of refinement. Its modular
formulation facilitates closed-form analysis of Hessian
diagonal blocks, and unifies previous approaches (Botev
et al., 2017; Chen et al., 2018).

Within our framework we presented two strategies: (i)
Obtaining exact curvature matrix-vector products that
have not been accessible before by auto-differentiation
(PCH), and (ii) backpropagation of further approxi-
mated matrix representations to save computations
during training. As for gradient backpropagation, the
Hessian backpropagation for different operations can
be derived independently of the underlying graph. The
extended modules can then be used as a drop-in re-
placement for existing modules to construct deep neural
networks. Internally, backprop is extended by an ad-
ditional Hessian backward pass through the graph to
compute curvature information. It can be performed
in parallel to, and reuse the quantities computed in,
gradient backpropagation.
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