
Locally Accelerated Conditional Gradients

Jelena Diakonikolas Alejandro Carderera Sebastian Pokutta
University of Wisconsin-Madison Georgia Institute of Technology Zuse Institute Berlin

Technische Universität Berlin

Abstract

Conditional gradients constitute a class
of projection-free first-order algorithms for
smooth convex optimization. As such, they
are frequently used in solving smooth con-
vex optimization problems over polytopes, for
which the computational cost of projections
is prohibitive. However, they do not enjoy
the optimal convergence rates achieved by
projection-based accelerated methods; more-
over, achieving such globally-accelerated rates
is information-theoretically impossible. To ad-
dress this issue, we present Locally Acceler-
ated Conditional Gradients – an algorithmic
framework that couples accelerated steps with
conditional gradient steps to achieve local ac-
celeration on smooth strongly convex prob-
lems. Our approach does not require projec-
tions onto the feasible set, but only on (typi-
cally low-dimensional) simplices, thus keeping
the computational cost of projections at bay.
Further, it achieves optimal accelerated lo-
cal convergence. Our theoretical results are
supported by numerical experiments, which
demonstrate significant speedups over state of
the art methods in both per-iteration progress
and wall-clock time.

1 Introduction

Smooth convex optimization problems over polytopes
arise in a variety of settings, such as video co-
localization (Joulin et al., 2014), structured energy min-
imization (Swoboda and Kolmogorov, 2019), greedy
particle optimization in Bayesian inference (Futami
et al., 2019), and structural SVMs (Lacoste-Julien et al.,

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

2013). The methods of choice in such settings are vari-
ants of the conditional gradient (CG) or Frank-Wolfe
method (Frank and Wolfe, 1956), which eschew the
computationally-expensive projections of standard first-
order methods while enjoying favorable characteristics
of the produced solutions such as sparse representation.

Despite their simplicity and broad applicability, CG
methods do not attain the accelerated convergence
of projection-based methods such as Nesterov acceler-
ated gradient descent (Nesterov, 1983) and variants
thereof (Diakonikolas and Orecchia, 2018; Cohen et al.,
2018; Tseng, 2008; Beck and Teboulle, 2009). This
limitation is a consequence of the access to the feasi-
ble polytope X being restricted to a linear minimiza-
tion oracle: in such a setting, global acceleration is
information-theoretically impossible (Jaggi, 2013; Lan,
2013) and improving the (global) rate of convergence
of CG in various structured settings has been an active
area of research (Jaggi, 2013; Garber and Hazan, 2016;
Lacoste-Julien and Jaggi, 2015; Garber and Meshi,
2016; Lan et al., 2017; Braun et al., 2017; Kerdreux
et al., 2018b,a; Garber et al., 2018; Braun et al., 2019;
Guélat and Marcotte, 1986). While exciting progress
has been made, the global convergence rate of CG
cannot be dimension-independent in the worst case.

In this work, we depart from the path of improving
global convergence guarantees of CG and instead ask:

Is local dimension-independent acceleration possible?

To address this question, we focus on smooth strongly
convex objective functions and introduce the Locally
Accelerated Conditional Gradients algorithmic frame-
work that achieves the optimal dimension-independent
locally accelerated convergence rate.

1.1 Limits to Global Acceleration

Acceleration for conditional gradient methods has been
an important topic of interest. Apart from several tech-
nical challenges, there is a strong lower bound (Jaggi,
2013; Lan, 2013) that significantly limits what type of
acceleration is achievable. This lower bound applies to

Locally Accelerated Conditional Gradients

arbitrary methods whose access to the feasible region
is limited to a linear optimization oracle. As an illus-
tration, let X def

= {x ∈ Rn |
∑n
i=1 xi = 1,x ≥ 0} be the

probability simplex on n coordinates and consider:

min
x∈X

f(x) ≡ ‖x‖22 . (LB)

If a first-order method has access to X only by means
of a linear optimization oracle, then each query to the
oracle reveals at most a single vertex of X , and it is
guaranteed that after k < n iterations the primal gap
satisfies f(xk) − f(x∗) ≥ 1

k −
1
n . In particular, for

k = n/2 (assuming w.l.o.g. that n is even), the primal
gap is bounded below by f(xn/2)−f(x∗) ≥ 1

n , and even
the O(1/k2) rate cannot be achieved in full generality.

Note that the objective in (LB) is also strongly convex.
Thus, if we have a generic algorithm that is linearly con-
vergent, contracting the primal gap as f(xk)−f(x∗) ≤
e−ρk(f(x0) − f(x∗)) with a global rate ρ, then it fol-
lows that ρ ≤ 2 logn

n . The Fully-Corrective Frank-Wolfe
algorithm converges with (roughly) ρ = 1

2n (Lacoste-
Julien and Jaggi, 2015), and similar rates apply to
other variants. Given the lower bound, it follows that
up to logarithmic factors these global rates cannot be
improved and acceleration with the rate parameter
ρ =

√
1/(2n) is not possible.

At the same time, it is known that, e.g., AFW can be
globally accelerated using the Catalyst framework (Lin
et al., 2015) (see also a discussion in Lacoste-Julien
and Jaggi (2015)). However, the obtained accelerated
rate involves large dimension-dependent constants to be
compatible with the lower bound, making the algorithm
impractical. Another form of acceleration in the case
of linear optimization based methods is achieved by
Conditional Gradient Sliding (CGS) (Lan and Zhou,
2016), where the complexity is separated into calls to
the first-order and linear optimization oracle. While
the optimal first-order oracle complexity of O(1/

√
ε) is

achieved in the case of smooth (non-strongly) convex
minimization, the linear optimization oracle complexity
is O(1/ε), compatible with the lower bound.

In addition to the work on accelerating it, recent work
has also generalized CG to stochastic settings (Fang
et al., 2018; Hassani et al., 2019; Shen et al., 2019).
While considering the stochastic settings is of high
practical relevance, it is beyond the scope of this paper.

1.2 Contributions and Related Work

We show that dimension-independent acceleration for
CG methods is possible for smooth strongly convex
minimization after a burn-in phase whose length does
not depend on the target accuracy ε (but could poten-
tially depend on the dimension). This allows for local

acceleration, achieving the asymptotically optimal rate.
Our contributions are summarized as follows.

LaCG. We introduce a new algorithmic framework
for the class of conditional gradient methods, which we
dub Locally Accelerated Conditional Gradients (LaCG).
The framework couples active-set-based linearly conver-
gent CG methods for smooth strongly convex minimiza-
tion (such as, e.g., AFW or PFW) with the accelerated
algorithm µAGD+ (Cohen et al., 2018). The coupling
ensures that the updates make at least as much progress
as the employed CG-type method, while being able to
seamlessly transition to faster locally-accelerated con-
vergence once suitable conditions are met and without
ever having to explicitly test such conditions. LaCG
achieves an asymptotically optimal iteration complex-
ity of K + O

(√
L
µ log 1

ε

)
to solve minx∈X f(x) up to

accuracy ε, where f is L-smooth and µ-strongly convex
and K is a constant that only depends on X and f .

Slightly simplifying, we achieve acceleration once we
identify the optimal face of X and are reasonably close
to the optimal solution. Our reported complexity de-
pends on the smoothness L and strong convexity µ pa-
rameters of f independent of the dimension of X . This
stands in contrast to the previously reported linearly
convergent methods, whose problem parameters had
to be adjusted to account for the geometry of X , e.g.,
via the pyramidal width in Lacoste-Julien and Jaggi
(2015) or smoothness and strong-convexity relative to
the polytope in Pena and Rodriguez (2018); Gutman
and Pena (2019), which both bring in a dimension de-
pendence. Note that such dimension-dependent terms
are unavoidable if global linear rates of convergence are
sought, due to the aforementioned lower bound.

We bypass the limitations of global linear convergence
by accelerating the methods locally : the faster conver-
gence applies after a constant number iterations with
possibly weaker rates. Following the burn-in phase, the
method requires no more than O

(√
L
µ log 1

ε

)
queries

to either the first-order oracle or the linear minimiza-
tion oracle. This dimension-independent acceleration
following a slower phase is clearly observed in our nu-
merical experiments, particularly in comparison with
Catalyst-augmented AFW. As discussed before, Cata-
lyst acceleration is necessarily weakened by a geometric
correction leading to the (either first-order or linear
optimization) oracle complexity of O

(√
L
µ
D2

δ2 log 1
ε

)
,

where D is the diameter of X and δ is the pyramidal
width of X ; see Lacoste-Julien and Jaggi (2015).

To achieve local acceleration, we assume that we can
project relatively efficiently onto simplices spanned by
sets of vertices of small size. However, while we employ
projections onto the convex hulls of maintained active

Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

sets, we stress that the feasible region is only accessed
via a linear optimization oracle, i.e., our method is
an LO-based method and the active sets are typically
small, so that projections onto those sets are cheap. In
this sense of employing projections internally but not
over the entire feasible set, our algorithm is similar to
Conditional Gradient Sliding (Lan et al., 2017).

Generalized Accelerated Method. While there
is an extensive literature on accelerated methods in
optimization (Betancourt et al., 2018; Cohen et al.,
2018; Diakonikolas and Orecchia, 2018; Tseng, 2008;
Beck and Teboulle, 2009; Bubeck et al., 2015; Nesterov,
2018; Drusvyatskiy et al., 2018; Polyak, 1964), none
of these approaches directly applies to local accelera-
tion of CG. Most relevant to our work is Cohen et al.
(2018), and, in the process of constructing LaCG, we
generalize the µAGD+ (Cohen et al., 2018) algorithm
in a few important ways (note that µAGD+ is also a
generalization of Nesterov’s method).

First, we show that µAGD+ retains its convergence
guarantees when coupled with an arbitrary alternative
algorithm, where the coupling selects the point with
the lower function value between the two algorithms,
in each iteration. This is crucial for turning µAGD+
into a descent method and ensures that it makes at
least as much progress per iteration as the CG-type
method with which it is coupled. This coupling also
allows us to achieve acceleration without any explicit
knowledge of the parameters of the polytope X or the
position of the function minimizer x∗.

Second, we show that µAGD+ allows inexact projec-
tions. While this is not surprising, as similar results
have been shown for proximal methods (Schmidt et al.,
2011), this generalization of µAGD+ is a necessary
ingredient to ensure that the per-iteration complexity
of LaCG does not become too high.

Finally, we prove that µAGD+ converges to the optimal
solution at no computational loss even if the convex
set on which the projections are performed changes
between iterations, as long as the convex set in iteration
k is contained in the convex set from iteration k − 1
and it contains the minimizer x∗. We are not aware
of any other results of this type. Note that this result
allows us to update the projection simplex with each
update of the active set, and, as vertices are dropped
from the active set by away steps in AFW or PFW,
the iterations become less expensive.

Computational Experiments. We compare our
methods to other CG variants and provide computa-
tional evidence that our algorithms achieve a practical
speed-up, both in per-iteration progress and in wall-
clock time, outperforming state of the art methods.

2 Preliminaries

We consider problems of the form minx∈X f(x), where
f is a smooth (gradient Lipschitz) strongly convex
function and X ⊆ Rn is a convex polytope. We assume
(i) first-order access to f : given x ∈ X , we can compute
f(x) and ∇f(x), and (ii) linear optimization oracle
access to X : given a vector c ∈ Rn, we can compute
v = argminu∈X 〈c,u〉 .

Let ‖·‖ be the Euclidean norm and let B(x, r) denote
the ball around x with radius r with respect to ‖·‖.
We say that x is r-deep in a convex set X ⊆ Rn if
B(x, 2r) ∩ aff(X) ⊆ X . The point x is contained in
the relative interior of X , written as x ∈ rel. int(X),
if there exists an r > 0 such that x is r-deep in X ; if
aff(X) = Rn, then x is contained in the interior of X ,
written as x ∈ int(X). Further, given a polytope X , let
vert(X) ⊆ X denote the (finite) set of vertices of X and
let ∆n

def
= {x ∈ Rn |

∑n
i=1 xi = 1, x ≥ 0} ⊆ Rn denote

the probability simplex of dimension n. We denote the
convex hull of a set X as co (X).

2.1 Conditional Gradient Descent

We provide a very brief introduction to the Conditional
Gradient Descent algorithm (Levitin and Polyak, 1966),
which is also known as the Frank-Wolfe algorithm; see
Frank and Wolfe (1956). Assume that f is L-smooth
with L < ∞. The Frank-Wolfe algorithm with step
sizes ηk ∈ [0, 1] is defined via the following updates:

xk+1 = (1− ηk)xk + ηkvk = xk + ηk(vk − xk), (2.1)

where x0 ∈ X is an arbitrary initial point from the
feasible set X and vk is computed using the linear
optimization oracle as vk = argminu∈X 〈∇f(xk),u〉.

2.2 Approximate Duality Gap Technique

To analyze the convergence of LaCG, we employ the
Approximate Duality Gap Technique (ADGT) of Di-
akonikolas and Orecchia (2019). The core idea behind
ADGT is to ensure that AkGk is non-increasing with
iteration count k, where Gk is an upper approximation
of the optimality gap (namely, f(xk) − f(x∗) ≤ Gk,
where xk is the point output by the algorithm at itera-
tion k), and Ak is a positive strictly increasing function
of k. If such a condition is met, we immediately have
AkGk ≤ A0G0, which implies f(xk) − f(x∗) ≤ A0G0

Ak
.

Thus, as long as A0G0 is bounded (it typically corre-
sponds to some initial distance to the minimizer x∗),
we have that the algorithm converges at rate 1/Ak.
This also means that, to obtain the highest rate of con-
vergence, one should always aim for the fastest-growing
Ak for which it holds that AkGk ≤ Ak−1Gk−1, ∀k.

Locally Accelerated Conditional Gradients

The approximate gap Gk is defined as the difference
of an upper bound Uk on the function value at the
output point xk, Uk ≥ f(xk), and a lower bound Lk
on the minimum function value, Lk ≤ f(x∗). Clearly,
this choice ensures that f(xk)− f(x∗) ≤ Gk. In all the
algorithms analyzed in this paper, we will use Uk =
f(xk). The lower bound requires more effort; however,
it is similar to those used in previous work (Cohen
et al., 2018; Diakonikolas and Orecchia, 2019), and its
detailed construction is provided in Appendix A.

Because of its generality, ADGT is well-suited to our
setting, as it allows coupling different types of steps
and performing a more fine-grained and local analysis
than typical approaches. Further, it allows accounting
for inexact minimization oracles invoked as part of the
algorithm subroutines in a generic way.

3 LaCG Framework

In this section, we establish our main result. We first
consider a simple case in which x∗ ∈ int(X) as a warm-
up to explain our approach and derive LaCG specifically
for this case (Section 3.1). Then, in Section 3.2, we
consider the more general case where x∗ ∈ rel. int(F)
with F being a face of X . Together, Section 3.1 and
3.2 cover all cases of interest (except some degenerate
cases). Further, the general LaCG framework presented
in Section 3.2 applies to either of the two cases.

3.1 Warm-up: Optimum in the Interior of X

In the case where the optimum is contained in the
interior of X , we have ∇f(x∗) = 0. As such, the
unconstrained optimum and the constrained optimum
coincide. Thus, one might be tempted to assert that
there is no need for an accelerated CG algorithm in
this case. However, whether the optimum is contained
in the interior is not known a priori. The presented
algorithm is adaptive, as it accelerates if x∗ ∈ int(X),
and otherwise it converges with the standard 1/k rate.

The main idea can be summarized as follows. Suppose
that x∗ is contained 2r-deep in the interior of X . Due
to the function’s strong convexity, any method that
contracts the optimality gap f(xk)− f(x∗) over k also
contracts the distance ‖xk−x∗‖. In particular, this fol-
lows by: µ

2 ‖xk−x∗‖2 ≤ f(xk)−f(x∗). Hence, roughly,
after an iterate xk is guaranteed to be inside the 2r-ball,
we can switch to a faster (accelerated) method for un-
constrained minimization. This idea, however, requires
a careful formalization, for the following reasons:

1. In general, we cannot assume that the algorithm
has knowledge of r and D, or access to information
on ‖xk − x∗‖, as x∗ is unknown.

2. The algorithm should converge even if r = 0; we
cannot in general assume that it is a priori known
that x∗ ∈ int(X). Because, if that were the case
and we knew that r ≥ ε, we would be able to run
an accelerated algorithm for O(

√
L/µ log(1/ε)) it-

erations, without any need to worry about whether
the outputted solution belongs to X .

We show that both issues can be resolved by imple-
menting a monotonic version of a hybrid algorithm
that chooses at each iteration whether to perform an
accelerated step or a CG step from Eq. (2.1). Mono-
tonicity is crucial to ensure contraction of the distance
to x∗. In this subsection only, we assume access to
a membership oracle for X . This is generally a mild
assumption, especially when X is a polytope, which
is a standard setting for CG.1 The convergence of the
resulting algorithm is shown in the following theorem.
Full technical details are deferred to Appendix B.

Theorem 3.1. Let xk be the solution output by Algo-
rithm 2 (Appendix B.1) for k ≥ 1. If:

k ≥ min

{
2LD2

ε
,
LD2

µr2
+

√
L

µ
log

(
2(L+ µ)r2

µε

)}
,

then f(xk)− f(x∗) ≤ ε.

3.2 Optimum in the Relative Interior of a
Face of X

We now formulate the general case that subsumes the
case from the previous subsection. Note that when
x∗ is in the relative interior, it may not be the case
that ∇f(x∗) = 0 anymore. Due to space constraints,
we only state the main ideas here, while full technical
details are deferred to Appendix B.2.

We assume that, given points x1, ...,xm and a point y,
the following problem is easily solvable:

min
u=

∑m
i=1 λixi,

λ∈∆m

1

2
‖u− y‖2. (3.1)

In other words, we assume that the projection onto
the convex hull of a given set of vertices can be imple-
mented efficiently; however, we do not require access
to a membership oracle anymore. Solving this problem
amounts to minimizing a quadratic function over the

1For polynomially-sized LPs, checking membership
amounts to evaluating the (in)equalities describing X , which
is typically much cheaper than linear optimization. For
structured LPs that are solvable in polynomial time but
have exponential representation (e.g., matching over non-
bipartite graphs (Rothvoß, 2017)), there typically exist
membership oracles with running times comparable to those
of the LP oracle used in CG steps (Fleischer et al., 2006).

Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

probability simplex. The size of the program m from
Eq. (3.1) corresponds to the size of the active set of the
CG-type method employed within LaCG. Note that m
is never larger than the iteration count k, and is often
much lower than the dimension of the original problem.
Further, there exist multiple heuristics for keeping the
size of the active set small in practice; see, e.g., Braun
et al. (2017). The projection from Eq. (3.1) does not
require access to either the first-order or the linear
optimization oracle. Finally, due to Lemma 3.2 stated
below, we only need to solve this problem to accuracy
of the order ε√

µL
, where ε is the target accuracy.

For simplicity, we illustrate the framework using AFW
as the coupled CG method. However, the same ideas
can be applied to other active-set-based methods such
as PFW in a straightforward manner. Unlike in the
previous subsection, the assumption that X is a poly-
tope is crucial here, as the linear convergence for the
AFW algorithm established in Lacoste-Julien and Jaggi
(2015) relies on a constant, the pyramidal width, that is
only known to be bounded away from 0 for polytopes.

To achieve local acceleration, we couple the AFW steps
with a modification of the µAGD+ algorithm (Cohen
et al., 2018) that we introduce here. This modified
µAGD+ algorithm (Lemma 3.2) allows the coupling
of the method with an arbitrary sequence of points
from the feasible set and supports inexact minimization
oracles and changes in the convex set (which correspond
to active sets from AFW) on which projections are
performed. These modifications allow local acceleration
without any additional knowledge about the polytope
or the position of the minimizer x∗. Further, we are
not aware of any other methods that allow changes to
the feasible set as described here, and, thus, the result
from Lemma 3.2 may be of independent interest.

Lemma 3.2. (Convergence of the modified µAGD+)
Let f : X → R be L-smooth and µ-strongly convex, and
let X be a closed convex set. Let x∗ = argminu∈X f(x),
and let {Ci}ki=0 be a sequence of convex subsets of X
such that Ci ⊆ Ci−1 for all i and x∗ ∈

⋂k
i=0 Ci. Let

{x̃i}ki=0 be any (fixed) sequence of points from X . Let
a0 = 1, akAk = θ for k ≥ 1, where Ak =

∑k
i=0 ai and θ =√

µ
2L . Let y0 ∈ X , x0 = w0, and z0 = Ly0 −∇f(y0).

For k ≥ 1, define iterates xk by:

yk =
1

1 + θ
xk−1 +

θ

1 + θ
wk−1,

zk = zk−1 − ak∇f(yk) + µakyk,

x̂k = (1− θ)xk−1 + θwk,

xk = argmin{f(x̂k), f(x̃k)}

(3.2)

where, for all k ≥ 0, wk is defined as an εmk -

approximate solution of:

min
u∈Ck

{
− 〈zk,u〉+

µAk + µ0

2
‖u‖2

}
, (3.3)

with µ0
def
= L− µ. Then, for all k ≥ 0, xk ∈ X and:

f(xk)− f(x∗) ≤ (1− θ)k (L− µ)‖x∗ − y0‖2

2

+
2
∑k−1
i=0 ε

m
i + εmk

Ak
.

A simple observation, which turns out to be key for
the coupling to work is that when running AFW, there
exists an iteration K0 such that for all k ≥ K0 it holds
that x∗ ∈ co(SAFW

k), where SAFW
k denotes the active

set maintained by AFW in iteration k. This iteration
K0 only depends on the feasible region X and x∗ and,
as such, it is a burn-in period of constant length. In
particular, this fact is a consequence of strong convexity
of f that ensures that after a certain number of steps,
all iterates are localized in a ball of radius r0 centered
at x∗, where r0 is independent of target error ε.

To obtain locally accelerated convergence, we show
that from iteration K0 onwards, we can apply the
accelerated method from Lemma 3.2 with Ck being the
convex hull of the vertices from the active set and the
sequence x̃k being the sequence of the AFW steps. The
pseudocode for the LaCG-AFW algorithm is provided
in Algorithm 1. For completeness, pseudocode for one
iteration of the accelerated method (ACC), based on
Eq. (3.2) is provided in Algorithm 5 (Appendix B.2).

Our main theorem is stated below, with a proof sketch.
The full proof is deferred to Appendix B.2.
Main Theorem 3.3. (Convergence analysis of Lo-
cally Accelerated Conditional Gradients) Let xk be the
solution output by Algorithm 1 and r0 be the critical
radius (see Fact B.3 in Appendix B.2). If:

k ≥ min

{
8L

µ

(D
δ

)2

log
(f(x0)− f(x∗)

ε

)
,

K0 +H + 2

√
2L

µ
log

(
(L− µ)r0

2

2ε

)}
,

where H = 2
√

2L/µ log(L/µ − 1) and K0 =
8L
µ

(
D
δ

)2
log
(

2(f(x0)−f(x∗))
µr02

)
, then:

f(xk)− f(x∗) ≤ ε.

Proof Sketch. The statement of the theorem is a di-
rect consequence of the following observations about
Algorithm 1. First, observe that the AFW algorithm is
run independently of the accelerated sequence, and, in
particular, the accelerated sequence has no effect on the

Locally Accelerated Conditional Gradients

Algorithm 1 Locally Accelerated Conditional Gradients with Away-Step Frank-Wolfe (LaCG-AFW)

1: Let x0 ∈ X be an arbitrary point, SAFW
0 = {x0}, λAFW

0 = [1]
2: Let y0 = x̂0 = w0 = x0, z0 = −∇f(y0) + Ly0, C1 = co(SAFW

0), a0 = A0 = 1, θ =
√

µ
2L , µ0 = L− µ

3: H = 2
θ log(1/(2θ2)− 1) . Minimum restart period

4: rf = false, rc = 0 . Restart flag and restart counter initialization
5: for k = 1 to K do
6: xAFW

k , SAFW
k , λAFW

k = AFW(xAFW
k−1 , SAFW

k−1 , λAFW
k−1) . Independent AFW update

7: Ak = Ak−1/(1− θ), ak = θAk
8: if rf and rc ≥ H then . Restart criterion is met
9: yk = argmin{f(xAFW

k), f(x̂k)}
10: Ck+1 = co(SAFW

k) . Updating feasible set for the accelerated sequence
11: ak = Ak = 1, zk = −∇f(yk) + Lyk . Restarting accelerated sequence
12: x̂k = wk = argminu∈Ck+1

{− 〈zk,u〉+ L
2 ‖u‖

2}
13: rc = 0, rf = false . Resetting the restart indicators
14: else
15: if SAFW

k \ SAFW
k−1 6= ∅ then . If a vertex was added to the active set

16: rf = true . Raise freeze flag
17: if rf = true then
18: Ck = Ck−1 . Freeze the feasible set
19: x̂k, zk, wk = ACC(x̂k−1, zk−1,wk−1, ak, Ak, Ck) . Run AGD+ uncoupled from CG.
20: else
21: Ck = co(SAFW

k) . Update the feasible set
22: x̂k, zk, wk = ACC(xk−1, zk−1,wk−1, ak, Ak, Ck) . Run AGD+ coupled to CG.
23: xk = argmin{f(xAFW

k), f(x̂k), f(xk−1)} . Choose the better step + monotonicity
24: rc = rc + 1 . Increment the restart counter

AFW-sequence whatsoever. Further, in any iteration,
the set Ck that we project onto is the convex hull of
some active set SAFW

i ⊆ X for some 0 ≤ i ≤ k − 1
implying x̂k ∈ X – each x̂k is hence feasible.

Now, as in any iteration k the solution outputted
by the algorithm is xk = argmin{f(xAFW

k), f(x̂k)},
the algorithm never makes less progress than AFW.
This immediately implies (by a standard AFW guar-
antee; see Lacoste-Julien and Jaggi (2015) and Propo-
sition B.4) that for k ≥ 8L

µ

(
D
δ

)2
log
(f(x0)−f(x∗)

ε

)
, it

must be that f(xk)− f(x∗) ≤ ε, which establishes the
unaccelerated part of the minimum in the asserted rate.

Further, there exists an iteration K ≤ K0 such that
for all k ≥ K it holds x∗ ∈ co(SAFW

k) (see Proposi-
tion B.4). Let K be the first such iteration. Then,
the AFW algorithm must have added a vertex in it-
eration K as otherwise x∗ ∈ co(SAFW

k−1), contradicting
the minimality of K. Due to the restarting criterion
from Algorithm 1, a restart must happen by iteration
K0+H. Thus, for k ≥ K0+H, it must be x∗ ∈ Ck. The
rest of the proof invokes Lemma 3.2 and its corollary
(Corollary B.5), which ensures accelerated convergence
following iteration K0 +H.

Remark 3.4 (Inexact projection oracles). We stated
Theorem 3.3 assuming exact minimization oracle (εmi =
0 in Lemma 3.2). Clearly, it suffices to have εmi = ai

8 ε

and invoke Theorem 3.3 for target accuracy ε/2.

Remark 3.5 (Early stopping). If in any iteration the
Wolfe gap of the accelerated sequence on Ck is smaller
than the target accuracy of the projection subproblem
(order- ε√

µL
), then f cannot be reduced by more than

order- ε√
µL

on Ck, and one can restart without affecting
the theoretical convergence guarantee.

Remark 3.6 (Variant relying exclusively on a linear
optimization oracle). Similar as in the Conditional Gra-
dient Sliding (CGS) algorithm (Lan and Zhou, 2016)
we can solve the projection problems using CG. In fact,
a variant of CGS is recovered if we ignore the AFW
steps and only run the accelerated sequence with such
projections realized by CG.

4 Computational Results

The theoretical results from the previous section showed
that LaCG leads to asymptotically optimal local con-
vergence rates for smooth strongly convex optimization
over polytopes. However, this acceleration comes at the
cost of more computationally-intensive iterations. In
this section, we show that the improvement in the con-
vergence rate is sufficiently high to offset the increased
cost of iterations, allowing LaCG to outperform other
CG variants in terms of wall-clock time in most settings.

Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

We implemented Algorithm 1 in Python 3, employing
the O (n log n) projections onto the simplex described
in Duchi et al. (2008, Algorithm 1) and Nesterov’s
accelerated gradient descent (Nesterov, 2018) to solve
the projection subproblems. In all experiments, we
used ε = 10−5 · (f(x0) − f(x∗)) as the target error.
As mentioned before, LaCG can be used with any
CG variant that maintains an active set; this excludes
e.g., Decomposition invariant CG (DiCG) variants; see
Garber and Meshi (2016); Bashiri and Zhang (2017).

Results for each example are shown in a figure with
four plots. The first two plots compare standard LaCG
variants to AFW, PFW, and DiCG (if applicable) in
iterations (log-log scale) and wall-clock time (log scale).
The second two plots compare the standard and lazified
variants of LaCG (denoted by (L)) to CGS and Cata-
lyst in iterations (log-log scale) and wall-clock time (log
scale). As shown in Figs. 1-4, LaCG can make up for
more expensive iterations thanks to its higher conver-
gence rate following the burn-in phase, outperforming
other methods in many important examples.

There are also examples in which LaCG is outper-
formed by other methods; in particular, by DiCG (see
Appendix C). This happens when the linear optimiza-
tion oracle is very efficient and the active sets are large.
In this case, DiCG outperforms all active set based
methods. Note that, however, DiCG is not broadly
applicable; see, e.g., the discussion for the structured
regression example below. In all other experiments (see
Figs. 1-4) LaCG outperforms DiCG.

Birkhoff polytope. The first example, shown in
Fig. 1(a)-1(d), corresponds to minimization over the
Birkhoff polytope in Rn×n where n2 = 1600 with
f(x) = xT M

TM+I
2 x, M ∈ Rn×n is a sparse matrix

whose 1% of the elements are drawn from a standard
Gaussian distribution, and I is the identity matrix
(the matrix MTM has 15% non-zero elements). The
resulting condition number is L/µ ≈ 100. The linear
optimization oracle in this instance uses the Hungarian
algorithm, which has complexity O(n3).

Structured Regression. The second example,
shown in Fig. 2(a)-2(d), corresponds to a structured re-
gression problem over the convex hull of the feasible set
defined by integer and linear constraints, where the lin-
ear optimization oracle corresponds to solving a mixed
integer program (MIP) with a linear objective function.
The specific instance used is ran14x18-disj-8, of di-
mension 504, from the MIPLIB library. The objective
function f(x) = xT M2 x + b was obtained by first gen-
erating an orthonormal basis B = {u1, · · · ,un} in Rn
and a set of n uniformly distributed values {λ1, · · · , λn}
between µ and L and setting M =

∑n
i=1 λiuiu

T
i . The

vector b was set to be outside of the feasible region,
and has random entries uniformly distributed in [0, 1].
Note that DiCG (Garber and Meshi, 2016; Bashiri and
Zhang, 2017) is not applicable here, as the represen-
tation of the MIPLIP polytope mixes continuous and
integer variables. In fact, for polytopes over which
linear optimization is NP-hard (e.g., TSP polytope),
efficiently computing away steps with an away step
oracle as in Bashiri and Zhang (2017) is not possible
unless NP = co-NP.

Congestion Balancing in Traffic Networks. We
consider the problem of congestion balancing in traffic
networks. This problem can be posed as a feasible flow
with multiple source-sink pairs and with convex costs
on flows over the edges (see, e.g., Ahuja et al. (1993,
Chapter 14)). We choose the costs to be weighted
quadratic, as such costs have the role of balancing the
congestion over the network edges (see, e.g., Diakoniko-
las et al. (2018)). The weights are chosen randomly
between µ and L, with L/µ = 100, leading to a separa-
ble quadratic objective. The problem instance is the
road_paths_01_DC_a flow polytope (same as in Lan
et al. (2017) and Braun et al. (2019), with dimension
n = 29682). As the flow polytope in this case is not
a 0/1 polytope, DiCG (Garber and Meshi, 2016) does
not apply to this problem instance.

Probability Simplex. The last example, shown in
Fig. 4(a)-4(d), is the probability simplex, which, while
a toy example, lends itself nicely for comparisons be-
tween methods. Due to the structure of this polytope,
there is no need to explicitly maintain an active set in
the AFW, PFW or the LaCG algorithm. This greatly
speeds up all the algorithms, and eliminates the main
advantage of the DiCG algorithm. There are also fur-
ther enhancements that can be made to the LaCG
algorithm in this case (see Appendix C.3). We gener-
ate the objective function in the same way as in the
Structured Regression, with n = 1500, L/µ = 1000 and
with b having random integer values of −1, 0, or 1.

Lazification. Our proposed approach is also compat-
ible with the lazification technique from Braun et al.
(2017). To demonstrate the advantage of lazification
in terms of wall-clock time, we run it as an alternative
version of LaCG when comparing against CGS and
Catalyst for each example. As a reference and for com-
parison, we also include the lazified AFW algorithm.

5 Discussion

We presented the Locally-Accelerated Conditional Gra-
dients framework that achieves asymptotically optimal
rate in a local region around the minimum and improves

Locally Accelerated Conditional Gradients

100 101 102 103 104

k

10−3

10−1

101

f(
x
k
)
−
f*

AFW

PFW

DICG

LaCG

LaCG-PFW

(a) Iteration

0 250 500 750 1000
t[s]

10−3

10−1

101
AFW

PFW

DICG

LaCG

LaCG-PFW

(b) Wall-clock time

100 101 102 103 104

k

10−3

10−1

101

f(
x
k
)
−
f*

AFW (L)

LaCG-AFW

LaCG-AFW (L)

CGS

Catalyst

(c) Iteration

0 200 400 600 800 1000 1200
t[s]

10−3

10−1

101

(d) Wall-clock time

Figure 1: Birkhoff polytope: Algorithm comparison in terms of (a),(c) iteration count and (b),(d) wall-clock time.

100 101 102 103 104

k

10−1

101

103

f(
x
k
)
−
f*

AFW

PFW

LaCG-AFW

LaCG-PFW

(a) Iteration

0 1000 2000 3000 4000
t[s]

10−1

101

103

(b) Wall-clock time

100 102 104

k

10−1

101

103

f(
x
k
)
−
f*

AFW (L)

LaCG-AFW

LaCG-AFW (L)

CGS

Catalyst

(c) Iteration

0 1000 2000 3000 4000
t[s]

10−1

101

103

(d) Wall-clock time

Figure 2: MIPLIB polytope: Algorithm comparison in terms of (a),(c) iteration count and (b),(d) wall-clock time
for the ran14x18-disj-8 polytope from the MIPLIB library.

100 101 102 103

k

10−1

100

101

102

103

104

f(
x
k
)
−
f*

AFW

PFW

LaCG-AFW

LaCG-PFW

(a) Iteration

0 500 1000 1500
t[s]

10−1

100

101

102

103

104

(b) Wall-clock time

100 101 102 103 104

k

10−1

100

101

102

103

104

f(
x
k
)
−
f*

AFW (L)

LaCG-AFW

LaCG-AFW (L)

CGS

Catalyst

(c) Iteration

0 200 400 600 800 1000 1200
t[s]

10−1

100

101

102

103

104

(d) Wall-clock time

Figure 3: Traffic network: Algorithm comparison in terms of (a),(c) iteration count and (b),(d) wall-clock time.

100 101 102 103 104

k

10−4

10−2

100

102

f(
x
k
)
−
f*

AFW

PFW

DICG

LaCG-AFW

LaCG-PFW

(a) Iteration

0 5 10 15 20 25
t[s]

10−4

10−2

100

102

(b) Wall-clock time

100 101 102 103 104

k

10−4

10−2

100

102

f(
x
k
)
−
f*

LaCG-AFW

CGS

Catalyst

(c) Iteration

0 50 100 150 200
t[s]

10−4

10−2

100

102

(d) Wall-clock time

Figure 4: Simplex: Algorithm comparison in terms of (a),(c) iteration count and (b),(d) wall-clock time.

upon the existing conditional gradients methods, both
in theory and in experiments. As discussed before, such
an accelerated rate cannot be achieved globally.

Some interesting questions for future research remain.
For example, can we obtain dimension-independent
local acceleration (i.e., 1/k2 local convergence rate)
for smooth (non-strongly) convex minimization? The
current impediment to extending our techniques to this
case is that the burn-in time becomes dependent on
ε, scaling with 1/ε, which effectively cancels out any
benefits from local acceleration. Further, it would be in-

teresting to understand whether the version of µAGD+
from Lemma 3.2, which allows changing the projec-
tion set Ck, can speed up the practical performance of
accelerated methods in other settings.

Acknowledgements

Research reported in this paper was partially supported
by the NSF grant CCF-1740855, NSF CAREER Award
CMMI-1452463, and Award W911NF-18-1-0223 from
the Army Research Office. Part of it was done while JD

Jelena Diakonikolas, Alejandro Carderera, Sebastian Pokutta

and SP were visiting Simons Institute for the Theory
of Computing.

References

Ravindra K. Ahuja, Thomas L. Magnanti, and
James B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc., 1993.

Mohammad Ali Bashiri and Xinhua Zhang.
Decomposition-invariant conditional gradient for
general polytopes with line search. In Proc. NIPS’17,
2017.

Amir Beck and Marc Teboulle. A fast iterative
shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

Michael Betancourt, Michael I Jordan, and Ashia C
Wilson. On symplectic optimization. arXiv preprint
arXiv:1802.03653, 2018.

G. Braun, S. Pokutta, and D. Zink. Lazifying Condi-
tional Gradient Algorithms. In Proc. ICML’17, 2017.

Gábor Braun, Sebastian Pokutta, Dan Tu, and
Stephen Wright. Blended conditional gradients: the
unconditioning of conditional gradients. In Proc.
ICML’19, 2019.

Sébastien Bubeck, Yin Tat Lee, and Mohit Singh. A
geometric alternative to Nesterov’s accelerated gradi-
ent descent. arXiv preprint, arXiv:1506.08187, 2015.

Michael B Cohen, Jelena Diakonikolas, and Lorenzo
Orecchia. On acceleration with noise-corrupted gradi-
ents. In Proc. ICML’18, 2018.

Jelena Diakonikolas and Lorenzo Orecchia. Accel-
erated extra-gradient descent: A novel, accelerated
first-order method. In Proc. ITCS’18, 2018.

Jelena Diakonikolas and Lorenzo Orecchia. The ap-
proximate duality gap technique: A unified theory of
first-order methods. SIAM J. Optimiz., 29(1):660–689,
2019.

Jelena Diakonikolas, Maryam Fazel, and Lorenzo
Orecchia. Width-independence beyond linear objec-
tives: Distributed fair packing and covering algo-
rithms. arXiv preprint arXiv:1808.02517, 2018.

Dmitriy Drusvyatskiy, Maryam Fazel, and Scott Roy.
An optimal first order method based on optimal
quadratic averaging. SIAM J. Optimiz., 28(1):251–
271, 2018.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and
Tushar Chandra. Efficient projections onto the `1-ball
for learning in high dimensions. In Proc. NIPS’08,
2008.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong
Zhang. Spider: Near-optimal non-convex optimization
via stochastic path-integrated differential estimator.
In Proc. NIPS’18, 2018.

Lisa K Fleischer, Adam N Letchford, and Andrea
Lodi. Polynomial-time separation of a superclass of
simple comb inequalities. Math. of Oper. Res., 31(4):
696–713, 2006.

Marguerite Frank and Philip Wolfe. An algorithm
for quadratic programming. Naval research logistics
quarterly, 3(1-2):95–110, 1956.

Futoshi Futami, Zhenghang Cui, Issei Sato, and
Masashi Sugiyama. Bayesian posterior approximation
via greedy particle optimization. In Proc. AAAI’19,
2019.

D. Garber and E. Hazan. A linearly convergent variant
of the conditional gradient algorithm under strong
convexity, with applications to online and stochastic
optimization. SIAM J. Optimiz., 26(3):1493–1528,
2016.

Dan Garber and Ofer Meshi. Linear-memory and
decomposition-invariant linearly convergent condi-
tional gradient algorithm for structured polytopes.
In Proc. NIPS’16, 2016.

Dan Garber, Shoham Sabach, and Atara Kaplan. Fast
generalized conditional gradient method with appli-
cations to matrix recovery problems. arXiv preprint
arXiv:1802.05581, 2018.

Jacques Guélat and Patrice Marcotte. Some comments
on Wolfe’s ‘away step’. Math. Program., 35(1):110–
119, 1986.

David H Gutman and Javier F Pena. The condition
number of a function relative to a set. arXiv preprint
arXiv:1901.08359, 2019.

Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and
Zebang Shen. Stochastic conditional gradient++.
arXiv preprint arXiv:1902.06992, 2019.

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free
sparse convex optimization. In Proc. ICML’13, 2013.

Armand Joulin, Kevin Tang, and Li Fei-Fei. Efficient
image and video co-localization with Frank-Wolfe
algorithm. In Proc. ECCV’14, 2014.

Thomas Kerdreux, Alexandre d’Aspremont, and Se-
bastian Pokutta. Restarting Frank–Wolfe. In Proc.
AISTATS’18, 2018a.

Thomas Kerdreux, Fabian Pedregosa, and Alexandre
D’Aspremont. Frank-Wolfe with subsampling oracle.
In Proc. ICML’18, 2018b.

Locally Accelerated Conditional Gradients

Simon Lacoste-Julien and Martin Jaggi. On the global
linear convergence of Frank-Wolfe optimization vari-
ants. In Proc. NIPS’15, 2015.

Simon Lacoste-Julien, Martin Jaggi, Mark W Schmidt,
and Patrick Pletscher. Block-coordinate Frank-Wolfe
optimization for structural svms. In Proc. ICML’13,
2013.

Guanghui Lan. The complexity of large-scale con-
vex programming under a linear optimization oracle.
arXiv preprint arXiv:1309.5550, 2013.

Guanghui Lan and Yi Zhou. Conditional gradient
sliding for convex optimization. SIAM J. Optimiz.,
26(2):1379–1409, 2016.

Guanghui Lan, Sebastian Pokutta, Yi Zhou, and
Daniel Zink. Conditional accelerated lazy stochas-
tic gradient descent. In Proc. ICML’17, 2017.

Evgeny S Levitin and Boris T Polyak. Constrained
minimization methods. USSR Computational mathe-
matics and mathematical physics, 6(5):1–50, 1966.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A
universal catalyst for first-order optimization. In Proc.
NIPS’15, 2015.

Yu E Nesterov. AnO(1/k)-rate of convergence method
for smooth convex functions minimization. In Dokl.
Acad. Nauk SSSR, volume 269, pages 543–547, 1983.

Yurii Nesterov. Lectures on Convex Optimization.
Springer, 2018.

Javier Pena and Daniel Rodriguez. Polytope condi-
tioning and linear convergence of the Frank-Wolfe
algorithm. Math. of Oper. Res., 44(1):1–18, 2018.

Boris T Polyak. Some methods of speeding up the
convergence of iteration methods. USSR Comput.
Math. & Math. Phys., 4(5):1–17, 1964.

Thomas Rothvoß. The matching polytope has expo-
nential extension complexity. Journal of the ACM
(JACM), 64(6):41, 2017.

Mark Schmidt, Nicolas L Roux, and Francis R Bach.
Convergence rates of inexact proximal-gradient meth-
ods for convex optimization. In Proc. NIPS’11, 2011.

Zebang Shen, Cong Fang, Peilin Zhao, Junzhou
Huang, and Hui Qian. Complexities in projection-
free stochastic non-convex minimization. In Proc.
AISTATS’19, 2019.

Paul Swoboda and Vladimir Kolmogorov. MAP infer-
ence via block-coordinate Frank-Wolfe algorithm. In
Proc. IEEE CVPR’19, 2019.

Paul Tseng. On accelerated proximal gradient meth-
ods for convex-concave optimization, 2008.

