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1 Proof Theorem 1

Proposition 1. Let dY (t, t′) = ||Ỹt−Ỹt′ || and rY (t, ti) = dY (t, ti)/dY (t, t1), where Ỹt = [Yt, Yt−τ , . . . , Yt−(d−1)τ ]

is the delayed coordinate embedding of Yt, and {Ỹti : i = 1, . . . , d+ 1} are the d+ 1 nearest neighbors to Ỹt.
The CCM score of Yt on Xt based on MAE metric is equal to:

CCM(Xt | Yt) =
∣∣∣(X0 −

µ

1− α

)(
αt −

d+1∑
i=1

wY (ti, t)α
ti
)
+
(
Et −

d+1∑
i=1

wY (ti, t)Eti

)∣∣∣,
where Et =

∑t
s=1 α

t−sεs, and wY (ti, t) = e−rY (t,ti)/
∑d+1
j=1 e

−rY (t,tj). Similarly, let dX(t, t′) = ||X̃t − X̃t′ ||
and rX(t, t′i) = dX(t, t′i)/dX(t, t′1), where X̃t = [Xt, Xt−τ , . . . , Xt−(d−1)τ ] is the delayed coordinate embedding
of Xt, and {X̃t′i

: i = 1, . . . , d+ 1} are the d+ 1 nearest neighbors to X̃t. The CCM score of Xt on Yt based
on MAE metric is equal to:

CCM(Yt | Xt) =
∣∣∣β(X0 −

µ

1− α

)(
αt−1 −

d+1∑
i=1

wX(t′i, t)α
t′i−1

)
+ β

(
Et −

d+1∑
i=1

wX(t′i, t)Et′i

)
+
(
ζt −

d+1∑
i=1

wX(t′i, t)ζt′i

)∣∣∣,
where wX(t′i, t) = e−rX(t,t′i)/

∑d+1
j=1 e

−rX(t,t′j).

Proof. Recall that the AR model is as follows:

Xt = αXt−1 + µ+ εt,

Yt = βXt−1 + µ+ ζt,

where α, β are fixed, with |α| < 1, β ≥ 0, µ is the drift, εt ∼ N (0, σ2
X) and ζt ∼ N (0, σ2

Y ) are zero-mean and
constant-variance normal errors. We can solve the recursion to obtain:

Xt = αtX0 + Pt(α)µ+ Et,

Yt = βαt−1X0 + (βPt−1(α) + 1)µ+ βEt + ζt,

where Pt(α) = 1 + α + . . . + αt−1 = (1 − αt)/(1 − α) and Et is the summation of weighted error terms
Et =

∑t
s=1 α

t−sεs.
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The cross estimation for Xt is

X̂t =

d+1∑
i=1

wY (ti, t)Xti =

d+1∑
i=1

wY (ti, t)
(
αtiX0 + Pti(α)µ+ Eti

)
,

where wY (ti, t) = e−rY (t,ti)/
∑d+1
j=1 e

−rY (t,tj). Then, the CCM score of Yt on Xt based on MAE can be
expressed as:

|Xt − X̂t| =
∣∣∣αtX0 + Pt(α)µ+ Et −

( d+1∑
i=1

wY (ti, t)(α
tiX0 + Pti(α)µ+ Eti)

)∣∣∣
=
∣∣∣X0

(
αt −

d+1∑
i=1

wY (ti, t)α
ti
)
+ µ

(
Pt(α)−

d+1∑
i=1

wY (ti, t)Pti(α)
)
+
(
Et −

d+1∑
i=1

wY (ti, t)Eti

)∣∣∣
=
∣∣∣X0

(
αt −

d+1∑
i=1

wY (ti, t)α
ti
)
+ µ

(1− αt
1− α

−
d+1∑
i=1

wY (ti, t)
1− αti
1− α

)
+
(
Et −

d+1∑
i=1

wY (ti, t)Eti

)∣∣∣
=
∣∣∣(X0 −

µ

1− α

)(
αt −

d+1∑
i=1

wY (ti, t)α
ti
)
+
(
Et −

d+1∑
i=1

wY (ti, t)Eti

)∣∣∣. (1)

Similarly, the cross estimation for Yt is

Ŷt =

d+1∑
i=1

wX(t′i, t)Yt′i =

d+1∑
i=1

wX(t′i, t)(βα
t′i−1X0 + (βPt′i−1(α) + 1)µ+ βEt′i + ζt′i), (2)

where wX(t′i, t) = e−rX(t,t′i)/
∑d+1
j=1 e

−rX(t,t′j). Then, the CCM score of Xt on Yt based on MAE can be
expressed as:

|Yt − Ŷt| =
∣∣∣βαt−1X0 +

(
βPt−1(α) + 1

)
µ+ βEt + ζt −

( d+1∑
i=1

wX(t′i, t)(βα
t′i−1X0 + (βPt′i−1(α) + 1)µ+ βEt′i + ζt′i)

)∣∣∣
=
∣∣∣βX0

(
αt−1 −

d+1∑
i=1

wX(t′i, t)α
t′i−1

)
+ βµ

(
Pt−1(α)−

d+1∑
i=1

wX(t′i, t)Pt′i−1(α)
)
+ β

(
Et −

d+1∑
i=1

wX(t′i, t)Et′i

)
+
(
ζt −

d+1∑
i=1

wX(t′i, t)ζt′i

)∣∣∣
=
∣∣∣βX0

(
αt−1 −

d+1∑
i=1

wX(t′i, t)α
t′i−1

)
+ βµ

(1− αt−1
1− α

−
d+1∑
i=1

wX(t′i, t)
1− αt′i−1

1− α

)
+ β

(
Et −

d+1∑
i=1

wX(t′i, t)Et′i

)
+
(
ζt −

d+1∑
i=1

wX(t′i, t)ζt′i

)∣∣∣
=
∣∣∣β(X0 −

µ

1− α

)(
αt−1 −

d+1∑
i=1

wX(t′i, t)α
t′i−1

)
+ β

(
Et −

d+1∑
i=1

wX(t′i, t)Et′i

)
+
(
ζt −

d+1∑
i=1

wX(t′i, t)ζt′i

)∣∣∣.
(3)

We now proceed to the proof of Theorem 1 using the results in Equation (1) and Equation (3). We repeat
the Assumption 1 in the main paper.
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Assumption 1. For the CCM scores in Proposition 1, fix t and let L→∞, and suppose that:
(a) mini=1,...,d+1 min{t′i, ti} → ∞;
(b) lim supi=1,...,d+1 |wY (ti, t)− 1

d+1 | = 0, and lim supi=1,...,d+1 |wX(t′i, t)− 1
d+1 | = 0;

(c) mini6=j |ti − tj | → ∞ and mini6=j |t′i − t′j | → ∞.

Theorem 1. Suppose that Assumptions 1(a)-(c) hold for the CCM scores in Proposition 1, then

CCM(Xt | Yt)
d−→ FN

(
(X0 −

µ

1− α
)αt,

2− α2t

1− α2
σ2
X

)
,

CCM(Yt | Xt)
d−→ FN

(
β(X0 −

µ

1− α
)αt−1,

2− α2t

1− α2
β2σ2

X + 2σ2
Y

)
,

where FN(µ, σ2) = |N(µ, σ2)| is the folded normal distribution with mean µ and variance σ2.

Proof. From α < 1 and Assumption 1(a) we get:

d+1∑
i=1

wY (ti, t)α
ti ≤

d+1∑
i=1

wY (ti, t)α
mini min{ti,t′i} ≤ αmini min{ti,t′i}

d+1∑
i=1

wY (ti, t) = αmini min{ti,t′i} → 0.

Since Et =
∑t
s=1 α

t−sεs = αt−1ε1 + αt−2ε1 + · · ·+ εt and εt ∼ N (0, σ2
X), we have

E(Et) = 0, and var(Et) =
1− α2t

1− α2
σ2
X .

For ti 6= tj , it is straightforward to show that cov(Eti , Etj ) = O(α|ti−tj |) → 0, where the limit follows
from Assumption 1(c). Similarly, the results hold for t′i, t′j .

E(Eti) and Cov(Eti , Eti) =
1− α2ti

1− α2
σ2
X →

1

1− α2
σ2
X .

From Assumption 1(b) we have:

d+1∑
i=1

wY (ti, t)Eti
d−→ 1

d+ 1

d+1∑
i=1

Eti → N(0,
σ2
X

1− α2
),

from which it follows that

Et −
d+1∑
i=1

wY (ti, t)Eti ∼ N(0,
2− α2t

1− α2
σ2
X).

Hence, CCM(Xt | Yt) converges in a distribution to

CCM(Xt | Yt)
d−→ FN

(
(X0 −

µ

1− α
)αt,

2− α2t

1− α2
σ2
X

)
,

where FN(·, ·) is the folded normal distribution.
Similarly, since ζt ∼ N (0, σ2

Y ) and lim supi=1,...,d+1 |wX(t′i, t)− 1
d+1 | = 0, we have

∑
i

wX(t′i, t)ζt′i =
1

d+ 1

d+1∑
i=1

wX(t′i, t)ζt′i + oP (1)
d−→ N(0, σ2

Y ).
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It follows that ζt −
∑d+1
i=1 wX(t′i, t)ζt′i ∼ N (0, 2σ2

Y ), and that CCM(Yt | Xt) converges in a distribution to

CCM(Yt | Xt)
d−→ FN

(
β(X0 −

µ

1− α
)αt−1,

2− α2t

1− α2
β2σ2

X + 2σ2
Y

)
.

2 Data

2.1 California’s Tobacco Control Program

California’s tobacco control program Abadie et al. (2010) uses the annual state-level per-capita cigarette
sales panel data from 1970 to 2000. Artificial control units As,t are created in our simulated study, where s
denotes a hypothetical state and t indicates time, and then are added in the donor pool. Then, we perform
the standard synthetic control analysis, and check whether CCM+SCM or SCM select the artificial units to
construct synthetic California.

We use time series templates to generate artificial control units. In particular, we create 39 artificial
states As,t (the same number of states in original study) with corresponding panel data and four predictors
of the outcome variable. The panel data are generated from multiple sets of noisy copies from the template
and the predictors are from original tobacco data but with permuted indices for each artificial state. We
add As,t to the original pool to construct a new pool including 77 control units. We also apply moderate
data transformations to ensure these adversaries sizable but unrelated to original data, and multiple sets
of artificial control units are generated. We run simulations for each set of adversaries and display result
distributions with box plots. The template data are described as follows.

Unemployment. The unemployed percent of US labor force data include annual average employment
status of the civilian population from 1976 to 2016, giving 41 years of data for 51 states. 1 We define
artificial units as As,t = kUs,t, where k is a scalar, and Us,t is unemployment for state s at time t. To make
the data sizable with the tobacco data, k is set to be 6. To generate multiple sets of artificial control units,
we select the starting year between 1976 to 1986 and take the following 31 data points as 31 years of data for
each state, which gives 11 sets of artificial control units. The simulation results are obtained over 11 runs.

2.2 Brexit Vote

We picked 30 OECD-member countries as controls, and UK as the treated unit. We collected quarterly
real GDP data of these countries from the OECD Economic Outlook database (June 2017) from 1995Q1
to 2018Q4 2, where data from 2017Q4 till 2018Q4 are forecasts. The whole quarterly GDP data has 96
data points, and the first 86 points are before Brexit vote. It is assumed that the treatment took form after
2016Q2, and the countries in the donor pool are not affected by the treatment. We also collected predictors
of outcome variable such as private consumption, investment, inflation rate, interest rate, and exchange rate.

We normalized the time series for each country by dividing the time series by its 1995 average and then
taking logarithm of that time series to generate the approximately zero starting point in 1995. The predictors
of outcome variable include:

1Data collected from the Local Area Unemployment Statistics (LAUS) program of the Bureau of Labor Statistics (BLS) (Bu-
reau of Labor Statistics, 2018) https://www.bls.gov/lau/staadata.txt

2https://stats.oecd.org/index.aspx?DataSetCode=EO
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Figure 1: Complementary to Figure 3 in the main paper: Per-capita cigarette sales trends for California,
Connecticut, and Smooth Connecticut.

(a) Real private consumption: the sum of real final consumption expenditure of both households and non-
profit institutions serving households, from 1997Q1 to 2017Q2.

(b) Real investment: total gross fixed capital formation, from 1995Q1 to 2017Q2.
(c) Net exports: the external balance of goods and services, from 1997Q1 to 2017Q2.
(d) Inflation series: the change in the Consumer Price Index (CPI), from 1998Q1 to 2017Q3.
(e) Quarterly short-term nominal interest rates: quarterly averages of monthly values, from 2002Q1 to

2017Q4.
(f) Nominal exchange rates: from 1997Q1 to 2018Q4.

The artificial control units are generated in the same way as the example of California’s tobacco control
program. We use time series template and create 31 artificial countries As,t (same number of control countries
in the original study) with corresponding panel data and six predictors of the outcome variable. We add
As,t to the original pool to construct a new pool including 61 control units. We also apply moderate data
transformations to ensure these adversaries sizable and unrelated to original panel data. The details on how
to generate the adversaries are described as follows.

Calls. We use the calls data collected from the Monthly average daily calls to directory assistance from
Jan 1962 to Dec 1976 3 as the template for our adversarial attack. We choose the first 106 data points from
this series due to its similar trend with the brexit data, which gives 11 different sets of templates by choosing
different starting points. For each template, we fit an autoregressive model and create 31 noisy copies as 31
artificial countries by adding Gaussian noise to them. The simulation results are obtained over 11 runs.

3 Discussion on CCM

Due to the success of CCM in quantifying dynamical relationships (Sugihara et al., 2012; Deyle et al., 2013),
it may be tempting to consider CCM as a method for causal inference. We recommend putting more thoughts
before applying this idea. To illustrate why, we apply CCM on causal relationship detection tasks from the
benchmark dataset CauseEffectPairs (Mooij et al., 2016), which contains time series pairs that are known
a priori to be causal or not. In practice, time series are normalized before applying CCM on them to ensure
all series have the same magnitude for comparison and avoid constructing a distorted state space (Chang

3https://datamarket.com/data/set/22yq
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et al., 2017).
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Figure 2: CCM results from two pairs. The number in the title of each figure corresponds to the pair index.
The ground truths are: 67 (X → Y ), 69 (Y → X).

Two cases where CCM fails to detect the true direction of causality are shown in Figure 2. Pair 67 is
the financial time series about stock returns from two companies in which one stock is believed to depend
on the other. We can see that the CCM score fails to visually converge as library size L increases. By
inspection, the time series are close to random walks. Since CCM theory mainly applies on deterministic or
chaotic dynamical systems, it is not reliable as a standalone causal inference method in systems dominated
by noise. Another example is Pair 69 in the data of indoor and outdoor temperature. Here, the ground truth
is that outdoor temperature variable Y drives the indoor temperature variable X, indicating that the dotted
curve should converge faster than the solid curve in the right subplot of Figure 2. However, CCM gives the
opposite causal direction result. A possible explanation might be that temperature is periodic since it has
been suggested that strong periodicity could undermine the effectiveness of CCM (Chang et al., 2017).

Another practical aspect is that hyperparameters, such as the embedding dimension d and time delay τ ,
should be carefully chosen. To illustrate this, we consider Pair 68 in the data of internet connections and
traffic, where X is bytes sent and Y is number of http connections. Figure 3 shows CCM results for this
pair with simple data transformations and with varying the embedding dimension d.

Although CCM uncovers the correct causal detection with the original data under embedding dimension
d = 3, the result is not strong enough. Moreover, CCM detects a wrong causal direction when the embedding
dimension is set to d = 4. We note that the results improve with transformations, say, log transforms.
Optimality of embedding methods and parameter tuning are currently active research areas (Rosenstein
et al., 1994; Small and Tse, 2004; Garland and Bradley, 2015).
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Figure 3: CCM results on pair 68. The ground truth is Y → X.
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