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Abstract

Despite the tremendous progress in the esti-
mation of generative models, the development
of tools for diagnosing their failures and as-
sessing their performance has advanced at
a much slower pace. Recent developments
have investigated metrics that quantify which
parts of the true distribution is modeled well,
and, on the contrary, what the model fails to
capture, akin to precision and recall in infor-
mation retrieval. In this paper, we present a
general evaluation framework for generative
models that measures the trade-off between
precision and recall using Rényi divergences.
Our framework provides a novel perspective
on existing techniques and extends them to
more general domains. As a key advantage,
this formulation encompasses both continu-
ous and discrete models and allows for the
design of efficient algorithms that do not have
to quantize the data. We further analyze the
biases of the approximations used in practice.

1 INTRODUCTION

Deep generative models, such as generative adversar-
ial networks (Goodfellow et al., 2014) and variational
autoencoders (Kingma and Welling, 2013; Rezende
et al., 2014), have recently risen to prominence due to
their ability to model high-dimensional complex dis-
tributions. While we have witnessed a tremendous
growth in the number of proposed models and their
applications, a comprehensive set of quantitative eval-
uation measures is yet to be established. Obtaining
sample-based quantities that can reflect common issues
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occurring in generative models, such as “mode drop-
ping” (failing to adequately capture all the modes of
the target distribution) or “oversmoothing” (inability to
produce the high frequency characteristics of points in
the true distribution) remains a key research challenge.

Currently used metrics, such as the inception score
(IS) (Salimans et al., 2016) and the Fréchet inception
distance (FID) Heusel et al. (2017) produce single num-
ber summaries quantifying the goodness of fit. Thus,
even though they can detect poor performance, they
cannot shed light upon the underlying cause. Sajjadi
et al. (2018) and later Kynkäänniemi et al. (2019) have
offered an alternative view, motivated by the notions of
precision and recall in information retrieval. Intuitively,
the precision captures the average “quality” of the gen-
erated samples, while the recall measures how well the
target distribution is covered. They have demonstrated
that such metrics can disentangle these two common
failure modes on a set of image synthesis experiments.

Unfortunately, these recent approaches rely on data
quantization and do not provide a theory that can be
directly used on with continuous distributions. For ex-
ample, in Sajjadi et al. (2018) the data is first clustered
and then the resulting class-assignment histograms are
compared. Recently, Simon et al. (2019) suggest an
algorithm that extends to the continuous setting by
using a density ratio estimator, a result that we extend
to arbitrary Rényi divergences. In Kynkäänniemi et al.
(2019) the space is covered with hyperspheres and is
only sensitive to the size of the overlap of the supports
of the distributions.

In this work, we present an evaluation framework based
on the Pareto frontiers of Rényi divergences that en-
compasses these previous contributions as special cases.
Beyond this novel perspective on existing techniques,
we provide a general characterization of these Pareto
frontiers, in both the discrete and continuous case. This
in turn enables efficient algorithms that are directly
applicable to continuous distributions without the need
for discretization.
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Contributions (1) We propose a general framework
for comparing distributions based on the Pareto fron-
tiers of statistical divergences. (2) We show that the
family of Rényi divergences are particularly well suited
for this task and produce curves that can be inter-
preted as precision-recall trade-offs. (3) We develop
tools to compute these curves for several widely used
families of distributions. (4) We show that the recently
popularized definitions of precision and recall (Sajjadi
et al., 2018; Kynkäänniemi et al., 2019) correspond
to specific instances of our framework. In particular,
we give a theoretically sound geometric interpretation
of the definitions and algorithms in (Sajjadi et al.,
2018; Kynkäänniemi et al., 2019). (5) We analyze the
consequences of the approximations made when these
methods are used in practice.

The central problem considered in the paper is the
development of a framework that formalizes the con-
cepts of precision and recall for arbitrary measures,
and enables the development of principled evaluation
tools. Namely, we want to understand how does a
learned model, henceforth denoted by Q, compare to
the target distribution P . Informally, to compute the
precision we need to estimate how much probability
Q assigns to regions of the space where P has high
probability. Alternatively, to compute the recall we
need to estimate how much probability P assigns to
regions of the space that are likely under Q.

Let us start by developing an intuitive understand-
ing of the problem with simple examples where the
relationship between P and Q is easily understandable.
Figure 1 illustrates the case where P and Q are uniform
distributions with supports supp(P ) and supp(Q). To
help with the exposition of our approach in the next
section, we also introduce the distributions R∪ and R∩
which are uniform on the union and intersection of the
supports of P and Q respectively. Then, the loss in
precision can then be understood to be proportional to
the measure of supp(Q) \ supp(R∩) which corresponds
to the "part of Q not covered by P". Analogously, the
loss in recall of Q w.r.t. P is proportional to the size
of supp(P ) \ supp(R∩) which represents the "part of
P not covered by Q. Note that we can also write these
sets as supp(R∪)\ supp(P ) and supp(R∪)\ supp(Q) re-
spectively. The precision and recall are then naturally
maximized when P = Q. When the distributions are
discrete we would like to generate plots similar to those
in Figure 1b. The first column corresponds to Q which
fails to model one of the modes of P , and the second
column to a Q which has an “extra” mode. We would
like our framework to mark these two failure modes as
losses in recall and precision, respectively. The third
column corresponds to P = Q, followed by a situation
where P and Q have disjoint support. Finally, for the

last two columns, a possible precision-recall trade-off
is illustrated. While this intuition is satisfying for uni-
form and categorical distributions, it is unclear how
to extend it to continuous distributions that might be
supported on the complete space.

2 DIVERGENCE FRONTIERS

To formally transport these ideas to the general case,
we will introduce an auxiliary distribution R that is
constrained to be supported only on those regions where
both P and Q assign high probability1. Informally, this
should act as a generalization to the general case of
R∩, which was the measure on the intersection of the
supports of P and Q. Then, the discrepancy between
P and R measures the space that is likely under P
but not under R, which can be seen as loss in recall.
Similarly, the discrepancy between Q and R quantifies
the size of the space where Q assigns probability mass,
but P does not, which we can be interpreted as a loss
in recall.

Hence, we need both a mechanism to measure distances
between distributions and means to constrain R to
assign mass only where both P and Q do. For example,
if P and Q are both mixtures of several components R
should assign mass only to the components shared by
both P and Q.

A dual view Alternatively, building on the obser-
vation from the previous section that both R∪ and R∩
can be used to define precision and recall, instead of
modeling the intersection of P and Q, we can use an
auxiliary distribution R to approximate the union of
the high-probability regions of P and Q. Then, using a
similar analogy as before, the distance between P and
R should measure the loss in precision, while the dis-
tance between Q and R the loss in recall. In this case,
R should give non-zero probability to any part of the
space where either P or Q assign mass. When P and
Q are both mixtures of several components, R has to
be supported on the union of all mixture components.

As a result, the choice of the statistical divergence
between P , Q and R becomes paramount.

2.1 Choice of Divergence

To be able to constrain R to assign probability mass
only in those regions where P and Q do, we need
a measure of discrepancy between distributions that
penalizes differently under- and over-coverage. Even
though the theory and concepts introduced in this
paper extend to any such divergence, we will focus our

1This is in contrast to (Sajjadi et al., 2018), who require
P and Q to be mixtures with a shared component.
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(a) When P and Q are uniform we can define natural precision and
recall concepts using R∪ and R∩, which are uniform on the union
and intersection of the supports of P and Q respectively.
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(b) Examples with categorical P and Q, repro-
duced from Sajjadi et al. (2018).

Figure 1: For uniform measures we can define natural concepts using set operation (a). Similarly, when they are
simple categorical distributions, we would like to generate curves like those in (b).

attention to the family of Rényi divergences. They not
only do exhibit such behavior, but their properties are
also well-studied in the literature, which we can leverage
to develop a deeper understanding of our approach, and
in the design of efficient computational tools.

Definition 1 (Rényi Divergence (Rényi, 1961)). Let
P and Q be two measures such that Q is absolutely
continuous with respect to P , i.e., any measure set with
zero measure under P has also zero measure under Q.
Then, the Rényi divergence of order α ∈ (0, 1) ∪ (1,∞)
is defined as

Dα(P ‖Q) =
1

α− 1
log

∫ (
dP

dQ

)α−1

dP, (1)

where dP/dQ is the Radon-Nikodym derivative2.

The fact that they are sensitive to how the supports
of P and Q relate to one another is already hinted by
the constraint in the definition, which requires that
supp(P ) ⊆ supp(Q). Furthermore, by increasing the
parameter α the divergence becomes “less forgiving” —
for example if P and Q are Gaussians with deviations
σP and σQ, we have that Dα(P ‖Q) increases faster
as α→∞ when σQ drops below σP , while Dα(Q ‖P )
grows with increasing σQ and α→∞, which we illus-
trate in Figure 2. This is exactly the property that we
need to be able to define meaningful concepts of pre-
cision and recall. For a more detailed analysis of this
behavior we point the reader to Minka et al. (2005).

Rényi divergences have been extensively studied in
the literature (Van Erven and Harremos, 2014) and
many of their properties are well-understood — for
example, they are non-negative and zero only if the
distributions are equal a.s., and increasing in α. Some
of their orders are closely related to the Hellinger

2Equal to the ratios of the densities of P and Q when
they both exist.

and χ2 divergences, and it can be further shown that
DKL(P ‖Q) =

∫
log( dPdQ )dP = limα→1Dα(P ‖Q).
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Figure 2: Rényi divergences strongly penalize when the
first argument assigns mass away from the high proba-
bility regions of the second. We analytically evaluate
Dα, where P is a Normal (Gil et al., 2013).

2.2 Divergence Frontiers

Having defined a suitable discrepancy measure, we are
ready to define the central concepts in this paper, which
will play the role of precision-recall curves for arbitrary
measures. To do so, we will not put hard constraints
on R, but only softly enforce them. Namely, consider
the case when we want R to model the intersection
of the high likelihood regions of P and Q. Then, if it
fails to do so, either Dα(R ‖P ) or Dα(R ‖Q) will be
significantly large. Similarly, unless R fails to assign
large probabilities to the high likelihood regions of both
P and Q, at least one of Dα(P ‖R) and Dα(Q ‖R)
will be large. Thus, we will only consider those R
that simultaneously minimize both divergences, which
motivates the following definition.
Definition 2 (Divergence frontiers). For any two mea-
sures P and Q, any class of measuresM and any α ≥ 0,
we define the exclusive realizable region as the set

R∩α(P,Q) = {(Dα(R ‖Q), Dα(R ‖P )) | R ∈M}, (2)

and the inclusive realizable region R∪α(P,Q) by swap-
ping the arguments of Dα in (2). The exclusive and
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inclusive divergence frontiers are then defined as the
maximal points of the corresponding realizable regions

F∩α (P,Q | M) ={(π, ρ) ∈ R∩α(P,Q | M)

| @(π′, ρ′) ∈ R∩(P,Q)

s.t. π′ < π and ρ′ < ρ},
and F∪α is defined by replacing R∩ with R∪.

In other words, we want to compute the Pareto
frontiers of the multi-objective optimization prob-
lem with the divergence minimization objectives
f1(R) = Dα(R ‖Q), f2(R) = Dα(R ‖P ) and f3(R) =
Dα(Q ‖R), f4(R) = Dα(P ‖R) respectively. In ma-
chine learning such divergence minimization problems
appear in approximate inference. Interestingly, f1 and
f2 are the central object one minimizes in variational
inference (VI) (Wainwright et al., 2008, §5)(Li and
Turner, 2016), while f3 and f4 are exactly the objec-
tives in expectation propagation (EP) (Minka, 2001;
Minka et al., 2005). Hence, the problem of computing
the frontiers can be seen as that of performing VI or
EP with two target distributions instead of one.

3 CHARACTERIZATION OF THE
FRONTIERS

Having defined the frontiers, we now characterize
them, so that we can discuss their computation in
the next section. Remember that to compute the
frontiers we have to characterize the subset of R2

consisting of all pairs (Dα(R ‖P ), Dα(R ‖Q)) and
(Dα(P ‖R), Dα(Q ‖R)) which are not strictly domi-
nated. To solve these two multi-objective optimization
problem we scalarize them by optimizing the problems

R∪α,λ = arg min
R

λD̂α(Q ‖R) + (1− λ)D̂α(P ‖R) (3)

R∩α,λ = arg min
R

λD̂α(R ‖Q) + (1− λ)D̂α(R ‖P ). (4)

where D̂α = 1
α−1e

Dα
α−1 is a monotone function of the

Rényi divergence. We then vary λ ∈ [0, 1] and plug
Rα,λ back in Dα to obtain the frontier.

Fortunately, this problem can be analytically solved.
The discrete case has been solved by Nielsen and Nock
(2009, III), and we modify their argument to the con-
tinuous case.
Proposition 1. Let P and Q be two measures with
densities p and q respectively. Then, the distribution
minimizing (3) has density

rα,λ(x) ∝ (λq(x)1−α + (1− λ)p(x)1−α)1/(1−α).

Similarly, the optimizer of (4) is minimized at the dis-
tribution with density

rα,λ(x) ∝ (λq(x)α + (1− λ)p(x)α)1/α.

Proof sketch. In the inclusive case, (3) is equal to

D̂α(R∩α,λ ‖R)

∫
(λq(x)α + (1− λp(x)α))1/αdx,

which is minimized when R = R∩α,λ as the first term
is a divergence, and the second term is constant with
respect to R. The exclusive case is analogous.

Even thought not the case for general problems, linear
scalarization does yield the correct frontier due to the
properties of the Rényi divergences.

Proposition 2. For any measures P and Q with den-
sities p and q respectively, we can compute the exclusive
frontier as

F∩α(P,Q) = {(Dα(R∩α,λ ‖P ), Dα(R∩α,λ ‖Q)) | λ ∈ [0, 1]},

and the inclusive frontier is given as

F∪α(P,Q) = {(Dα(P ‖R∪α,λ), Dα(Q ‖R∪α,λ)) | λ ∈ [0, 1]}.

Proof sketch. Even thoughDα is not jointly convex, we
can write it as a monotone function of an f -divergence,
which is jointly convex function and lets us utilize
results from multi-objective convex optimization.

4 COMPUTING THE FRONTIERS

We will now discuss how to compute the divergences
when we have access to the distributions. We discuss
strategies for how to do this in practice in §6.

4.1 Discrete Measures

When the distributions take on one of n values, the
solution is obtain by simply replacing the integrals with
sum in Proposition 2. Hence, if we discretize λ over a
grid of size k, we will have a total complexity of O(nk).
Furthermore, this case has a very nice geometrical
interpretation associated with it. Namely, in this case
we can represent the distributions as vectors in the
simplex ∆ = {µ ∈ [0, 1]n | 1>µ = 1}, and use p ∈ ∆
for P and q ∈ ∆ for Q. Then, conceptually, to compute
the frontier we walk along the path Rα,γ from p to q,
and at each point we compute the distances to p and
q as measured by Dα. We illustrate this in Figure 3.

4.2 Integration

The frontiers can be also written as integrals of func-
tions of the density ratio p(x)/q(x) over the measures
P and Q, which has practical implications, discussed
in Section 6. Specifically, we have the following result.



Josip Djolonga, Mario Lucic, Marco Cuturi, Olivier Bachem, Olivier Bousquet, Sylvain Gelly

0.0 0.2 0.4 0.6 0.8 1.0
exp(−Dα(R,P ))

0.0

0.2

0.4

0.6

0.8

1.0

ex
p

(−
D
α
(R
,Q

))

r∩

α =∞

p

q

r∩

r∪

Inclusive

α = 1

α = 2

α = 4

Exclusive

α = 1

α = 2

α = 4

0.0 0.2 0.4 0.6 0.8 1.0
exp(−Dα(P,R))

0.0

0.2

0.4

0.6

0.8

1.0

ex
p

(−
D
α
(Q
,R

))

r∪

Figure 3: Illustration of the algorithm computing the discrete frontiers. In the middle panel we show two measures
p and q on the probability simplex, together with the barycentric paths γ(λ) between them for various α. These
paths in turn generate the inclusive (left) and exclusive (right) frontiers. The limiting α = ∞ exclusive case
coincides with the precision-recall curve from Sajjadi et al. (2018) (c.f. §5).

Proposition 3. Define for any β, λ the functions
uβγ (t) = (γ + (1− γ)tβ)(1−β)/β and vβγ (t) = (γ + (1−
γ)tβ)1/β. The exclusive frontier F∩α(P,Q) equals

{( 1

α− 1
logEP [u1−α

λ (
p(x)

q(x)
)]− α

α− 1
logEP [v1−α

λ (
p(x)

q(x)
)],

1

α− 1
logEQ[u1−α

1−λ(
q(x)

p(x)
)]− α

α− 1
logEQ[v1−α

1−λ (
q(x)

p(x)
)]}.

The inclusive frontier is obtained by changing u1−α
γ to

uαγ , v1−α
γ to vαγ , and −α/(α− 1) to 1.

Note that the naïve plug-in estimator would result in a
biased estimate due to the fact that the expectation is
inside the logarithm. Similar problems also arise when
doing variational inference with Rényi divergences, as
discussed in Li and Turner (2016), who analyze the
bias and the behaviour as a function of the sample size.

4.3 Exponential families

The computation of the integrals above can be very
challenging even if we know the densities due to the
possible high dimensionality of the ambient space. For-
tunately, there exists a class of distributions that in-
cludes many commonly used distributions called the
exponential family, whose frontiers for α = 1 (i.e., the
KL divergence) can be efficiently computed. This not
only includes many popular continuous distributions
such as the normal and the exponential, but also many
discrete distributions, e.g., tractable Markov Random
Fields (Wainwright et al., 2008) which are common
models in vision and natural language processing.

Definition 3 (Exponential families (Wainwright et al.,
2008, §3.2)). The exponential family over a domain X
for a sufficient statistic ν : X → Rm is the set of all

distributions of the form

P (x | θ) = exp(θ>ν(x)−A(θ)), (5)

where θ is the parameter vector, and A(θ) is the log-
partition function normalizing the distribution.

Importantly, the KL divergence between two distribu-
tions in the exponential family with parameters θ and
θ′ can be computed in closed form as the following
Bregman divergence (Wainwright et al., 2008, §5.2.2)

DKL(P (· | θ) ‖P (· | θ′)) = A(θ′)−A(θ)−∇A(θ)>(θ′−θ),

which we shall denote as DKL(θ ‖θ′). We can now
show how to compute the frontier.
Proposition 4. LetM be an exponential family with
log-partition function A. Let P and Q be elements in
M with parameters θP and θQ. Then,

• Inclusive: If we define γ(λ) = (∇A)−1(λ∇A(θP )+
(1− λ)∇A(θQ)), then F∪1(P,Q | M) is equal to

{(DKL(θP ‖ γ(λ)), DKL(θQ ‖ γ(λ))) | λ ∈ [0, 1]}.

• Exclusive: If we define γ(λ) = λθP + (1 − λ)θQ,
then F∩1(P,Q | M) is equal to

{(DKL(γ(λ) ‖θP ), DKL(γ(λ) ‖θQ)) | λ ∈ [0, 1]}.
Furthermore, the frontier will not change if we
enlargeM.

Proof sketch. As the KL divergence is convex in the
parameter θ′ of the second distribution, for the inclu-
sive case we can only consider the scalarized objective,
which has the claimed closed form solution. In the ex-
clusive case, we use the Bregman divergence generated
by the convex conjugate A∗, which effectively swaps
the arguments, and the argument is the same.
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∂∆(r,p)
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∂∆(r,q)

Figure 4: The points used in the definition of PRD (Saj-
jadi et al., 2018). For fixed p,q and r, the points p′

and q′ must be lie on the rays r→ q and r→ p respec-
tively. The optimal precision and recall are obtained
by taking q′ and r′ to lie on the boundary. To compute
the frontier we have to consider only those r on the
geodesic between q and p, shown as the red curve.

5 CONNECTIONS TO EXISTING
WORK

Having introduced and showed how to compute the di-
vergence frontiers, we will now present several existing
techniques, and show how they relate to our approach.

Rather than computing trade-off curves, Kynkäänniemi
et al. (2019) focus only on P (supp(Q)) andQ(supp(P )),
and estimate the supports using a union of k-nearest
neighbourhood balls. This is indeed a special case of our
framework, as limα→0Dα(P ‖Q) = − logQ(supp(P ))
(Van Erven and Harremos, 2014, Thm. 4). One draw-
back of this approach is that all regions where P and
Q place any mass are considered equal (see Fig. 5).

We will now show that the approach of (Sajjadi et al.,
2018) corresponds to the case where α → ∞. In
particular, Sajjadi et al. (2018) write both P and Q as
mixtures with a shared component that should capture
the space that they both assign high likelihood to, and
which can be used to formalize the notions of precision
and recall for distributions.

Definition 4 ((Sajjadi et al., 2018, Def. 1)). For π, ρ ∈
(0, 1], the probability distribution Q has precision π at
recall ρ w.r.t. P if there exist distributions R,P ′, Q′
such that

P = ρR+ (1− ρ)P ′, and Q = πR+ (1− π)Q′. (6)

The union of {(0, 0)} and all realizable pairs (π, ρ) will
be denoted by PRD(P,Q).

Even though the divergence frontiers introduced in
this work might seem unrelated to this formalization,
there is a clear connection between them, which we
now establish. As Sajjadi et al. (2018) target discrete
measures, let us treat the distributions as vectors in

Figure 5: A case where the metric defined by Kynkään-
niemi et al. (2019) would result in essentially perfect
precision and perfect recall. Arguably, these distribu-
tions are very different.

the probability simplex ∆ and use p ∈ ∆ for P and
q ∈ ∆ for Q. We need to consider three additional
distributions to compute PRD(p,q): r, and the per-
distribution mixtures p′ and q′. These distributions are
arranged as shown in Figure 4. Because r,p and p′ are
co-linear and p = ρr+(1−ρ)p′, we have that the recall
obtained for this configuration is ‖p − p′‖/‖r − p′‖.
Similarly, the precision π can be easily seen to be equal
to ‖q− q′‖/‖r− q′‖. Most importantly, we can only
increase both ρ and π if we move p′ and q′ along the
rays r → p and r → q, respectively. Specifically, the
maximal recall ρ∗ and precision π∗ for this fixed r are
obtained when p′ and q′ are as far as possible from r,
i.e., when they lie on the boundary ∂∆. To formalize
this, let us denote for any a,b in ∆ by ∂∆(a,b) the
point along the ray a→ b that intersects the boundary
of ∆. Then, the maximal π and ρ are achieved for
p′ = ∂∆(r,p) and q′ = ∂∆(r,q). Perhaps surprisingly,
these best achievable precision and recall have been
already studied in geometry and have very remarkable
properties, as they give rise to a weak metric.
Definition 5 ((Papadopoulos and Yamada, 2013,
Def. 2.1)). The Funk weak metric F∆ : ∆2 → [0,∞) on
∆ is defined by

F∆(p,p) = 0, and
F∆(p,q) = log(‖p− ∂∆(p,q)‖/‖q− ∂∆(p,q)‖).

Furthermore, we have that the Funk metric coincides
with a limiting Rényi divergence.
Proposition 5 ((Papadopoulos and Troyanov, 2014,
Ex. 4.1),(Van Erven and Harremos, 2014, Thm. 6)).
For any p,q in the probability simplex ∆, we have that

F∆(p,q) = lim
α→∞

Dα(p ‖q) = log
n

max
i=1

pi/qi

This immediately implies the following connection be-
tween the set of maximal points in PRD(P,Q), which
we shall denote by PRD(P,Q) and F∩∞(p,q). In other
words, the maximal points in PRD coincide with one
of the exclusive frontiers we have introduced.
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Proposition 6. For any distributions P,Q on
{1, 2, . . . , n} it holds that

PRD(P,Q) = {(e−π, e−ρ) | (ρ, π) ∈ F∩∞(P,Q)}.

Furthermore, the fact that D∞ is a weak metric implies
that, in contrast to the α < ∞ case, the triangle in-
equality holds (Papadopoulos and Yamada, 2013, Thm.
7.1). As a result, we can make an even stronger claim —
the path taken by the distributions r that generate the
frontier is the shortest in the corresponding geometry.
Proposition 7. Let us define the curve
γ(λ) : [mini

qi
pi
,maxi

qi
pi

]→ ∆ as

[γ(λ)]i ∝ min{pi, qi/λ}.

Then, F∩∞(p,q) = {(D∞(γ(λ) ‖p), D∞(γ(λ) ‖q))

| λ ∈ [min
i

qi
pi
,max

i

qi
pi

]},

and, moreover, γ(λ) is geodesic, i.e., it evaluates at the
endpoints to p and q, and for any λ

F∆(p,q) = F∆(p, γ(λ)) + F∆(γ(λ),q).

Simon et al. (2019) extend this approach to continuous
models by showing that that PRD can be computed
by thresholding the density ratio p(x)/q(x), which they
approximate using binary classification. In Section 4.2
we have extended this result to arbitrary divergences.

Finally, we note that the idea of precision and recall for
generative models also appeared in Lucic et al. (2018)
and was used for quantitatively evaluating generative
adversarial networks and variational autoencoders, by
considering a synthetic data set for which the data
manifold is known and the distance from each sample
to the manifold could be computed.

6 PRACTICAL APPROACHES
AND CONSIDERATIONS

In practice, when we are tasked with the problem of
evaluating a model, we typically only have access to
samples from P and Q, and optionally also the density
of Q. There are many approaches one can undertake
when applying the methods developed in this paper
to generate precision-recall curves. In what follows we
discuss several of these, and highlight their benefits, but
also some of their drawbacks. We would like to point
out that in the case of image synthesis, the comparison
is typically not done in the original high-dimensional
image space, but (as done in Sajjadi et al. (2018);
Kynkäänniemi et al. (2019); Heusel et al. (2017)) in
feature spaces where distances are expected to correlate
more strongly with perceptual difference.

Quantization One strategy would be to discretize
the data, as done in (Sajjadi et al., 2018), and then
apply the methods from Section 4.1. Even though
estimating the divergences between categorical distri-
butions is simple and in the limit converges to the
continuous α divergence (Van Erven and Harremos,
2014, Thm. 2), there may be several issues with this
approach. For example, this approach will inherently
introduce a positively bias for any discretization and
any α. Namely, the generated curves will always look
better than the truth, which we formalize below.
Proposition 8. Let P and Q be distributions that have
been quantized into the discrete distributions P̂ and Q̂
respectively. Then, it holds that

R∩α(P̂ , Q̂) ⊆ R∩α(P,Q) and R∪α(P̂ , Q̂) ⊆ R∪α(P,Q).

Moreover, if we do not have enough samples to estimate
the fraction of points that fall in each partition, we
might see very strong fluctuations of the curves. This
is due to the fact that the divergences penalize heavily
situations when one distributions puts zero mass on
the support of the other and the distributions might
appear more distant than the truth. We illustrate both
of these situations on two one dimensional distributions
in Figure 6. We can see that discretization indeed has
a positive bias, and that small sample sizes can result
in overly pessimistic curves. Furthermore, in high-
dimensions the result will also depend on the quality
of the clustering, which in general is NP-hard and has
additional hyperparameters that can be hard to tune.

Exponential families Alternatively, one can esti-
mate P and Q from samples using maximum likelihood
over some exponential familyM, and then apply the
methods from Section 4.3, which result in analytical
frontiers. While this might seem simplistic, fitting
multivariate Gaussians has been shown to work well
for evaluating generative models using the FID score
(Heusel et al., 2017). Even though projecting P and Q
onto some exponential family might suggest that it will
always make them closer and thus result in a positive
bias, this it not necessarily always the case. We show in
Figure 7 a setting where the opposite happens. What
we can formally show, however, is that the inclusive
frontier will have a positive bias when the distribution
R we optimize over is restricted toM.
Proposition 9. Let P and Q be distributions with
maximum likelihood estimates P̂ and Q̂ belonging to
some exponential familyM Then, it holds that

R∪1 (P,Q | M) ⊆ R∪1 (P̂ , Q̂ | M).

Proof sketch. To show this result we rely on the fact
that maximum likelihood estimation is equivalent to
(reverse-)projection under the KL divergence, and
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(b) Biases from coarse quantization.
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Figure 6: The systemic biases when we compute the frontiers after quantizing the distributions in (a). In (b)
we see that using too few buckets can result in overly optimistic results. In (c) we show that if an insufficient
number of samples is used, the curves might fluctuate and look pessimistic.
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(b) Estimating the exclusive frontier
using Gaussian approximations.
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using Gaussian approximations.

Figure 7: Estimating the frontier by approximating the distributions with Gaussians. In (b) we see that the
exclusive frontier can look more pessimistic than the truth. Panel (c) shows that using distributions R that are
further restricted to also be Gaussian can make matters worse when computing the inclusive frontier. Note that
in (b) there is no such curve as it agrees with the true frontier (black line) due to the last claim in Proposition 4.

the fact the KL divergence satisfies a generalized
Pythagorean inequality (Csiszár and Matus, 2003).

Density ratio estimation Similarly to (Simon
et al., 2019), one can first estimate the log ratio
p(x)/q(x) by fitting a binary classifier (Sugiyama et al.,
2012), and then approximate the terms in Section 4.2
using Monte Carlo. One can also tune the loss function
to match the integrands, as suggested by Menon and
Ong (2016). However, precisely estimating the density
ratio is challenging, and large sample sizes might be
needed as the estimator is biased.

Directly estimating F∪1 The inclusive frontier for
α = 1 is valid even when we use empirical distributions
for P and Q without fitting any models. In this case,
it can be easily seen that if we optimize R∪1,λ over
some family M, that this is equivalent to maximum
likelihood estimation where the samples come from the
mixture λP + (1− λ)Q. Hence, if we employ flexible
density estimators M, one strategy would be to (i)
first fit a model on the weighted dataset, and then (ii)
evaluate the likelihoods when the data is generated
under P and Q on a separate test set.

7 CONCLUSIONS

We developed a framework for comparing distributions
via the Pareto frontiers of information divergences, and
fully characterized them using efficient computational
algorithms for a large family of distributions. We re-
covered previous approaches as special cases, and thus
provided a novel perspective on them and their algo-
rithms. Furthermore, we believe that we have also
opened many interesting research questions related to
classical approximate inference methods — can we use
different divergences or extend the algorithms to even
richer model families, and how to identify the correct
approach for approximating the frontiers when we only
have access to samples.
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A Proofs

Proof of Proposition 6. Even though this result follows clearly from the discussion just above the claim, we
provide it for completeness. Namely, let (π, ρ) ∈ PRD be generated for some p,q, r. Based on the argument
below Definition 4 it follows that it must be equal to (π, ρ) = (e−F∆(r,q), e−F∆(r,q)). Then, the pair (π, ρ) is
maximal in PRD iff (F∆(r,p), F∆(r,q)) is minimal in R∩∞(P,Q), i.e., iff (F∆(r,p), F∆(r,q)) ∈ F∩∞(P,Q).

Proof of Proposition 7. If we also include the normalizer of γ(λ), we have that

[γ(λ)]i = min{pi, qi/λ}/β(λ), where β(λ) =

n∑

i=1

min{pi, qi/λ}.

The end-point condition is easy to check, namely

[γmin
j
{qj/pj})]i = min{pi,

qi
minj{qj/pj}

}/β(λ) = pi/β(λ) = pi, and

[γ(min
j
{qj/pj})]i = min{pi,

qi
maxj{qj/pj}

}/β(λ) = qi/β(λ) = qi.

Let us now show that log β(λ) = −F∆(γ(λ),q). The right hand side can be re-written as

F∆(γ(λ),p) = log max
i

min{pi, qi/λ}/β(λ)

pi
= − log β(λ) + log max

i
min{1, qi

piλ
}.

Note that the term inside the log is not one only if qi/pi < λ for all i, which can happen only if λ > maxi
qi
pi
,

which is outside the domain of γ. Similarly,

F∆(γ(λ),q) = log max
i

min{pi, qi/λ}/β(λ)

qi

= − log β(λ) + log max
i

min{pi
qi
, 1/λ}

= − log β(λ)λ+ log max
i

min{λpi
qi
, 1}.

The claim follows because α(λ) = λβ(γ), and by noting that the maximum inside the logarithm is strictly less
than one only if for all i it holds that λ < qi

pi
, which is outside the domain of γ.

Finally, let us show the geodesity of the curve.

F∆(p,µ∗(λ)) + F∆(µ∗(λ),q) = log max
i

pi
min{pi, qi/λ}/β(λ)

+ log max
i

min{pi, qi/λ}/β(λ)

qi

= max
i

log max{log
λpi
qi
, 1}+ max

i
log min{pi

qi
,

1

λ
}

• Case (i): λ ≥ maxi
qi
pi
. Then, λpiqi λ ≥ 1, so that the first term will be equal to log λ+ log maxi

pi
qi
. Similarly,

λ−1 ≤ pi
qi
, so that the second term is equal to − log λ, and the claimed equality is satisfied.

• Case (ii): λ < maxi
qi
pi
. Note that

max
i

log max{log
λpi
qi
, 1}+ max

i
log min{pi

qi
,

1

λ
} =

max
i

log λmax{log
pi
qi
, 1/λ}+ max

i
log

1

λ
min{piλ

qi
, 1},

so that the problem is symmetric if we parametrize with λ′ = λ−1 and the argument from above holds.
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Proposition 1. We have that

λD̂α(Q ‖R) + (1− λ)D̂α(P ‖R) =
1

1− α

∫
λq(x)αr(x)1−αdx+

1

1− α

∫
(1− λ)p(x)αr(x)1−αdx

=
1

1− α

∫
(λq(x)α + (1− λ)p(x)α)r(x)1−αdx

=
1

1− α

∫
((λq(x)α + (1− λ)p(x)α)1/α)αr(x)1−αdx

= D̂α(R∩α,λ ‖R)

∫
(λq(x)α + (1− λp(x)α))1/αdx,

from which the claim follows as D̂α is an f -divergence and thus minimal and equal to zero only when its arguments
agree, and the second term is a constant with respect to R. The other case can be similarly shown by replacing α
with 1− α, namely

λD̂α(R ‖Q) + (1− λ)D̂α(R ‖P ) =
1

1− α

∫
λq(x)1−αr(x)αdx+

1

1− α

∫
(1− λ)p(x)1−αr(x)αdx

=
1

1− α

∫
(λq(x)1−α + (1− λ)p(x)1−α)r(x)αdx

=
1

1− α

∫
((λq(x)1−α + (1− λ)p(x)1−α)1/(1−α))1−αr(x)αdx

= D̂α(R ‖R∪α,λ)

∫
(λq(x)1−α + (1− λp(x)1−α))1/(1−α)dx.

Proof of Proposition 2. Case (i) Remember that we want to minimize R→ Dα(R ‖P ) and R→ Dα(R ‖Q). We
want to optimize over the set of all distributions R that have a density so that the integrals are well-defined.
Instead of minimizing the Rényi divergences 1

α−1 log
∫

(r(x)/q(x))α−1r(x)dx, we can alternatively minimize the
α-divergences R̂α as they are monotone functions of each other, as already mentioned above Proposition 1. As
the α divergence is an f -divergence (see e.g. (Nielsen and Nock, 2009, C)), it follows that it is jointly convex in
both arguments. Hence the Pareto frontier can be computed using the linearly scalarized problem (for a proof see
(Boyd and Vandenberghe, 2004, §4.7.3)). The claim then follows from Proposition 1.

Case (ii) This case follows analogously as above as the f -divergence is jointly convex, and using the corresponding
result from Proposition 1.

Proof of Proposition 4. The proof follows the same argument of Nielsen and Nock (2007, §2), the main difference
that we also discuss about Pareto optimality, while in the Nielsen and Nock (2007) the authors only discuss
the barycenter problem. Let us denote for any convex continuously differentiable function G : Rd → R by
BG : Rd × Rd → R the Bregman divergence generated by G, i.e.,

BG(x,y) = F (x)− F (y)−∇F (y)>(x− y).

In the inclusive case, we want to minimize the objectives θR → Dα(θP ‖θR) and θR → Dα(θQ ‖θR) over θR. In
terms of Bregman divergences, we want to minimize BA(θR,θP ) and BA(θR,θQ). Because Bregman divergences
are convex in their first argument, as in the proof of Proposition 2 we can only consider the solutions to the
linearly scalarized objective

λBA(θR,θP ) + (1− λ)BA(θR,θQ),

whose solution is known (see e.g. Banerjee et al. (2005)) to be equal to θ∗R(λ) = λθP + (1− α)θQ, which we had
to show. The exclusive case follows from the same argument using the fact that BA(θ,θ′) = BA∗(∇A(θ′),∇A(θ))
and that ∇A∗ = (∇A)−1 (Wainwright et al., 2008, Prop. B.2).

The final claim follows from (van Erven, 2010, Lemma 6.6), which shows that the fact that the optimal R is given
by the distribution with density r(x) ∝ p(x)λq(x)1−λ, which is a member of the exponential family and has a
parameter λθP + (1− λ)θQ.
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Proposition 8. This follows directly from (Van Erven and Harremos, 2014, Theorem 10) which claims that for any
two distributions P and Q and any α it holds that Dα(P ‖Q) = supP Dα(P|P ‖Q|P), where P is any partition of
the σ-algebra over which the measures are defined.

Proposition 9. The distributions P̂ and Q̂ are maximum likelihood estimators of P and Q respectively. This means
that they minimize DKL(P ‖R) and DKL(Q ‖R) over R ∈M and are thus right information projections ontoM
(Csiszár and Matus, 2003). Then, as exponential families are log-convex, from (Csiszár and Matus, 2003, Theorem
1) it follows that for any R ∈M we have that DKL(P ‖R) ≥ DKL(P̂ ‖R) and DKL(Q ‖R) ≥ DKL(Q̂ ‖R), which
directly implies the result.

Proposition 3. The results are algebraic manipulations that directly follow from Proposition 2 and Proposition 1,
and are provided here for completeness.

Let us first compute the terms for the inclusive frontier.

(α− 1)Dα(P ‖R∪α,λ) = log

∫
p(x)α

1

Z1−α (λq(x)α + (1− λ)p(x)α)
1−α
α dx

= log

∫
p(x)p(x)α−1 1

Z1−α (λq(x)α + (1− λ)p(x)α)
1−α
α dx

= log

∫
p(x)(λ(q(x)/p(x))α + (1− λ))

1−α
α dx+ (α− 1) logZ,

where

logZ =

∫
(λq(x)α + (1− λ)pα(x))1/αdx

=

∫
(λq(x)α + (1− λ)pα(x))1/αp(x)−α/αp(x)dx

=

∫
(λ(q(x)/p(x))α + (1− λ))1/αp(x)dx

which equals the claimed form. The other coordinate of the frontier is obtained by swapping P with Q and λ
with 1− λ. The equations for the exclusive frontier are obtained by replacing α with 1− α on the right hand
sides of the above equations.
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