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Abstract

In decision-making systems, it is important to
have classifiers that have calibrated uncertain-
ties, with an optimisation objective that can
be used for automated model selection and
training. Gaussian processes (GPs) provide
uncertainty estimates and a marginal likeli-
hood objective, but their weak inductive bi-
ases lead to inferior accuracy. This has limited
their applicability in certain tasks (e.g. im-
age classification). We propose a translation-
insensitive convolutional kernel, which relaxes
the translation invariance constraint imposed
by previous convolutional GPs. We show how
we can use the marginal likelihood to learn
the degree of insensitivity. We also reformu-
late GP image-to-image convolutional map-
pings as multi-output GPs, leading to deep
convolutional GPs. We show experimentally
that our new kernel improves performance
in both single-layer and deep models. We
also demonstrate that our fully Bayesian ap-
proach improves on dropout-based Bayesian
deep learning methods in terms of uncertainty
and marginal likelihood estimates.

1 INTRODUCTION

To be useful in the real world, decision-making sys-
tems have to be able to represent uncertainty. This
enables the system to gracefully deal with unseen or
special cases and, for example, hand over control to
a human operator when the uncertainty is high. It is
also crucial to have an accurate measure of uncertainty
when making automated decisions based on machine
classification (e.g. medical diagnosing).
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Recently, Bayesian deep learning methods based on
dropout have been empirically successful in improving
the robustness of Deep Neural Nets (DNN) predic-
tions [Gal and Ghahramani, 2016], but it is unclear
to what extent they accurately approximate the true
posteriors [Hron et al., 2018]. They also do not deliver
on an important promise of the Bayesian framework:
automatic regularisation of model complexity which
allows the training of hyperparameters [Rasmussen and
Ghahramani, 2001]. Current marginal likelihood es-
timates are not usable for hyperparameter selection,
and the strong relationship between their quality, and
the quality of posterior approximations suggests that
further improvements are possible with better Bayesian
approximations.

We are interested in Gaussian processes (GPs) as an
alternative building block for creating deep learning
models with the benefits of Bayesian inference. Their
practical application has been limited due to their large
computational requirements for big datasets, and due
to the limited inductive biases that they can encode.
In recent years, however, advances in stochastic varia-
tional inference have enabled GPs to be scaled to large
datasets for both regression and classification models
[Hensman et al., 2013, 2015]. More sophisticated model
structures that are common in the deep learning com-
munity, such as depth [Damianou and Lawrence, 2013]
and convolutions [van der Wilk et al., 2017], have been
incorporated as well. Notably, inference is still accurate
enough to provide marginal likelihood estimates that
can be used for hyperparameter selection (e.g. [van der
Wilk et al., 2018]).

In this work, we focus on creating models for image
inputs. While existing GP models with kernels like
the Squared Exponential (SE) kernel have the capacity
to learn any well-behaved function when given infinite
data [Rasmussen and Williams, 2006, chapter 7], they
are unlikely to work well for image tasks with realis-
tic dataset sizes. Local kernels, like the SE, constrain
only functions in the prior to be smooth, and allow the
function to vary along any direction in the input space.
This will allow these models to generalise only in neigh-
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bourhoods near training data, with large uncertainties
being predicted elsewhere. This excessive flexibility
is a particular problem for images, which have high
input dimensionality, while exhibiting a large amount
of structure. When designing Bayesian models it is
crucial to think about sensible inductive biases to in-
corporate into the model. For instance, convolutional
structure has been widely used to address this issue
[LeCun et al., 1989, Goodfellow et al., 2016]. Van der
Wilk et al. [2017] introduced this structure into a single-
layer GP, together with an efficient inference scheme,
and showed that this improved performance on image
classification tasks. Recently, Blomqvist et al. [2019]
added convolutional structure to deep GPs, which led
to deep convolutional Gaussian processes (DCGPs).

Contributions We start by re-formulating the hid-
den layers of a DCGP as a correlated multi-output
GP. This is a convenient abstraction that enables us
to code the convolutional layers in our efficient multi-
output GP framework [van der Wilk et al., 2020]. We
then identify that translational invariant properties of
current convolutional models are too restrictive and
limits performance. To remedy this, we introduce the
Translation Insensitive Convolutional Kernel (TICK),
which removes the restriction of requiring identical
outputs for identical patch inputs. We compare our
model to current convolutional GPs, and find improve-
ment in performance in both accuracy and uncertainty
quantification. Comparing our model to dropout-based
Bayesian deep learning methods, we show how our
model is competitive in terms of accuracy but also
comes with the desirable properties of a truly Bayesian
model: a marginal likelihood for model selection, auto-
matically tuning of hyperparameters, and calibration.

2 BACKGROUND

Gaussian Process Models Gaussian processes
(GPs) [Rasmussen and Williams, 2006] are non-
parametric distributions over functions similar to
Bayesian neural networks. The core difference is that
neural networks represent distributions over functions
through distributions on weights, while a Gaussian
process specifies a distribution on function values at
a collection of input locations. Using this represen-
tation allows us to use an infinite number of basis
functions, while still enables Bayesian inference [Neal,
1996]. In a GP, the joint distribution of these function
values is Gaussian and is fully determined by its mean
µ(·) and covariance (kernel) function k(·, ·). Taking
the mean function to be zero without loss of gener-
ality, function values at inputs X = {xm}

M
m=1 are

distributed as f(X) ⇠ N (f(X);µ(X),KXX), where
[KXX]ij = k(xi,xj). The Gaussianity, and the fact

that we can manipulate function values at some finite
points of interest without taking the behaviour at any
other points into account (the marginalisation prop-
erty) make GPs particularly convenient to manipulate
and use as priors over functions in Bayesian models.

Convolutional Gaussian Processes Van der Wilk
et al. [2017] construct the convolutional kernel for func-
tions from images of size D = W⇥H to real-valued
responses f :RD

!R. Their starting point is a patch
response function g :RE

!R operating on patches of
the input image of size E = w⇥h. The output for
a particular image is found by taking a sum of the
patch response function applied to all patches of the
image. A vectorised image x of height H and width W

contains P = (H � h+ 1)⇥ (W � w + 1) overlapping
patches when we slide the window one pixel at a time
(i.e. a vertical and horizontal stride of 1). We denote
the p

th patch of an image as x[p]. Placing a GP prior
on g(·) ⇠ GP(0, kg(·, ·)) implies:

f(x) =
PX

p=1

g

⇣
x[p]

⌘

=) f(x) ⇠ GP

0

@0,
PX

p=1

PX

p0=1

kg

�
x[p]

,x[p0]
�
1

A.

(1)

The convolution kernel places much stronger constraints
on the functions in the prior, based on the idea that
similar patches contribute similarly to the function’s
output, regardless of their position. This prior places
more mass in functions that are sensible for images, and
therefore allow the model to generalise stronger and
with less uncertainty than, for example, the SE kernel.
If these assumptions are appropriate for a given dataset,
this leads to a model with a higher marginal likelihood
and better generalisation on unseen test data.

Deep Gaussian Processes Convolutional structure
is an example of how the kernel and its associated
feature representation influence the performance of a
model. Deep learning models partially automate this
feature selection by learning feature hierarchies from
the training data. The first layers usually identify
edges, corners, and other local features, while combin-
ing them into more complicated silhouettes further into
the hierarchy. Eventually a simple regressor solves the
task.

Deep GPs (DGPs) share this compositional na-
ture, by composing layers of GPs [Damianou and
Lawrence, 2013]. They can be defined as f(·) =
fL(. . . f2(f1(·))), where each component is a GP, itself
f`(·) ⇠ GP(0, k`(·, ·)). DGPs enable us to specify pri-
ors on flexible functions with compositional structure,
and open the door to non-parametric Bayesian feature
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Figure 1: Illustration of why translation invariance may
be an unrealistic modelling assumption. The highlighted
patches are not useful for a translation invariant patch
response function g(·), as used in the original convo-
lutional GP [van der Wilk et al., 2017], because they
appear in both images: only when their relative locations
are taken into consideration are these patches useful for
classification.

learning. Salimbeni and Deisenroth [2017] showed that
this is crucial to achieve state-of-the-art performance
on many datasets, and that DGP models never perform
worse than single-layer GPs.

3 BAYESIAN MODELLING OF
IMAGES

3.1 Limits of the Conv-GP Kernel

In this section we focus on analysing the behaviour
of single-layer convolutional GPs (Conv-GPs), so we
can develop improvements in a targeted way. The
convolutional structure in eq. (1) introduces a form
of translation invariance, because the same GP g(·) is
used for all patches in the image, regardless of location.
As stated by Liu et al. [2018], a strict form of invariance
might or might not be beneficial for certain tasks. For
example, in MNIST classification, a horizontal stroke
near the top of the digit indicates a ‘7’, while the same
stroke near the bottom indicates a ‘2’, as shown in
fig. 1. The construction of eq. (1) will apply the same
g(·) to each patch in the image, which is undesirable
if we wish to distinguish between the two classes by
summing g(·)’s output. This also means that it is
possible to conceive a complete rearrangement of the
image, which appears very different to a human, but is
indistinguishable from the original to the convolutional
kernel.

Van der Wilk et al. [2017] circumvented the transla-
tion invariance problem of the Conv-GP by effectively
adding a second, linear layer. By the introduction
of weights it is possible to rescale the contribution of
each patch, turning the uniform sum of eq. (1) into a
weighted sum f(x) =

P
p wp g(x[p]). This is a rudimen-

tary approach which might be both too flexible, (in
that it allows wildly varying weights for neighbouring
pixels) and not flexible enough, (in that an image evalu-
ation will always be a linear combination of evaluations
of g(·) at the input patches).

We illustrate the problem of the original Conv-GP
being too constrained in fig. 2. We trained a model to
classify MNIST 2 vs 7 only, and display the deviations
from the mean of samples from the posterior of the
patch response function g(·). On the left (a) we show
posterior samples for the original Conv-GP; we show
on the right (b) samples from our TICK-GP. Note
that all samples in (a) and (b) are plotted using the
same colour range. We immediately notice that the
samples in (a) are less vibrant than in (b), indicating
the smaller variance of the Conv-GP. The small variance
is the result of the Conv-GP being too constrained,
which leads to a collapsed posterior that cannot to
accommodate for patches that can be both positive
and negative (i.e. those that belong to both classes). We
also notice that all background pixels within an image
have the exact same value. We discuss the behaviour
of the TICK-GP samples in the next section.

3.2 Translation Insensitive Convolutional
Kernel (TICK)

A better modelling assumption would be to relax the
“same patch, same output” constraint and have a patch
response function g(·) that can vary its output depend-
ing on both the patch input and the patch location.
We call this property translation insensitivity, and pro-
pose a product kernel between the patches and their
locations:

kg

�
(x[p]

, p), (x[p0]
, p

0)
�
=

kpatch

⇣
x[p]

,x[p0]
⌘

⇥ kloc(`(p), `(p
0)), (2)

where `(p) returns the location of the upper-left corner
of the patch in the image, and kpatch and kloc are the
kernels we use over the patches and patch locations,
respectively. We refer to this kernel as the Translation
Insensitive Convolutional Kernel (TICK). The term
“insensitive” was used by Van der Wilk et al. [2018] as
a relaxation of invariance. We use the term to indicate
that the output is slightly sensitive to translations.

Similar approaches have been suggested in the CNN
literature [Ghafoorian et al., 2017], but have not been
adopted in popular, recent architectures (e.g. Inception
[Szegedy et al., 2017] and DenseNet [Huang et al.,
2017]). A explanation for this is that this parametric
approach in neural nets adds a lot more parameters, in
the order of O(w h cin cout), leading to models that are
prone to overfit in the absence of large datasets.
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(a) Conv-GP (b) TICK-GP

Figure 2: We show five samples from the patch response function g(·) after training on MNIST 2 vs 7. The
two black-and-white images (left) are the inputs. They were incorrectly classified by the Conv-GP (a), but
correctly classified by the TICK-GP (b). The samples show that the posterior of the Conv-GP is overconstrained,
noticeable by the paler colours and the even background (see text).

In TICK we introduce a single hyperparameter, the
lengthscale of kloc, to control only the degree of in-
sensitivity (i.e. the degree to which the output of g(·)
depends on the location of the input patch). We will
learn this lengthscale and other hyperparameters auto-
matically, using the marginal likelihood. We use Adler
et al. [1981, Theorem 4.1.1.] to get an intuition in how
this parameter effects g(·) for the same patch input
depending on its location. If we assume Nu to be the
number of times a GP-draw from a stationary kernel k
crosses the level u in the unit interval, then

Eg(·)[Nu] =
1

2⇡

s
�k

00(0)

k(0)
exp

✓
�u

2

2 k(0)

◆
.

A Squared Exponential (SE) kernel for kloc(r) =
�
2 exp(�r

2
/`

2) gives an expected number of zero-
crossings E[N0] = (⇡`)�1.

You can observe that property most easily in fig. 2
(b), where the lengthscale of the SE in the trained
TICK-GP approximated (⇡/2)�1, corresponding to ⇡ 2
zero-crossings in the image. Inspecting the identical
background patches away from the digit, we see that
g(·) varies smoothly, and changes sign (i.e. predicts a
different class) depending on where background patches
are appearing. The mapping of similar patches also
varies smoothly across the stroke: the response of hori-
zontal and vertical lines in the image gives only locally
similar responses. We also notice that the samples from
the TICK-GP have much larger deviations from the
mean, showing that the patch-response function is less
constrained and can represent epistemic uncertainty
for observing certain patches at certain locations.

3.3 Deep Convolutional Gaussian Processes

With the ideas of improved convolutional kernels and
deep Gaussian processes in place, it is straightforward
to conceive of a model that does both: a deep GP with
convolutional kernels at each layer. To do this we need

to make these convolutional layers map from images
to images, which we do using a multi-output kernel.

We propose a reformulation to the convolutional kernel
of eq. (1): instead of summing over the patches, we
apply g(·) to all patches in the input image. As a
result, we obtain a vector-valued function f : RD

! RP

defined as

f(x) = {fp(x)}
P
p=1 =

n
g(x[p])

oP

p=1
, (3)

where fp(·) indicates the pth output of f(·). Because the
same g(·) is applied to the different patches, there will
be correlations between outputs. For this reason, we
consider the mapping f(·) a multi-output GP (MOGP),
and name it the Multi-Output Convolutional Kernel
(MOCK). Multi-output GPs [Alvarez et al., 2012] can
be characterised by their covariance between the dif-
ferent outputs fp and fq of different inputs x and x0,
giving in our case

Cov[fp(x), fq(x
0)] = kg

⇣
x[p]

,x0[q]
⌘
. (4)

In this setting, if we are dealing with N images of P
patches, the corresponding covariance matrix has a
size of N⇥N⇥P⇥P , which makes its calculation and
inversion infeasible for most datasets.

Efficient inference for MOGPs relies strongly on choos-
ing useful inducing variables. We developed a frame-
work for generic MOGPs that allows for the flexible
specification of both multi-output priors and induc-
ing variables. This means that we can take compu-
tational advantage of independence properties of the
prior. Given our framework, which puts the right
mathematical and software abstractions in place, the
implementation of a complex MOGP, such as a DCGP,
is not much more difficult than that of a single-output
GP [van der Wilk et al., 2020].
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4 VARIATIONAL INFERENCE
WITH SPARSE GAUSSIAN
PROCESSES

Consider a training dataset {(xn, yn)}Nn=1 ⇢ RD
⇥

R, consisting of N images xn 2 RD and class labels
yn. We set up a deep convolutional GP as f(·) :=
fL(. . . f2(f1(·))), where each

f`(·) ⇠ GP
�
0, k`(·, ·)

�
and yn | f,xn ⇠ p

�
yn | f(xn)

�
.

We refer to the latent function-evaluation of a hidden
GP as hn,` = f`(hn,`�1) and, for convenience, we define
hn,0 := xn. We assume that each function is a MOGP
with P` (correlated) outputs.

Given this setup, we are interested in both the poste-
rior p(f(·) |y) for making subsequent predictions and
the marginal likelihood (evidence) p(y) to optimise
the model’s hyperparameters. Exact inference is not
possible in this setting given our non-conjugate likeli-
hood p(yn |hn,L) and the O

�
N

3
�

cost of operations on
covariance matrices, limiting the size of the datasets.

We use sparse variational GPs to address these issues,
following Titsias [2009], Hensman et al. [2013], and
Matthews et al. [2016]. The framework conditions the
prior on inducing variables u`, and then specifies a free
Gaussian density q(u`) = N (m`,S`). This gives the
approximation q(f`(·)) =

R
p(f`(·) |u`) q(u`) du` for

each layer. The original framework chose the inducing
outputs u` to be observations of the GP to some in-
ducing inputs Z` = {z`,m}

M
m=1, i.e. u` = f`(Z`). Even

though we are representing the GP at a finite set of
points, the posterior is still a full-rank GP. It predicts
using an infinite number of basis functions thanks to
the use of the prior conditional. The overall approxi-
mate posterior has the form q(f`(·)) = GP(µ`(·), ⌫`(·))
with

µ`(·) = k>
u`
(·)K�1

u`u`
m` (5)

⌫`(·) = k`(·, ·) + k>
u`
(·)K�1

uu`
(S` �Kuu`)K

�1
uu`

ku`(·),

where m` 2 RM , and S` 2 RM⇥M are variational
parameters to be learned by optimisation. When we
predict for a single point, the size of ku`(·) is P` ⇥

M (that is, the number of outputs by the number of
inducing variables), while k`(·, ·) returns the P` ⇥ P`

covariance matrix for all outputs. Crucially, because
we are dealing with MOGPs, our posterior mean µ`(·)
has size RP` and ⌫`(·) 2 RP`⇥P` grows quadratically in
the number of outputs, roughly corresponding to the
number of input pixels.

Following the standard variational [Hensman et al.,
2013, Hoffman et al., 2013] approach, we construct
a lower bound to the marginal likelihood (known as

the Evidence Lower BOund, or ELBO) which we then
optimise to find the optimal approximate posterior and
the model’s hyperparameters. To derive the ELBO, we
start with the joint density for the generative model

p({yn}n, {hn,`}n,`, {f`(·)}`) =
Y

n

p(yn |hn,L)
Y

`

p(hn,` |hn,`�1, f`(·)) p(f`(·)),

and an approximate variational posterior
q({hn,`}n,`, {f`(·)}`) which we give the formQN

n=1

QL
`=1 p(hn,` |hn,`�1, f`(·)) q(f`(·)). The repe-

tition of p(hn,` |hn,`�1, f`(·)) in both the prior and
posterior leads to their cancellation in the lower bound

log p(y) �
X

n
Eq(hn,L)[log p(yn |hn,L)]

�

X
`
KL[q(u`)||p(u`)]. (6)

The form of p(hn,` |hn,`�1, f`(·)) leads to different
DGP models. Damianou and Lawrence [2013] used a
Gaussian distribution N (hn,` | f`(hn,`�1),�2

` ), which
requires an additional approximate posterior over
the h`’s in the bound. We follow Salimbeni and
Deisenroth [2017] and use a deterministic map be-
tween hn,` and hn,`�1 given f`(·), corresponding to
�{hn,` = f`(hn,`�1)}.

We can obtain an unbiased estimate of eq. (6) by
only considering a random subset of the training data
to cheaply estimate the first term and by rescaling
the KL term appropriately. The expectation over
q({hn,`}n,`, {f`(·)}`) is evaluated using Monte-Carlo,
see Salimbeni and Deisenroth [2017] for details.

4.1 Computational Complexity of Dealing
with Correlated Convolutional Layers

To evaluate the expectation in the ELBO as described
above, we need to generate samples of q(f`(·)) with the
covariance ⌫`(hn,`�1). This requires taking a Cholesky
of this covariance, of which we have one for each dat-
apoint in the minibatch. This presents a significant
computational problem, because its size is P`⇥P`, with
P` being roughly the same as the number of patches
in the input image. Compared to a non-convolutional
deep GP, where we only need a single Cholesky for each
layer of Ku`u` , this adds a large computational cost.
The deep convolutional GP model of Blomqvist et al.
[2019] suffers from this problem as well. Their method
avoids this computational cost by simply sampling from
the P` marginals, ignoring the between-patch correla-
tion. In the supplementary material (see fig. 10) we
study the difference between both approaches and find
that the lower computation cost, O(P`), of sampling
from the marginals drastically improves the number of
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iterations per second and is worth the minor reduction
in performance. The bias introduced to the gradient
of the ELBO appears to have little effect.

4.2 Inter-Domain Inducing Patches

So far, we have set up the optimisation objective
(eq. (6)) and defined the approximate posterior GP
for each layer q(f`(·)). The final issues we need to ad-
dress are (1) the impractically large double sums over
all patches for computing entries of the Ku`u` and (2)
the organisational complexity of dealing with inducing
variables multi-output u` in MOGP.

Using inter-domain inducing variables [Lázaro-Gredilla
and Figueiras-Vidal, 2009] solves the mathematical,
organisational, and software problems of both issues.
We follow Van der Wilk et al. [2017] to define for each
layer u` as evaluations of the patch response function
g`(·), and we place the inducing inputs in the patch
space Rwh, rather than image space RP`�1 . The GP
inter-domain and multi-output software framework,
which we codeveloped with this work, enables us to
implement this in an efficient and modular way [van
der Wilk et al., 2020].

To apply this approximation in (5) and implement this
in the framework, we need to find ku`(·) and Ku`u` :

ku`(hn,`�1) = E[g`(Z`)f`(hn,`�1)] =
h
kg`(Z`,h

[p]
n,`�1)

iP`

p=1

Ku`u` = kg(Z`,Z`).

Choosing the inducing variables in this way greatly
reduces the computational cost of the method, because
we now require covariances only between the patches
of the input image and the inducing patches. More
precisely, Ku`u` and ku`(hn,`�1) become M ⇥M and
M ⇥ P` sized tensors.

5 EXPERIMENTS

We present results using our TICK in deep and shallow
GP models. First, we show that TICK-GP improves
over Conv-GP and achieves the highest reported classi-
fication result for GPs on standard classification tasks
in terms of accuracy and calibration. Secondly, we
compare our method with Bayesian CNNs and find
that TICK-GP’s uncertainty estimates are superior,
and that the ELBO can be used for model selection
and automated training. We show that the CNN is con-
fidently wrong on some ambiguous cases, while TICK-
GP provides calibrated uncertainty. In Appendix D, we
demonstrate that this effect is even more pronounced
in a transfer learning task. In section 5.3, we also show
the benefits of translation insensitivity in deep GPs.

Figure 3: Posterior prediction probabilities for a (ran-
dom) subset of misclassified images (top row) from
MNIST. The barplot shows the probabilities for each
of the classes, 0 to 9. The largest (orange) bar is the
model’s prediction. The blue bar is the true class la-
bel. The CNN predicts the wrong classes with high
certainty, while the GP quantifies uncertainty better.

5.1 Comparison to Conv-GP and Bayesian
Neural Nets on Image Classification

We evaluate TICK-GP on three image benchmarks
(MNIST, FASHION-MNIST, and grey-scale CIFAR-10)
and compare its performance to a SE-GP, Conv-GP
[van der Wilk et al., 2017] and a Bayesian CNN (B-
CNN) based on dropout [Gal and Ghahramani, 2016].
All GP models in this experiment are single-layered
and trained following the method outlined in section 4.
Their exact setup (kernel, number of inducing points,
learning rate schedule, etc.) is detailed in Appendix A.
We compare the GP models to a Bayesian CNN ar-
chitecture, with two convolutional layers followed by
two full dense layers. We use dropout at train and test
time, following [Gal and Ghahramani, 2016], with 50%
keep-probability, which we found by running a grid
search and selecting the best model based on its NLL
on a 10% validation set. We further detail the CNN
configuration in Appendix B. The SE-GP is a vanilla
Sparse Variational GP (SVGP) [Hensman et al., 2013]
using a SE kernel.

Table 1 reports the top-k error rate and the Negative
Log-Likelihood (NLL). We use NLL as our main metric
for calibration because it is a proper scoring rule [Gneit-
ing and Raftery, 2007] and has a useful relationship to
returns obtained from bets on the future based on the
predicted belief [Roulston and Smith, 2002]. The top-k
error rate is the percentage of test images for whom the
true class label is not within the highest k predictive
probabilities. We see that TICK-GP outperforms pre-
vious GP models and dropout-based CNNs in terms of
NLL, both on the complete test set and on the misclas-
sified images. The single-layer TICK-GP sets the new
records of classification with GP models on the listed
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Table 1: Results of classification experiments with Bayesian CNN (B-CNN) and shallow GP models. We report
the top-k error rate, and Negative Log-Likelihood (NLL) on the full test set and on the misclassified images of
the test set. The TICK-GP outperforms the Conv-GP on every dataset in both accuracy and NLL, illustrating
the clear benefits of translation insensitivity. The single-layer TICK-GP models get a similar accuracy to the
CNNs but have more calibrated predictive probabilities (lower NLL).

MNIST FASHION-MNIST GREY CIFAR-10

metric SE Conv TICK B-CNN SE Conv TICK B-CNN SE Conv TICK B-CNN

top-1 error (%) 2.31 1.70 0.83 0.91 12.15 11.06 10.01 8.31 58.24 41.65 37.82 37.44
top-2 error (%) 0.69 0.49 0.11 0.22 3.67 3.18 2.69 2.17 38.91 24.09 20.52 21.48
top-3 error (%) 0.35 0.19 0.05 0.05 1.21 1.11 0.92 0.75 27.18 14.93 12.21 12.91
NLL full (⇥10) 0.60 0.57 0.29 0.35 2.68 2.52 2.28 2.45 15.56 11.68 10.56 11.16
NLL misses 1.86 1.97 1.70 2.58 1.90 1.90 1.89 2.10 2.20 2.12 2.10 2.23

Figure 4: B-CNN marginal likelihood estimates are not
usable for hyperparameter selection. The plot shows
the train and test NLL of two B-CNNs w.r.t. epochs
on MNIST. We notice that both models overfit, shown
by the gap between train and test performance, and
the deteriorating test performance. A higher dropout
rate (p = 75% vs. 25%) postpones this effect, but does
not prevent it. For the TICK-GP model we see that
the train NLL is a good proxy for the test NLL, and
that it outperforms the B-CNNs over time.

datasets, showing the importance of encoding the right
inductive biases into a GP model. Most importantly,
the model is comparable with the B-CNN in terms of
error rate, but has better-calibrated predictive proba-
bilities, which enables ELBO-based model selection, as
shown in the next section.

Figure 3 shows the predictive probability for a few
randomly selected misclassified images, demonstrating
both the better-calibrated probabilities of GP-based
models compared to the CNN models, and the im-
provements of the new TICK-GP over the Conv-GP.
We clearly see how the CNN can be very confidently
wrong. In Appendix C we show the complete set of
misclassified images.

5.2 Comparison to Bayesian Neural
Networks with different Dropout Rates

While Bayesian deep learning methods based on
dropout [Gal and Ghahramani, 2016] have been empiri-
cally successful in improving the quality of uncertainty
estimates, it is unclear to what extent they accurately
approximate the true posteriors [Hron et al., 2018].
Additionally, in this experiment we find that they do
not provide a Bayesian objective that allows for the
automated training of hyperparameters and model se-
lection [Rasmussen and Ghahramani, 2001]. In this
experiment we have not considered other Bayesian deep
learning approaches like [Lee et al., 2018, Osawa et al.,
2019].

Figure 4 shows how powerful the marginal likelihood
(ELBO) of our fully Bayesian model is. In the plot,
we show the training traces of a TICK-GP and two
B-CNNs with different dropout rates on MNIST. The
models have the same setup as in section 5.1. We notice
the gap between the train and test NLL of the B-CNNs,
and a train NLL which keeps decreasing while the NLL
of the test set starts to increase. Using larger dropout
rates (pdropout = 0.75 instead of 0.25) postpones this
effect but does not prevent it. By contrast, the proper
marginal likelihood objective of the TICK-GP model
is reflected by the close similarity of the test NLL
and the train NLL. This enables us to do automated
model selection through higher marginal likelihood and
ELBO-based hyperparameter learning (e.g. to learn
the degree of translation insensitivity of a convolutional
layer).

5.3 Translation Insensitivity in Deep
Convolutional GPs (DCGPs)

Having shown how TICK-GP compares to vanilla Conv-
GPs, we now consider deep architectures. In table 2
we list the performance of a deep Conv-GP (DCGP)
[Blomqvist et al., 2019] and a deep TICK-GP (ours)
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Table 2: DCGP [Blomqvist et al., 2019] (reproduced
with our code) and Deep TICK-GP (our method) on
MNIST and CIFAR-10.

MNIST CIFAR-10

depth metric Conv TICK Conv TICK

1 top-1 error (%) 1.87 1.19 41.06 37.10
NLL full 0.06 0.04 1.17 1.08
neg. ELBO (⇥103) 8.29 5.83 65.72 63.51

2 top-1 error (%) 0.96 0.67 28.60 25.59
NLL full 0.04 0.02 0.84 0.75
neg. ELBO (⇥103) 5.37 4.25 52.81 48.31

3 top-1 error (%) 0.93 0.64 25.33 23.83
NLL full 0.03 0.02 0.74 0.69
neg. ELBO (⇥103) 5.045 4.19 49.38 47.53

on MNIST and CIFAR-10. We configure the models
as identically as possible: each layer uses 384 inducing
5x5 patches (initialised using random patches from the
training images), an identity Conv2D mean function
for the hidden layers, and a SE kernel for the patch
response function (the complete setup can be found in
Appendix A).

The deep TICK-GP, which can learn the degree of
insensitivity, outperforms the plain DCGP in terms of
accuracy and NLL for any depth. We see that both
models improve with depth, and more importantly, that
the ELBO is reflecting this. This can also be observed
in the appendix (fig. 8), where deep TICK-GPs are
consistently outperforming deep convolutional GPs.
We also compare to a growing dropout-based B-CNN,
which gives for the top-1 error and NLL: 1.93%, 0.07 (1
layer), 1.04%, 0.03 (2 layers) 0.86%, 0.04 (3 layers) on
MNIST. As expected, the B-CNN’s accuracy improves
with depth, but the NLL (uncertainty quantification)
gets worse. This is in contrast with our model which
continues to improve NLL and accuracy with depth.

To further position the TICK-GP, we compare its per-
formance against non-convolutional deep GPs. On
MNIST we found that a deep GP [Salimbeni and Deisen-
roth, 2017] with SE kernels, 2 layers, and 384 inducing
inputs per layer managed 98% accuracy. This is equal
to a vanilla GP classifier (Hensman et al. [2015] report
98% accuracy), illustrating that depth by itself does
not always improve performance when the wrong in-
ductive biases are encoded in the model. Havasi et al.
[2018] report similar conclusions in their work; their
HMC approach delivers 98.0% accuracy. Our model
beats all of these methods with 99.33% accuracy. Both
non-convolutional deep GP papers do not report re-
sults for CIFAR. We ran the method of Salimbeni and
Deisenroth [2017] and managed to get 47.26% accuracy.
Our model outperforms this with 74.41% accuracy.

5.4 Implementation and Reproducibility

The main implementation difficulty for multi-output
GPs is dealing with a large amount of special cases to
ensure the most efficient code path is used. This makes
it a challenge to implement modular and reusable code;
the correct software abstractions should be used to keep
the code readable, manageable, and extendable. We
noticed, however, that most multi-output GPs [Alvarez
et al., 2012] can be reformulated in terms of single-
output inducing outputs, leaning towards inter-domain
approximations. Based on this observation we devel-
oped a general multi-output GP framework [van der
Wilk et al., 2020].

To implement our model in the framework we need
to provide components specific to our model. In par-
ticular, we need to implement the multi-output and
single-output convolutional kernels (eq. (1) and eq. (3))
and the corresponding single and multi-output approxi-
mate posterior GP q(f(·)) (different flavours of eq. (5)).
Finally, we also need to implement the bound in eq. (6).

6 CONCLUDING DISCUSSION

We have shown that the accuracy of Bayesian methods,
and the quality of their posterior uncertainties, depends
strongly on the suitability of the modelling assumptions
made in the prior, and that Bayesian inference by itself
is often not enough. This motivated us to develop the
Translation Insensitive Convolutional Kernel (TICK),
which leads to improved uncertainty estimates and
accuracy on a range of different problems, and sets the
new state-of-art results for GP models.

While we appreciate that our experiments are still on
rudimentary image datasets (e.g. not of the calibre of
ImageNet), they do show that when the accuracy of our
method is on a par with that of a neural network, we
outperform the neural network in terms of uncertainty
estimation (section 5.1) and in the use of marginal
likelihood approximations for hyperparameter learning
(section 5.2). We believe that this suggests that the full
benefits of the Bayesian framework are not currently
realised by Bayesian deep learning.

We further presented deep convolutional GPs in a new
and clear way: image-to-image layers modelled as cor-
related multi-output GPs (section 3.3). This enabled
efficient implementation in our general-purpose open-
sourced framework [van der Wilk et al., 2020]. We
also highlighted a computational limitation of current
convolutional layers (section 4.1) which had not been
addressed in earlier work, and which future work should
focus on.
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