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A Proofs of main results

In this section, we present the proofs for our main results while deferring some technical results to the appendices.

A.1 Proof of Theorem 1

Our result makes use of the following corollary (proven in Appendix C.1):

Corollary 1. Given constants � 2 (0, 1) and � 2 (0, 1/12], suppose that we generate the the sample-level EM

sequence ✓
t+1
n = Mn,1(✓tn) starting from an initialization |✓

0
n| 2 I

0
�, and using a sample size n lower bounded as
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n % log1/(12�)(log(1/�)/�). Then for all iterations t � n
1/2�6� log(n) log(1/�), we have

|✓
t
n � ✓

⇤
|  c1

✓
1

n
log

log(1/�)

�

◆ 1
12��

, (15)

with probability at least 1 � �.

Remark: We note that the sub-optimal bound (15) obtained from Corollary 1 is not an artifact of the localization

argument and arises due to the definition of the operator operator fMn,1 (11a). As we have alluded to earlier,
indeed a finer analysis with the population EM operator M1 is required to prove the rate of n�1/8 stated in
Theorem 1. However, a key assumption in the further derivation is that the sample EM iterates ✓tn can converge
to a ball of radius r - n

�1/16 around ✓
⇤ in a finite number of steps, for which Corollary 1 comes in handy.

We now begin with a sketch the two stage-argument, and then provide a rigorous proof for Theorem 1.

A.1.1 Proof sketch

As mentioned earlier, the pseudo-population operator fMn,1 is not su�cient to achieve the sharp rate of EM
iterates under the univariate symmetric Gaussian mixture fit. Therefore, we make use of corrected-population
operator M1 to get a sharp statistical rate of EM. Our proof for the tight convergence rate of sample EM updates
relies on a novel two-stage localization argument that we are going to sketch.

First stage argument: Plugging in � = 1/84 in Corollary 1, we obtain that for t % p
n log(n), with probability

at least 1 � � we have that

��✓tn � ✓
⇤��  cn

� 1
14 log

1
14

log(1/�)

�
 n

� 1
16 , (16)

where the second inequality follows from the large sample condition n � c
0 log8 log 84

� . All the following claims are
made conditional on the event (16).

Second stage argument: In order to keep the presentation of the proof sketch simple, we do not track
constant and logarithmic factors in the arguments to follow. In epoch `, for any iteration t the EM iterates satisfy
✓
t
n 2 [n�a`+1 , n

�a` ] where a`+1 > a` and a`  1/16. Applying Lemma 1 for such iterations, we find that with
high probability

��M1(✓
t
n)
�� - (1 � n

�6a`+1)| {z }
=:�`

��✓tn
�� and

��Mn,1(✓
t
n) � M1(✓

t
n)
�� - n

�3a`

p
n

,

where the first bound follows from the 1 � c✓
6 contraction bound (12b) and the second bound follows from the

cubic-type Rademacher bound (12d). Invoking the basic triangle inequality T times, we obtain that

��✓t+T
n

��
(i)

- e
�Tn�6a`+1

n
�a` +

1

1 � �`
·
n
�3a`

p
n

(ii)

- 1

1 � �`
·
n
�3a`

p
n

= n
6a`+1�3a`�1/2

,

where in step (ii) we have used the fact that for large enough T , the first term is dominated by the second term
in the RHS of step (i). To obtain a recursion for the sequence a`, we set the RHS equal to n

�a`+1 . Doing so
yields the recursion

a`+1 =
3a`
7

+
1

14
, where a0 = 1/16. (17a)

Solving for the limit a`+1 = a` = a?, we find that a? = 1/8. Thus, we can conclude that sample EM iterates in
the univariate setting converge to a ball of radius n�1/8 as claimed in the theorem statement.

A.1.2 Formal proof of sample EM convergence rate

We now turn to providing a formal proof for the preceding arguments.
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Notations: To make the proof comprehensible, some additional notations are necessary which we collect here.
Let `? = dlog(8/�)/ log(7/3)e so that a`?  1/8 � �. We define the following shorthand:

! :=
n

cn,�
, where cn,� := log10(10n(`? + 1)/�). (17b)

For ` = 0, . . . , `?, we define the time sequences t` and T` as follows:

t0 =
p
n, t` =

⌃
10!6a` log!

⌥
, and T` =

X̀

j=0

tj . (17c)

Direct computation leads to

T`? 
p
n+ `?t`? - log

 
n log 1

�

cn,��

!✓
n

cn,�

◆3/4�6�

- n
3/4

. (17d)

In order to facilitate the proof argument later, we define the following set

R :=
�
!
�a1 , . . . ,!

�a`? , c
0
!
�a1 , . . . , c

0
!
�a`?

 
, (17e)

where c
0 := (5c2 + 1). Here, c2 is the universal constant from Lemma 1.

Formal argument: We show that with probability at least 1 � � the following holds:

��✓tn
�� 

⇣
cn,�

n

⌘a`

= !
�a` , for all t � T`, and `  `?. (18)

As a consequence of this claim and the definitions (17a)-(17d) of a`? and T`? , we immediately obtain that

|✓
t
n � ✓

⇤
| -

⇣
cn,�

n

⌘1/8��
-
✓
1

n
log10

10n log(8/�)

�

◆1/8��

,

for all number of iterates t % n
3/4�6� log(n) log(1/�) with probability at least 1 � � as claimed in Theorem 1.

We now define the high probability event that is crucial for our proof. For any r 2 R, define the event Er as
follows

Er :=

8
<

: sup
✓2B(0,r)

��Mn,1(✓) � M1(✓)
��  c2r

3

s
log10(5n |R| /�)

n

9
=

; .

Then, for the event

E :=
\

r2R
Er \ {Event (16) holds } , (19)

applying the union bound with Lemma 1 yields that P[E ] � 1 � �. All the arguments that follow are conditional
on the event E and hence hold with the claimed high probability.

In order to prove the claim (18), we make use of the following intermediate claim:

Lemma 2. Conditional on the event E, if |✓|  !
�a` , then |Mn,1(✓)|  !

�a` for any `  `?.

Deferring the proof of Appendix C.2, we now establish the claim (18) conditional on the event E only for t = T`

and when |✓
t
n| 2 [!�a`+1 ,!

�a` ] in which we now prove using induction.

Proof of base case ` = 0: Note that we have a0 = 1/16 and that n�1/16
 !

1/16. Also, by the definition (19)
we have that the event (16) ✓ E . Hence, under the event E we have that |✓

t
n|  n

�1/16, for t % p
n log(n). Putting

all the pieces together, we find that under the event E , we have |✓
t
n|  n

�1/16
 !

1/16 and the base case follows.
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Proof of inductive step: We now establish the inductive step. Note that Lemma 2 implies that we need to
show the following: if |✓

t
n|  !

�a` for all t 2 {T`, T` + 1, . . . , T`+1 � 1} for any given `  `?, then |✓
T`+1
n |  !

�a`+1 .
We establish this claim in two steps:

✓
T`+t`/2
n  c

0
!
�a`+1 , and, (20a)

✓
T`+1
n  !

�a`+1 , (20b)

where c
0 = (5c2 + 1) � 1 is a universal constant. Note that the inductive claim follows from the bound (20b). It

remains to establish the two claims (20a) and (20b) which we now do one by one.

Proof of claim (20a): Let ⇥` = {✓ : |✓| 2 [!�a`+1 ,!
�a` ]}. Now, conditional on the event E , Lemma 1 implies

that

sup
✓2⇥`

��Mn,1(✓) � M1(✓)
��  c2!

�3a`�1/2
, and sup

✓2⇥`

��M1(✓)/✓
��  (1 � !

�6a`+1/5) =: �`.

We can check that �`  e
�!6a`+1/5. Unfolding the basic triangle inequality t`/2 times and noting that ✓tn 2 ⇥`

for all t 2 {T`, . . . , T` + t`/2}, we obtain that
���✓T`+t`/2

n

���  �
t`/2
`

��✓T`
n

��+ (1 + �` + . . .+ �
t`/2�1
` )c2!

�3a`�1/2

 e
�t`!

�6a`+1/10
!
�a` +

1

1 � �`
c2!

�3a`�1/2

(i)
 (1 + 5c2)!

6a`+1�3a`�1/2

(ii)
= (5c2 + 1)!�a`+1

where step (i) follows from plugging in the value of �` and invoking the definition (17c) of t`, which leads to

e
�t`!

6a`+1/10
!
�a`  !

6a`+1�3a`�1/2
.

Moreover, step (ii) is a direct consequence of the definition (17a) of the sequence a`. Therefore, we achieve the
conclusion of claim (20a).

Proof of claim (20b): The proof of this step is very similar to the previous step, except that we now use the
set ⇥0

` = {✓ : |✓| 2 [!�a`+1 , c
0
!
�a`+1 ]} for our arguments. Applying Lemma 1, we have

sup
✓2⇥0

`

��Mn,1(✓) � M1(✓)
��  c2(c

0)3!�3a`+1�1/2
, and sup

✓2⇥0
`

��M1(✓)/✓
��  �`.

Using the similar argument as that from the previous case, we find that
���✓T`+t`/2+t`/s2

n

���  e
�t`!

6a`+1/10
c
0
!
�a`+1 +

1

1 � �`
c2(c

0)3!�3a`+1�1/2

 (5c2 + 1)(c0)3!4a`+1�1/2
· !

�a`+1

(i)
 !

�a`+1

where step (i) follows from the inequality e
�t`!

6a`+1/10
 !

4a`+1�1/2 and the inequality

!
4a`+1�1/2

 !
4a`?�1/2

 !
�4�

 1/(c0)4,

since n � (c0)1/�cn,�. The claim now follows.

A.2 Proof of Theorem 2

Before proceeding further, we first derive the convergence rates for the scale parameter �
t
n using Theorem 2.

Noting that (✓⇤,�⇤) = (0, 1), we obtain the following relation

��(�t
n)

2
� (�⇤)2

�� =
����

Pn
i=1 kXik

2
2

dn
� (�⇤)2 �

k✓
t
n � ✓

⇤
k
2
2

d

���� .
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Using standard chi-squared bounds, we obtain that

����

Pn
i=1 kXik

2
2

dn
� (�⇤)2

���� - (nd)�
1
2 ,

with high probability. From the bound (8), we also have k✓
t
n � ✓

⇤
k
2
2/d - (nd)�

1
2 . Putting the pieces together, we

conclude that the statistical error for the scale parameter satisfies

|(�t
n)

2
� (�⇤)2| - (nd)�

1
2 for all t %

�
n
d

� 1
2 , (21)

with high probability. Consequently, in the sequel, we focus primarily on the convergence rate for the EM
estimates ✓

t
n of the location parameter, as the corresponding guarantee for the scale parameter �

t
n is readily

implied by it.

The proof of Theorem 2 is based on the population-to-sample analysis and follows a similar road-map as of the
proofs in the paper [Dwivedi et al., 2020]. We first analyze the population-level EM operator and then using
epoch-based-localization argument derive the statistical rates (8). We make use of the following d-dimensional
analog of the pseudo-population operator (cf. equation (11a)):

fMn,d(✓) := EY⇠N (0,Id)

"
Y tanh

 
Y

>
✓Pn

j=1 kXjk
2
2/(nd) � k✓k2/d

!#
. (22)

In the next lemma, we establish the contraction properties and the perturbation bounds for fMn,d:

Lemma 3. The operator fMn,d satisfies

✓
1 �

3k✓k22
4

◆


kfMn,d(✓)k2
k✓k2



✓
1 �

(1 � 1/d)k✓k22
4

◆
, for all k✓k2 2 I� , (23a)

with probability at least 1 � �. Moreover, there exists a universal constant c2 such that for any fixed � 2 (0, 1),
� 2 (0, 1

4 ], and r 2 (0, 1
8 ) we have

P
"

sup
✓2B(0,r)

kMn,d(✓) � fMn,d(✓)k2  c2r

r
d log(1/�)

n

#
� 1 � � � e

�(nd)4�/8
. (23b)

See Appendix C.3 for the proof.

Lemma 3 shows that the operator fMn,d has a faster contraction (order 1� k✓k
2
2) towards zero, when compared to

its univariate-version (order 1 � ✓
6 cf. (12a)). This di↵erence between the univariate and the multivariate case

had already been highlighted in Section 1.2 in Figure 2. Indeed substituting d = 1 in the bound (23a) gives us
a vacuous bound for the univariate case, providing further evidence for the benefit of sharing variance among
di↵erent dimensions in multivariate setting of symmetric fit (1). With Lemma 3 at hand, the proof of Theorem 2
follows by using the localization argument from the paper [Dwivedi et al., 2020]. Mimicking the arguments similar
to equation (13b), we obtain the following statistical rate:4

✏ · r/
p
n

1 � �(✏)
= ✏ =)

✏r/
p
n

✏2
= ✏ =) ✏ ⇠ n

� 1
4 . (24)

Much of the work in the proof of Theorem 2 is to establish Lemma 3. With the bounds (23a) and (23b) at hand,
using the localization argument (in a manner similar to the proof of Theorem 1), easily leads to the statistical
rate of order (d/n)1/4 as claimed in Theorem 2. The detailed proof is thereby omitted.

4Moreover, similar to the arguments made in the paper [Dwivedi et al., 2020], localization argument is necessary to derive
a sharp rate. Indeed, a direct application of the framework introduced by Balakrishnan et al. [Balakrishnan et al., 2017]
for our setting implies a sub-optimal rate of order (d/n)1/6 for the Euclidean error k✓tn � ✓⇤k (cf. (13a) and (13b)).
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A.3 Proof of Lemma 1

We now prove Lemma 1 which provides the basis for the two-staged proof of Theorem 1.

The proof for the contraction property (12b) of the corrected population operator M1 is similar to that of the

property (12a) pseudo-population operator fMn,1 (albeit with a few high probability arguments replaced by
deterministic arguments). Hence, while we provide a complete proof of the bound (12a) (in Section A.3.1), we
only provide a proof sketch for the bound (12b) at its end. Moreover the proofs of bounds (12c) and (12d) are
provided in Sections A.3.2 and A.3.3 respectively.

A.3.1 Contraction bound for population operator fMn,1

We begin by defining some notation. For � 2 (0, 1/12] and ↵ � 1/2 � 6�, we define the event E↵ and the interval
I↵,� as follows

E↵ =

8
<

:

����
nX

j=1

X
2
j /n � 1

����  n
�↵

9
=

; , and, (25)

I↵,� = [3n�1/12+�
,

p
9/400 � n�↵], (26)

where in the above notations we have omitted the dependence on n, as it is clear from the context. We also use
the scalars a and b to denote the following:

a := 1 � n
�↵ and b := 1 + n

�↵
.

With the above notation in place, observe that standard chi-squared tail bounds yield that P[E↵] � 1�e
�n1�2↵/8

�

1 � �. Moreover, invoking the lower bound on n in Theorem 1, we have that [3n�1/12+�
, 1/10] ✓ I↵,� . Now

conditional on the high probability event E↵, the population EM update fMn,1(✓), in absolute value, can be upper
and lower bounded as follows:

���fMn,1(✓)
���  EY


Y tanh

✓
Y |✓|

a � ✓2

◆�
= |✓|EY


Y

|✓|
tanh

✓
|✓|X

a � ✓2

◆�

| {z }
=:�(✓)

, and,

���fMn,1(✓)
��� � EY


Y tanh

✓
X |✓|

b � ✓2

◆�
= |✓|EY


Y

|✓|
tanh

✓
|✓|Y

b � ✓2

◆�

| {z }
=:�(✓)

,

where the last two inequalities follows directly from the definition of fMn,1(✓) in equation (11a), and from the
fact that for any fixed y, ✓ 2 R, the function w 7! y tanh(y |✓| /(w � ✓

2)) is non-increasing in w for w > ✓
2.

Consequently, in order to complete the proof, it su�ces to establish the following bounds:

1 � 3✓6/2  �(✓), and �(✓)  (1 � ✓
6
/5). (27)

The following properties of the hyperbolic function x 7! x tanh(x) are useful for our proofs:

Lemma 4. For any x 2 R, the following holds

(Lower bound): x tanh(x) � x
2

�
x
4

3
+

2x6

15
�

17x8

315
,

(Upper bound): x tanh(x)  x
2

�
x
4

3
+

2x6

15
�

17x8

315
+

62x10

2835
.

See Appendix C.4 for its proof.

Given the bounds in Lemma 4, we derive the upper and lower bounds in the inequality (27) separately.
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Upper bound for �(✓): Invoking the upper bound on x tanh(x) from Lemma 4, we find that

�(✓) 
a � ✓

2

✓2

✓
✓
2

(a � ✓2)2
E
⇥
Y

2
⇤
�

✓
4

3(a � ✓2)4
E
⇥
Y

4
⇤
+

2✓6

15(a � ✓2)6
E
⇥
Y

6
⇤

�
17✓8

315(a � ✓2)8
E
⇥
Y

8
⇤
+

62✓10

2835(a � ✓2)10
E
⇥
Y

10
⇤◆

.

Recall that, for Y ⇠ N (0, 1), we have E
⇥
Y

2k
⇤
= (2k � 1)!! for all k � 1. Therefore, the last inequality can be

simplified to

�(✓) 
1

a � ✓2
�

✓
2

(a � ✓2)3
+

2✓4

(a � ✓2)5
�

17✓6

3(a � ✓2)7
+

62✓8

3(a � ✓2)9
. (28)

When n
�↵ + ✓

2
 9/400, we can verify that the following inequalities hold:

1

1 � n�↵ � ✓2
 1 + (n�↵ + ✓

2) + (n�↵ + ✓
2)2 + (n�↵ + ✓

2)3 + 2(n�↵ + ✓
2)4,

�
✓
2

(1 � n�↵ � ✓2)3
 �✓

2
�
1 + 3(n�↵ + ✓

2) + 6(n�↵ + ✓
2)2 + 10(n�↵ + ✓

2)3
�
,

✓
4

(1 � n�↵ � ✓2)5
 ✓

4
�
1 + 5(n�↵ + ✓

2) + 16(n�↵ + ✓
2)2

�
,

�
✓
6

(1 � n�↵ � ✓2)7
 �✓

6
�
1 + 7(n�↵ + ✓

2)
�
,

✓
8

(1 � n�↵ � ✓2)9
 5✓8/4.

Substituting a = 1 � n
�↵ into the bound (28) and doing some algebra with the above inequalities and using the

fact that max {✓, n
�↵

}  1 we have that

�(✓)  1 �
2

3
✓
6 +

61

6
✓
8 + 100n�↵

 1 �
2

5
✓
6 + 100n�↵

 1 �
1

5
✓
6
.

The second last inequality above follows since ✓  3/20, and the last inequality above utilizes the fact that if
↵ � 1/2 � 6�, then ✓

6
/5 � 100n�↵ for all ✓ � 3n�1/12+� . This completes the proof of the upper bound of �(✓).

Lower bound for �(✓): We start by utilizing the lower bound of x tanh(x) in the expression for �(✓), which
yields:

�(✓) �
1

b � ✓2
�

✓
2

(b � ✓2)3
+

2✓4

(b � ✓2)5
�

17✓6

3(b � ✓2)7
. (29)

Since |✓| 2 [3n�1/12+�
,
p
9/400 � n�↵] by assumption, we have the following lower bounds:

1

1 + n�↵ � ✓2
� 1 + (✓2 � n

�↵) + (✓2 � n
�↵)2 + (✓2 � n

�↵)3 + (✓2 � n
�↵)4,

�
✓
2

(1 + n�↵✓2)3
� �✓

2
�
�
1 + 3(✓2 � n

�↵) + 6(✓2 � n
��↵)2 + 11(✓2 � n

�↵)3
�
,

✓
4

(1 + n�↵ � ✓2)5
� ✓

4
�
1 + 5(✓2 � n

�↵) + 15(✓2 � n
�↵

�
,

�
✓
6

(1 + n�↵ � ✓2)7
� �✓

6
�
1 + 8(✓2 � n

�↵)
�
.

Substituting b = 1 + n
�↵ into the bound (29) and doing some algebra with the above inequalities and using the

fact that max {✓, n
�↵

}  1 we have that

�(✓) � 1 �
2

3
✓
6

�
76

3
✓
8

� 100n�↵
� 1 �

5

4
✓
6

� 100n�↵
� 1 �

3

2
✓
6
,

The second last inequality above follows since ✓  3/20, and the last inequality above utilizes the fact that if
↵ � 1/2 � 6�, then ✓

6
/4 � 100n�↵ for all ✓ � 3n�1/12+� . This completes the proof of the lower bound of �(✓).
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Proof of contraction bound for M1: Note that it su�ces to repeat the arguments with a = 1 and b = 1 in
the RHS of the inequalities (28) and (29) respectively. Given the other computations, the remaining steps are
straightforward algebra and are thereby omitted.

A.3.2 Proof of perturbation bound for fMn,1

We now prove the bound (12c) which is based on standard arguments to derive Rademacher complexity bounds.
We first symmetrize with Rademacher variables, and apply the Ledoux-Talagrand contraction inequality. We
then invoke results on sub-Gaussian and sub-exponential random variables, and finally perform the associated
Cherno↵-bound computations to obtain the desired result.

To ease the presentation, we denote ↵ := 1/2 � 2� and I := [1 � n
�↵

� 1/64, 1 � n
�↵]. Next we fix r 2 [0, 1/8]

and define er := r
1�n�↵�1/64 . For su�ciently large n, we have er  2r. Recall the definition (25) of the event:

E↵ = {|
Pn

j=1 X
2
j /n � 1|  n

�↵
}. Conditional on the event E↵, the following inequalities hold

���Mn,1(✓) � fMn,1(✓)
���  sup

✓2B(0,r),�22I

�����
1

n

nX

i=1

Xi tanh

✓
Xi✓

�2

◆
� E


Y tanh

✓
Y ✓

�2

◆������

 sup
e✓2B(0,er)

���cMn(e✓) � cM(e✓)
��� ,

with all them valid for any ✓ 2 B(0, r). Here Y denotes a standard normal variate N (0, 1) whereas the operators
cM and cMn are defined as

cM(e✓) := E[Y tanh(Y e✓)] and cMn(e✓) :=
1

n

nX

i=1

Xi tanh(Xi
e✓).

To facilitate the discussion later, we define the unconditional random variable

Z := sup
e✓2B(0,er)

���cMn(e✓) � cM(e✓)
��� .

Employing standard symmetrization argument from empirical process theory [van der Vaart and Wellner, 2000],
we find that

E[exp(�Z)]  E
"
exp

 
sup

e✓2B(0,er)

2�

n

nX

i=1

"i tanh(Xi
e✓)Xi

!#
,

where "i, i 2 [n] are i.i.d. Rademacher random variables independent of {Xi, i 2 [n]}. Noting that, the following
inequality with hyperbolic function tanh(x) holds

���tanh(xe✓) � tanh(xe✓0)
��� 

���(e✓ � e✓0)x
��� for all x.

Consequently for any given x, the function e✓ 7! tanh(xe✓) is Lipschitz. Invoking the Ledoux-Talagrand contraction
result for Lipschitz functions of Rademacher processes [Ledoux and Talagrand, 1991] and following the proof
argument from Lemma 1 in the paper [Dwivedi et al., 2020], we obtain that

Z  cer
r

log(1/�)

n
, with probability � 1 � �,

for some universal constant c. Finally, using er  2r for large n, we obtain that

���Mn,1(✓) � fMn,1(✓)
���  2cr

r
log(1/�)

n
, with probability � 1 � � � e

�n1�2↵/8
,

where we have also used the fact that P[E↵] � 1 � e
�n1�2↵/8 from standard chi-squared tail bounds. The

bound (12c) follows and we are done.
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A.3.3 Proof of perturbation bound for M1

We now prove the bound (12d). Note that it su�ces to establish the following point-wise result:

��M1(✓) � Mn,1(✓)
�� - |✓|

3 log10(5n/�)
p
n

for all |✓| - n
�1/16

,

with probability at least 1 � � for any given � > 0. For the reader’s convenience, let us recall the definition of
these operators

M1(✓) = E
h
X tanh(X✓/(1 � ✓

2))
i
, (30a)

Mn,1(✓) =
1

n

nX

i=1

Xi tanh
⇣
Xi✓/(an � ✓

2)
⌘
, (30b)

where an :=
Pn

i=1 X
2
i /n. We further denote µk := EX⇠N (0,1)[X

k], and bµk := 1
n

Pn
i=1 X

k
i . From known results

on Gaussian moments, we have µ2k = (2k � 1)!! for each integer k = 1, 2, . . ..

For any given x and scalar b, consider the map ✓ 7! x tanh(x✓/(b � ✓
2)). The 9-th order Taylor series for this

function around ✓ = 0 is given by

x tanh(x✓/(b � ✓
2)) =

✓x
2

b
�

✓
3(x4

� 3bx2)

3b3
+ ✓

5

✓
2x6

15b5
�

x
4

b4
+

x
2

b3

◆

+ ✓
7

✓
�

17x8

315b7
+

2x6

3b6
�

2x4

b5
+

x
2

b4

◆

+ ✓
9

✓
62x10

2835b9
�

17x8

45b8
+

2x6

b7
�

10x4

3b6
+

x
2

b5

◆
+ ", (31)

where the remainder " satisfies "  O
�
✓
11
�
. Plugging in this expansion with b = 1 on RHS of equation (30a) and

taking expectation over X ⇠ N (0, 1), we obtain

M1(✓) = ✓ + ✓
3
� 2X

k=1

c3,kµ2k

�
+ ✓

5
� 3X

k=1

c5,kµ2k

�
+ ✓

7
� 4X

k=1

c7,kµ2k

�
+ ✓

9
� 5X

k=1

c9,kµ2k

�
+ ", (32a)

where we have used the notation µk := EX⇠N (0,1)[X
k] and cj,k denote universal constants. Furthermore, plugging

in the same expansion (31) with b = an on RHS of equation (30b), we obtain the following expansion for the
sample EM operator

Mn,1(✓) = ✓ + ✓
3
� 2X

k=1

c3,k
bµ2k

a
1+k
n

�
+ ✓

5
� 3X

k=1

c5,k
bµ2k

a
2+k
n

�
+ ✓

7
� 4X

k=1

c7,k
bµ2k

a
3+k
n

�
+ ✓

9
� 5X

k=1

c9,k
bµ2k

a
4+k
n

�
+ "n, (32b)

where bµk denotes the sample mean of Xk, i.e., bµk := 1
n

Pn
i=1 X

k
i . In order to lighten the notation, we introduce

the following convenient shorthand:

�j =

j+1
2X

k=1

cj,kµ2k and b�j =

j+1
2X

k=1

cj,k
bµ2k

a

j�1
2 +k

n

for j 2 {3, 5, 7, 9} =: J . (33)

A careful inspection reveals that �3 = �5 = 0. With the above notations in place, we find that

��M1(✓) � Mn,1(✓)
�� =

��
X

j2J
✓
j(�j � b�j)

��+ "

=: U1 + U2.

Therefore, it remains to establish that

U1 - |✓|
3 log5(5n/�)

p
n

and U2 - |✓|
3 log5(5n/�)

p
n

, (34)
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with probability at least 1 � � for any given � > 0. Since the remainder term is of order ✓
11, the assumption

|✓| - n
�1/16 ensures that the remainder term is bounded by a term of order ✓3/

p
n and thus the bound (34) on

the second term U2 follows.

We now use concentration properties of Gaussian moments in order to prove the bound (34) on the first term U1.
Since |✓|  1, it su�ces to show that

sup
j2J

����j � b�j

��� - log5(5n/�)
p
n

(35)

with probability at least 1 � �. Using the relation (33), we find that

����j � b�j

��� =
��

j+1
2X

k=1

 
cj,kµ2k � cj,k

bµ2k

a

j�1
2 +k

n

!
�� 

j+1
2X

k=1

cj,k

a

j�1
2 +k

n

��µ2k � bµ2k

��+ cj,k(1 � a
� j�1

2 �k
n )µ2k

 C

j+1
2X

k=1

✓��µ2k � bµ2k

��+ µ2k
p
n

◆
, (36)

for any j 2 J . Here in the last step we have used the following bounds:

max
j2J ,k j+1

2

cj,k  C and max
j2J ,k j+1

2

(1 � a
� j�1

2 �k
n ) 

C
p
n

for some universal constant C. Thus a lemma for the 1/
p
n-concentration5 of higher moments of Gaussian random

variable is now useful:

Lemma 5. Let X1, . . . , Xn are i.i.d. samples from N (0, 1) and let µ2k := EX⇠N (0,1)[X
2k] and bµ2k := 1

n

Pn
i=1 X

2k
i .

Then, we have

P
 

|bµ2k � µ2k| 
Ck log

k(n/�)
p
n

!
� 1 � � for any k � 1,

where Ck denotes a universal constant depending only on k.

See the Appendix C.5 for the proof.

For any � > 0, consider the event

E :=

(
��µ2k � bµ2k

�� 
Ck log

k(5n/�)
p
n

for all k 2 {2, 4, . . . , 10}

)
. (37)

Straightforward application of union bound with Lemma 5 yields that P [E ] � 1 � �. conditional on the event E

inequality (35) implies that

sup
j2J

����j � b�j

���  C sup
j2J

j+1
2X

k=1

✓��µ2k � bµ2k

��+ µ2k
p
n

◆

 C sup
j2{3,5,7,9}

j + 1

2

✓��µj+1 � bµj+1

��+ (j + 1)!!
p
n

◆

(i)
 C sup

j2{3,5,7,9}
(j � 1)

 
��C j+1

2

log
j+1
2 (5n/�)
p
n

��+ (j + 1)!!
p
n

!

(ii)
 C

log5(5n/�)
p
n

, (38)

where step (i) follows from the definition of the event (37) and in step (ii) using the fact that j  9 is bounded we
absorbed all the constants into a single constant. Since the event E has probability at least 1 � �, the claim (35)
now follows.

5The bound from Lemma 5 is sub-optimal for k = 1 but is sharper than the standard tail bounds for Gaussian
polynomials of degree 2k for k � 2. The 1/

p
n concentration of higher moments is necessary to derive the sharp rates

stated in our results.
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10�1

� !

10�6

10�5

10�4

10�3

10�2

10�1

E
rr
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Perturbation error for EM operators

kfMn,1(�) � Mn,1(�)k

slope = 0.93

kM 1(�) � Mn,1(�)k

slope = 2.83

Figure 4. Plots of the perturbation errors for the pseudo-population operator fMn,1 (11a) and the corrected
population operator M1 (11b) with respect to the sample EM operator Mn,1 (4), as a function of ✓. From the

least-squares fit on the log-log scale, we see that the error kfMn,1(✓)�Mn,1(✓)k scales linearly with ✓, the error
kM1(✓)�Mn,1(✓)k has a cubic dependence on ✓, in accordance with Lemma 1.

A.3.4 Sharpness of bounds of Lemma 1

In Figure 4, we numerically verify the linear and cubic scaling of the bounds stated in Lemma 1.

B Minimax bound

We now show that the error of order n� 1
8 (up to logarithmic factors) is, in fact, tight in the standard minimax

sense. Given a compact set ⌦ ⇢ R ⇥ (0,1), and a set of true parameters (✓⇤,�⇤) 2 ⌦, suppose that we
draw n i.i.d. samples {Xi}

n
i=1 from a two-Gaussian mixture of the form 1

2N (✓⇤, (�⇤)2) + 1
2N (�✓

⇤
, (�⇤)2). Let

(b✓n, b�n) 2 ⌦ denote any estimates—for the respective parameters—measurable with respect to the observed

samples X1, . . . , Xn
i.i.d.
⇠ f✓⇤,�⇤ and let E(✓⇤,�⇤) denote the corresponding expectation.

Proposition 1. There exists a universal constant c⌦ > 0 (depending only on ⌦), such that

inf
(b✓n,b�n)

sup
(✓⇤,�⇤)

E(✓⇤,�⇤)

h�
|b✓n| � |✓

⇤
|
�2

+
��(b�n)

2
� (�⇤)2

��
i

� c⌦n
� 1

4��
for any � > 0.

See Appendix C.1 for the proof.

Based on the connection between location parameter ✓tn and scale parameter �t
n in the EM updates (cf. Equa-

tion (3c)), the minimax lower bound in Proposition 1 shows that the (non-squared) error of EM location updates
||✓

t
n| � |✓

⇤
| | is lower bounded by a term (arbitrarily close to) n� 1

8 .

B.1 Proof of Proposition 1

We now present the proof of the minimax bound. We introduce the shorthand v := �
2 and ⌘ := (✓, v). First of

all, we claim the following key upper bound of Hellinger distance between mixture densities f⌘1 , f⌘2 in terms of
the distances among their corresponding parameters ⌘1 and ⌘2:

inf
⌘1,⌘22⌦

h (f⌘1 , f⌘2)⇣
(|✓1| � |✓2|)

2 + |v1 � v2|

⌘r = 0 for any r 2 (1, 4). (39)

Moreover, for any two densities p and q, we denote the total variation distance between p and q by
V (p, q) := (1/2)

R
|p(x) � q(x)| dx. Similarly, the squared Hellinger distance between p and q is given as

h
2(p, q) = (1/2)

R ⇣p
p(x) �

p
q(x)

⌘2
dx.
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Taking the claim (39) as given for the moment, let us complete the proof of Proposition 1. Our proof relies on
Le Cam’s lemma for establishing minimax lower bounds. In particular, for any r 2 (1, 4) and for any ✏ > 0
su�ciently small, according to the result in equation (39), there exist ⌘1 = (✓1, v1) and ⌘2 = (✓2, v2) such
that (|✓1| � |✓2|)

2 + |v1 � v2| = 2✏ and h (f⌘1 , f⌘2)  c✏
r for some universal constant c. From Lemma 1 from

Yu [Yu, 1997], we obtain that

sup
⌘2{⌘1,⌘2}

E⌘

⇣���b✓n
���� |✓|

⌘2
+
��(b�n)

2
� (�)2

��
�
& ✏

�
1 � V (fn

⌘1
, f

n
⌘2
)
�
,

where f
n
⌘ denotes the product of mixture densities f⌘ of the data X1, . . . , Xn. A standard relation between total

variation distance and Hellinger distance leads to

V (fn
⌘1
, f

n
⌘2
)  h(fn

⌘1
, f

n
⌘2
) =

q
1 � [1 � h2(f⌘1 , f⌘2)]

n


q
1 � [1 � c✏r]n.

By choosing c✏
r = 1/n, we can verify that

sup
⌘2{⌘1,⌘2}

E⌘

⇣���b✓n
���� |✓|

⌘2
+
��(b�n)

2
� (�)2

��
�
& ✏ ⇣ n

�1/r
,

which establishes the claim of Proposition 1.

B.1.1 Proof of claim (39)

In order to prove claim (39), it is su�cient to construct sequences ⌘1,n = (✓1,n, v1,n) and ⌘2,n = (✓2,n, v2,n) such
that

h
�
f⌘1,n , f⌘2,n

� �⇣
(|✓1,n| � |✓2,n|)2 + |v1,n � v2,n|

⌘r
! 0

as n ! 1. Indeed, we construct these sequences as follows: ✓2,n = 2✓1,n and v1,n � v2,n = 3 (✓1,n)
2 for all n � 1

while ✓1,n ! 0 as n ! 1. Direct computation leads to

f⌘1,n(x) � f⌘2,n(x) =
1

2
(�(x;�✓1,n, v1,n) � �(x;�✓2,n, v2,n))| {z }

T1,n

+
1

2
(�(x; ✓1,n, v1,n) � �(x; ✓2,n, v2,n))| {z }

T2,n

.

Invoking Taylor expansion up to the third order, we obtain that

T1,n =
X

|↵|3

(✓2,n � ✓1,n)↵1(v1,n � v2,n)↵2

↵1!↵2!

@
|↵|

�

@✓↵1@v↵2
(x;�✓2,n, v2,n) +R1(x),

T2,n =
X

|↵|3

(✓1,n � ✓2,n)↵1(v1,n � v2,n)↵2

↵1!↵2!

@
|↵|

�

@✓↵1@v↵2
(x; ✓2,n, v2,n) +R2(x)

where |↵| = ↵1 + ↵2 for ↵ = (↵1,↵2). Here, R1(x) and R2(x) are Taylor remainders that have the following
explicit representations

R1(x) := 4
X

|�|=4

(✓2,n � ✓1,n)�1(v1,n � v2,n)�2

�1!�2!

⇥

1Z

0

(1 � t)3
@
4
�

@✓�1@v�2
(x;�✓2,n + t(✓2,n � ✓1,n), v2,n + t(v1,n � v2,n)) dt,

R2(x) := 4
X

|�|=4

(✓1,n � ✓2,n)�1(v1,n � v2,n)�2

�1!�2!

⇥

1Z

0

(1 � t)3
@
4
�

@✓�1@v�2
(x; ✓2,n + t(✓1,n � ✓2,n), v2,n + t(v1,n � v2,n)) dt.
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Recall from equation (2) that the univariate location-scale Gaussian distribution has the PDE structure of the
following form

@
2
�

@✓2
(x; ✓,�2) = 2

@�

@�2
(x; ✓,�2).

Therefore, we can write the formulations of T1,n and T2,n as follows:

T1,n =
X

|↵|3

(✓2,n � ✓1,n)↵1(v1,n � v2,n)↵2

2↵2↵1!↵2!

@
↵1+2↵2�

@✓↵1+2↵2
(x;�✓2,n, v2,n) +R1(x),

T2,n =
X

|↵|3

(✓1,n � ✓2,n)↵1(v1,n � v2,n)↵2

2↵2↵1!↵2!

@
↵1+2↵2�

@✓↵1+2↵2
(x; ✓2,n, v2,n) +R2(x).

Via a Taylor series expansion, we find that

@
↵1+2↵2�

@✓↵1+2↵2
(x; ✓2,n, v2,n) =

3�|↵|X

⌧=0

(2✓2,n)⌧

⌧ !

@
↵1+2↵2+⌧

�

@✓↵1+2↵2+⌧
(x;�✓2,n, v2,n) +R2,↵(x)

for any ↵ = (↵1,↵2) such that 1  |↵|  3. Here, R2,↵ is Taylor remainder admitting the following representation

R2,↵(x) =
X

⌧=4�|↵|

⌧ (2✓2,n)
⌧

⌧ !

1Z

0

(1 � t)⌧�1 @
4
�

@✓↵1+⌧@v↵2
(x;�✓2,n + 2t✓2,n, v2,n) dt.

Governed by the above results, we can rewrite f⌘1,n(x) � f⌘2,n(x) as

f⌘1,n(x) � f⌘2,n(x) =
6X

l=1

Al,n
@
l
�

@✓l
(x;�✓2,n, v2,n) +R(x)

where the explicit formulations of Al,n and R(x) are given by

Al,n :=
1

2

X

↵1,↵2

1

2↵2

(✓2,n � ✓1,n)↵1(v1,n � v2,n)↵2

↵1!↵2!

+
1

2

X

↵1,↵2,⌧

1

2↵2

2⌧ (✓2,n)⌧ (✓1,n � ✓2,n)↵1(v1,n � v2,n)↵2

⌧ !↵1!↵2!
,

R(x) :=
1

2
R1(x) +

1

2
R2(x) +

X

|↵|2

1

2↵2

(✓1,n � ✓2,n)↵1(v1,n � v2,n)↵2

↵1!↵2!
R2,↵(x)

for any l 2 [6] and x 2 R. Here the ranges of ↵1,↵2 in the first sum of Al,n satisfy ↵1 + 2↵2 = l and 1  |↵|  3
while the ranges of ↵1,↵2, ⌧ in the second sum of Al,n satisfy ↵1 + 2↵2 + ⌧ = l, 0  ⌧  3 � |↵|, and 1  |↵|  3.

From the conditions that ✓2,n = 2✓1,n and v1,n � v2,n = 3 (✓1,n)
2, we can check that Al,n = 0 for all 1  l  3.

Additionally, we also have

max{|A4,n| , |A5,n| , |A6,n|} - |✓1,n|
4
.

Given the above results, we claim that

h
�
f⌘1,n , f⌘2,n

�
- |✓1,n|

8
. (40)

Assume that the claim (40) is given. From the formulations of sequences ⌘1,n and ⌘2,n, we can verify that
⇣
(|✓1,n| � |✓2,n|)2 + |v1,n � v2,n|

⌘r
⇣ |✓1,n|

2r
.

Since 1  r < 4 and ✓1,n ! 0 as n ! 1, the above results lead to

h
�
f⌘1,n , f⌘2,n

� �⇣
(|✓1,n| � |✓2,n|)2 + |v1,n � v2,n|

⌘r
- |✓1,n|

8�2r
! 0.

As a consequence, we achieve the conclusion of the claim (39).
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B.1.2 Proof of claim (40)

The definition of Hellinger distance leads to the following equations

2h2
�
f⌘1,n , f⌘2,n

�
=

Z �
f⌘1,n(x) � f⌘2,n(x)

�2
�p

f⌘1,n(x) +
p
f⌘2,n(x)

�2 dx

=

Z (
6P

l=4
Al,n

@
l
�

@✓l
(x;�✓2,n, v2,n) +R(x))2

�p
f⌘1,n(x) +

p
f⌘2,n(x)

�2 dx

-
Z

P6
l=4 (Al,n)

2
✓
@
l
�

@✓l
(x;�✓2,n, v2,n)

◆2

+R
2(x)

�p
f⌘1,n(x) +

p
f⌘2,n(x)

�2 dx, (41)

where the last inequality is due to Cauchy-Schwarz’s inequality. According to the structure of location-scale
Gaussian density, the following inequalities hold

Z
✓
@
l
�

@✓l
(x;�✓2,n, v2,n)

◆2

�p
f⌘1,n(x) +

p
f⌘2,n(x)

�2 dx -
Z

✓
@
l
�

@✓l
(x;�✓2,n, v2,n)

◆2

�(x;�✓2,n, v2,n)
dx < 1 (42)

for 4  l  6. Note that, for any � = (�1,�2) such that |�| = 4, we have

|✓2,n � ✓1,n|
�1

|v1,n � v2,n|
�2

⇣ |✓1,n|
4+�2 - |✓1,n|

4
.

With the above bounds, an application of Cauchy-Schwarz’s inequality leads to

Z
R

2
1(x)�p

f⌘1,n(x) +
p
f⌘2,n(x)

�2 dx

- |✓1,n|
8
X

|�|=4

Z sup
t2[0,1]

✓
@
4
�

@✓�1@v�2
(x;�✓2,n + t(✓2,n � ✓1,n), v2,n + t(v1,n � v2,n))

◆2

�(x;�✓2,n, v2,n)
dx - |✓1,n|

8
.

With a similar argument, we also obtain that

Z
R

2
2(x)�p

f⌘1,n(x) +
p
f⌘2,n(x)

�2 dx - |✓1,n|
8
, max

1|↵|4

Z
R

2
2,↵(x)

�p
f⌘1,n(x) +

p
f⌘2,n(x)

�2 dx - |✓1,n|
8
.

Governed by the above bounds, another application of Cauchy-Schwarz’s inequality implies that

Z
R

2(x)
�p

f⌘1,n(x) +
p

f⌘2,n(x)
�2 dx - |✓1,n|

8
. (43)

Combining the results from equations (41), (42), and (43), we achieve the conclusion of the claim (40).

C Proofs of auxiliary results

In this appendix, we collect the proofs of several auxiliary results stated throughout the paper.

C.1 Proof of Corollary 1

In order to ease the presentation, we only provide the proof sketch for the localization argument with this corollary.
The detail proof argument for the corollary can be argued in similar fashion as that of Theorem 1. In particular,
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we consider the iterations t such that ✓tn 2 [n�a` , n
�ar ] where a` > ar. For all such iterations with ✓

t
n, invoking

Lemma 1, we find that
���fMn,1(✓

t
n)
��� . (1 � n

�6a`)| {z }
=:�a`

��✓tn
�� and

���Mn,1(✓
t
n) � fMn,1(✓

t
n)
��� . n

�ar/
p
n.

Therefore, we obtain that

��✓t+T
n

�� 

���fMn,1(✓
t+T�1
n )

���+
���fMn,1(✓

t+T�1
n ) � Mn,1(✓

t+T�1
n )

���  �a`✓
t+T�1
n + n

�ar/
p
n.

Unfolding the above inequality T times, we find that
��✓t+T

n

��  �
2
a`
(✓t+T�2

n ) + n
�ar/

p
n(1 + �m)  �

T
a`
✓
t
n + (1 + �a` + . . .+ �

T�1
a`

)n�ar/
p
n

 e
�Tn�6a`

n
�ar +

1

1 � �a`

· n
�ar/

p
n.

As T is su�ciently large such that the second term is the dominant term, we find that that

��✓t+T
n

�� . 1

1 � �a`

· n
�ar/

p
n = n

6a`�ar�1/2
.

Setting the RHS equal to n
�a` , we obtain the recursion that

a` =
ar

7
+

1

14
. (44)

Solving for the limit a` = ar = a? yields that a? = 1/12. It suggests that we eventually have ✓
t
n ! B(0, n� 1

12 ).
As a consequence, we achieve the conclusion of the corollary.

C.2 Proof of Lemma 2

Without loss of generality, we can assume that |✓| 2 [!�a`+1 ,!
�a` ]. Conditional on the event E , we have that

��M1(✓)
��  (1 � !

�6a`+1/5) |✓| and
��Mn,1(✓) � M1(✓)

��  c2!
�3a`!

� 1
2 .

As a result, we have

|Mn,1(✓)| 
��Mn,1(✓) � M1(✓)

��+
��M1(✓)

��  (1 � !
�6a`+1/5) |✓| + c2!

� 1
2!

�3a`

 (1 � !
�6a`+1/5 + c2!

� 1
2!

�2a`)!�a`

 !
�a` .

Here, to establish the last inequality, we have used the following observation: for ! = n/cn,� and that n �

(c0)1/�cn,�, we have

5c2!
6a`+1�2a`�1/2

 5c2!
4a`�1/2

 c
0
!
4a`?�1/2

 c
0
!
�4�

 1/(c0)3  1,

which leads to �!
�6a`+1/5 + c2!

� 1
2!

�2a`  0. As a consequence, we achieve the conclusion of the lemma.

C.3 Proof of Lemma 3

The proof of the perturbation bound (23b) is a standard extension of d = 1 case presented above in Section A.3.2,
and thereby is omitted.

We now present the proof of the contraction bound (23a), which has several similarities with the proofs of
bounds (12a) and (12b) from Lemma 1. In order to simplify notation, we use the shorthand Zn,d := 1

nd

Pn
j=1 kXjk

2
2.

Recalling the definition (22) of operator fMn,d(✓), we have

kfMn,d(✓)k2 =

����EY⇠N (0,1)


Y tanh

✓
Y

>
✓

Zn,d � k✓k22/d

◆�����
2

. (45)
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We can find an orthonormal matrix R such that R✓ = k✓k2e1, where e1 is the first canonical basis in Rd. Define
the random vector V = RY . Since Y ⇠ N (0, Id), we have that V ⇠ N (0, Id). On performing the change of
variables Y = R

>
V , we find that

kEY


Y tanh

✓
Y

>
✓

Zn,d � k✓k22/d

◆�
k2 = kEV


R

>
V tanh

✓
k✓k2V1

Zn,d � k✓k22/d

◆�
k2

=

����EV1


V1 tanh

✓
k✓k2V1

Zn,d � k✓k22/d

◆�����

where the final equality follows from the fact that

E[R>
V f(V1)] = R

>E[V f(V1)] = R
>(E[V1f(V1)], 0, . . . , 0)

>
.

Furthermore, the orthogonality of the matrix R implies that kE[R>
V f(V1)]k22 = |E[V1f(V1)]|

2.

In order to simplify the notation, we define the scalars a, b and the event E↵,d as follows:

a := 1 � (nd)�↵
, b := 1 + (nd)�↵

, and E↵,d =
�
|Zn,d � 1|  (nd)�↵

 
, (46a)

where ↵ is a suitable scalar to be specified later. Note that standard chi-squared tail bounds guarantee that

P[E↵,d] � 1 � 2e�d2↵n1�2↵/8
. (46b)

Now conditional on the event E↵,d, we have

kfMn,d(✓)k2 

����EV1


V1 tanh

✓
k✓k2V1

a � k✓k22/d

◆����� = k✓k2 EV1


V1

k✓k2
tanh

✓
k✓k2V1

a � k✓k22/d

◆�

| {z }
=:⇢(✓)

, and,

kfMn,d(✓)k2 �

����EV1


V1 tanh

✓
k✓k2V1

b � k✓k22/d

◆����� = k✓k2 EV1


V1

k✓k2
tanh

✓
k✓k2V1

b � k✓k22/d

◆�

| {z }
=:⇢(✓)

,

where the above inequalities follow from the fact that for any fixed y, ✓ 2 Rd, the function w 7! y tanh(yk✓k2/(w�

k✓k
2
2/d)) is non-increasing in w for w > k✓k

2
2/d.

Substituting ↵ = 1/2 � 2� in the bound (46b) and invoking the large sample size assumption in the theorem
statement, we obtain that P[E↵,d] � 1 � �. Putting these observations together, it remains to prove that

⇢(✓) �

✓
1 �

3k✓k22
4

◆
k✓k

2
2, and ⇢(✓) 

✓
1 �

✓
1 �

1

d

◆
k✓k

2
2

4

◆
k✓k

2
2, (47)

for all 5(d/n)�1/4+�
 k✓k

2
2  (d � 1)/(6d � 1) conditional on the event E↵,d for ↵ = 1/2 � 6� to obtain the

conclusion of the theorem.

The proof of the claims in equation (47) relies on the following bounds on the hyperbolic function tanh(x). For
any x 2 R, the following bounds hold:

(Upper bound) x
2

�
x
4

3
+

2x6

15
� x tanh(x) � x

2
�

x
4

3
(Upper bound). (48)

We omit the proof of these bounds, as it is very similar to that of similar results stated and proven later in
Lemma 4. We now turn to proving the bounds stated in equation (47) one-by-one.

Bounding ⇢(✓): Applying the upper bound (48) for x tanh(x), we obtain that

⇢(✓) 
a � k✓k

2
2/d

k✓k22

✓
k✓k

2
2

(a � k✓k22/d)
2
E
⇥
V

2
1

⇤
�

k✓k
4
2

3(a � k✓k22/d)
4
E
⇥
V

4
1

⇤
+

2k✓k62
15(a � k✓k22/d)

6
E
⇥
V

6
1

⇤◆
.
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Substituting E
⇥
V

2k
1

⇤
= (2k � 1)!! for k = 1, 2, 3 in the RHS above, we find that

⇢(✓) 
1

a � k✓k22/d
�

k✓k
2
2

(a � k✓k22/d)
3
+

2k✓k42
(a � k✓k22/d)

5
. (49)

The condition k✓k
2
2 + (nd)�↵


d�1
6d�4 < 1/6 implies the following bounds:

1

1 � (nd)�↵ � k✓k22/d
 1 +

�
(nd)�↵ + k✓k

2
2/d

�
+ 3/2 ·

�
(nd)�↵ + k✓k

2
2/d

�2
,

1

(1 � (nd)�↵ � k✓k22/d)
3

� 1 + 3
�
(nd)�↵ + k✓k

2
2/d

�
,

1

(1 � (nd)�↵ � k✓k22/d)
5

 3/2.

Substituting the definitions (46a) of a and b and plugging the previous three bounds on the RHS of the
inequality (49) yields that

⇢(✓)  1 +
k✓k

2
2

d
+

3k✓k42
2d2

� k✓k
2
2

✓
1 +

3k✓k22
d

◆
+ 3k✓k42 +

11

2
(nd)�↵

 1 �

✓
1 �

1

d

◆
k✓k

2
2 +

✓
3 �

2

d

◆
k✓k

4
2 +

11

2
(nd)�↵

 1 �

✓
1 �

1

d

◆
k✓k

2
2

4

where the last step follows from the following observations that

(3 � 2/d)k✓k42  (1 � 1/d)k✓k22/2, for all k✓k2  (d � 1)/(6d � 4), (50)

11(nd)�↵
/2  (1 � 1/d)k✓k22/4, for all k✓k2 � 5(d/n)�1/4+� when ↵ = 1/2 � 2�. (51)

Therefore, the claim with an upper bound of ⇢(✓) now follows.

Bounding ⇢(✓): Using the lower bound (48) for x tanh(x), we find that

⇢(✓) �
b � k✓k

2
2/d

k✓k22

✓
k✓k

2
2

(b � k✓k22/d)
2
E
⇥
V

2
1

⇤
�

k✓k
4
2

3(b � k✓k22/d)
4
E
⇥
V

4
1

⇤◆
(52)

=
1

b � k✓k22/d
�

k✓k
2
2

(b � k✓k22/d)
3
. (53)

The condition k✓k2 � (nd)�↵
� 0 leads to

1

1 + (nd)�↵ � k✓k22/d
� 1 +

�
k✓k

2
2/d � (nd)�↵

�
+
�
k✓k

2
2/d � (nd)�↵

�2
,

1

(1 + (nd)�↵ � k✓k22/d)
3

 1 + 4
�
k✓k

2
2/d � (nd)�↵

�
.

Applying these inequalities to the bound (53), we obtain that

⇢(✓) � 1 +
k✓k

2
2

d
+

k✓k
4
2

d2
� k✓k

2
2

✓
1 +

4k✓k22
d

◆
� 2(nd)�↵

(i)
� 1 � k✓k

2
2

✓
1 �

1

d

◆
�

k✓k
2
2

6

✓
4

d
�

1

d2

◆
�

k✓k
2
2(1 � 1/d)

11

� 1 �
3k✓k22
4

where step (i) in the above inequalities follows from the observations (50)-(51) above. The lower bound (47) for
⇢(✓) now follows.
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C.4 Proof of Lemma 4

The proof of this lemma relies on an evaluation of coe�cients with x
2k as k � 1. In particular, we divide the

proof of the lemma into two key parts:

Upper bound: From the definition of hyperbolic function tanh(x), it is su�cient to demonstrate that

x (exp(x) � exp(�x)) 

✓
x
2

�
x
4

3
+

2x6

15
�

17x8

315
+

62x10

2835

◆
(exp(x) + exp(�x)) .

Invoking the Taylor series of exp(x) and exp(�x), the above inequality is equivalent to

1X

k=0

2x2k+2

(2k + 1)!


✓
x
2

�
x
4

3
+

2x6

15
�

17x8

315
+

62x10

2835

◆ 1X

k=0

2x2k

(2k)!

!
.

Our approach to solve the above inequality is to show that the coe�cients of x2k in the LHS is smaller than that
of x2k in the RHS for all k � 1. In fact, when 1  k  3, we can quickly check that the previous observation
holds. For k � 4, it su�ces to validate that

2

(2k)!
�

2

3(2k � 2)!
+

4

15(2k � 4)!
�

34

315(2k � 6)!
+

124

2835(2k � 8)!
�

2

(2k + 1)!
� 0.

Direct computation with the above inequality leads to

(k � 1)(k � 2)(k � 3)(k � 4)(496k4 � 1736k3 + 1430k2 + 446k � 381) � 0

for all k � 4, which is always true. As a consequence, we achieve the conclusion with the upper bound of the
lemma.

Lower bound: For the lower bound of the lemma, it is equivalent to prove that

1X

k=0

2x2k+2

(2k + 1)!
�

✓
x
2

�
x
4

3
+

2x6

15
�

17x8

315

◆ 1X

k=0

2x2k

(2k)!

!
.

Similar to the proof technique with the upper bound, we only need to verify that

2

(2k)!
�

2

3(2k � 2)!
+

4

15(2k � 4)!
�

34

315(2k � 6)!
�

2

(2k + 1)!
 0

for any k � 3. The above inequality is identical to

(k � 1)(k � 2)(k � 3)(4352k3 � 4352k2 � 512k + 1472) � 0

for all k � 3, which always holds. Therefore, we obtain the conclusion with the lower bound of the lemma.

C.5 Proof of Lemma 5

The proof of this lemma is based on appropriate truncation argument. More concretely, given any positive scalar
⌧ , and the random variable X ⇠ N (0, 1), consider the pair of truncated random variables (Y, Z) defined by:

Y := X
2kI|X|⌧ and Z := X

2kI|X|�⌧ . (54)

With the above notation in place, for n i.i.d. samples X1, . . . , Xn from N (0, 1), we have

1

n

nX

i=1

X
2k
i =

1

n

nX

i=1

Yi +
1

n

nX

i=1

Zi := SY,n + SZ,n.
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where SY,n and SZ,n, denote the averages of the random variables Y
0
i s and Z

0
is respectively. Observe that

|Yi|  ⌧
2k for all i 2 [n]; consequently, by standard sub-Gaussian concentration of bounded random variables, we

have

P (|SY,n � E [Y ] | � t1)  2 exp

✓
�

nt
2
1

2⌧4k

◆
. (55)

Next, applying Markov’s inequality with the non-negative random variable SZ,n, we find that

P (SZ,n � t2) 
E [SZ,n]

t2
=

E [Z]

t2
. (56)

By definition of the truncated random variable Y , we have E[Y ]  E[X2k]; moreover, an application of Holder’s
inequality to E [Z] yields

E [Z] = E
�
X

2kI|X|�⌧

�


q
E [X4k]

p
P (|X| � ⌧) 

q
2E [X4k] exp(�⌧

2
/4).

Combining the bounds on E[Y ] and E[Z] with the inequalities (55) and (56) we deduce that

Pn
i=1 X

2k
i

n
 E [Y ] + t1 + t2  E

⇥
X

2k
⇤
+ t1 + t2, and, (57a)

Pn
i=1 X

2k
i

n
� E

⇥
X

2k
⇤
� t1 � t2

q
2E [X4k] exp(�⌧

2
/4) (57b)

with probability at least 1 � exp
⇣
�

nt21
2⌧4k

⌘
�
p

2E [X4k] exp(�⌧
2
/4). Finally, given any � > 0, choose the scalars

⌧, t1, t2 as follows:

⌧ = 2

vuutlog

 
2
p
2nE [X4k]

�

!
, t1 = ⌧

2

s
1

n
log

✓
2

�

◆
and t2 =

1
p
n
.

Substituting the choice of t1, t2 and ⌧ , in bounds (57a) and (57b) we conclude that with probability at least 1� �

����

Pn
i=1 X

2k
i

n
� E

⇥
X

2k
⇤���� 

Ck log
k(n/�)

p
n

,

where Ck is a universal constant that depends only on k. This completes the proof of Lemma 5.

C.6 Proof of one step bound for population EM

We now describe a special one-step contraction property of the population operator.

Lemma 6. For any vector ✓
0
such that k✓

0
k 

p
d, we have kfMn,d(✓0)k 

p
2/⇡ with probability at least 1 � �.

The proof of this lemma is a straightforward application of the proof argument in Lemma 3 in Appendix C.3.
In order to simplify notations, we use the shorthand Zn,d =

Pn
j=1 kXjk

2
2/(nd). Recalling the definition (22) of

operator fMn,d, we have

kfMn,d(✓)k2 =

�����EY⇠N (0,1)


Y tanh

✓
Y

>
✓

Zn,d � k✓k22/d

◆������
2

.

As demonstrated in the proof of Theorem 2, we have the equivalence

kfMn,d(✓)k2 = E

V1 tanh

✓
k✓k2V1

Zn,d � k✓k22/d

◆�
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where V1 ⇠ N (0, 1). Since the function x tanh
⇣

k✓k2x
a�k✓k2

2/d

⌘
is an even function in terms of x for any given a, we

find that

E

V1 tanh

✓
k✓k2V1

Zn,d � k✓k22/d

◆�
= E


|V1| tanh

✓
k✓k2 |V1|

Zn,d � k✓k22/d

◆�

 E [|V1|] =

r
2

⇡

where the second inequality is due to the basic inequality tanh(x)  1 for all x 2 R. The inequality in the above

display implies that regardless of the initialization ✓
0, we always have kfMn,d(✓)k2 

p
2/⇡, as claimed.

D Wasserstein Distance

In Figures 1 and 3, we use EM to estimate all the parameters of the fitted Gaussian mixture (e.g., the parameters

{wi, µi,⌃i, i 2 [k]} if the fitted mixture were G =
Pk

i=1 wiN (µi,⌃i)) and use first-order Wasserstein distance
between the fitted model and the true model to measure the quality of the estimate. Here we briefly summarize
the definition of the first-order Wasserstein distance and refer the readers to the book [Villani, 2008] and the
paper [Ho and Nguyen, 2016b] for more details. Given two Gaussian mixture distributions of the form

G =
kX

i=1

wiN (µi,⌃i) and G
0 =

k0X

j=1

wjN (µ0
j ,⌃j),

the first-order Wasserstein distance between the two is given by
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where |||A|||F denotes the Frobenius norm of the matrix A (which in turn is defined as
qP

ij A
2
ij). Moreover, Q

denotes the set of all couplings on [k] ⇥ [k0] such that

qij 2 [0, 1],
kX

i=1

qij = w
0
j and

k0X

j=1

qij = wi for all i 2 [k], j 2 [k0].

We note that the optimization problem (58) is a linear program in the k ⇥ k
0 dimensional variable q and standard

linear program solvers can be used for solving it. Also, we remark that here we have abused the notation
slightly since the the definition of the Wasserstein distance above is typically used for the mixing measures which
only depends on the parameters of the Gaussian mixture (and not the Gaussian density). Finally, applying
definition (58), we can directly conclude that for the symmetric fit (1), we have
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where we have assumed that min {k✓ � ✓?k2, k � ✓ � ✓?k2} = k✓ � ✓?k2.


