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A Proof of Lemma 4

The following lemma states that the with high prob-
ability, the ratio J\sz\;(g)
Throughout this section, B(z,r) denotes the closed

Euclidean r-ball about x.

— 0 as n approaches oo.

Lemma 4. Let x ~ Dy. Then, for all§ > 0, % <s<
1, the hash table T' calculated by Algorithm 1 satisfies:
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where the probability is over S,,x ~ D"t and the
choice of the function g, .

Proof. Fix § > 0, ¢ = T—\/"E, and let Cq,...,C; be a
partition of [0,1]7 into ¢ = (1)? boxes of length e.
Notice that for any z,z’ in the same box, we have
|z — 2’| < Vde. Put k = n® and define the random
variable Le (Sn) = ¥ c;ns, <k P(C;), and note that
it is precisely the k-missing mass (defined in (2)) as-
sociated with the distribution P = (P(Ch),...,P(C})).
By Theorem 2(a), we have E[L, 1(S,)] < %’“. By the
law of total probability,
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Ls,m(Sn) < JF'Y)' (18)

For the first term in (18), we apply Theorem 2(b):

]P’(Lam(sn) >€d 16 T ’Y)
< P(Lem(Sn) > ElLem(Sa)] +7)

< 2exp ( — 0.09n1_572).

For the second term in (18), we have
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La,m(sn) < od f} +7)
= (%) + (*%). (19)

P(Nfar( ) > ON(a ‘ Len(Sn) <
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Since 1, = Vde, we have {|B(x,7r,) N S,| < n°} =
{|IC(z) N S| < n®}, where C(z) is the e-length box
containing x. Thus,
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We are left to bound the second term in (19)

1

(%) gIP(Ndose(x) }n 2

2
1.6
Leon(Sn) € 55 + 7 1B(@.1a) 18 > )
1
+]P<Nfar(l‘) > §N($)7Nclose( ) > 5 %
1.6 s
Le,m(Sn) S W +7a |B($,7”n) N Sn| >n )
= (%% %) + (% %k). (20)
. . logn
Since the algorithm set m,, = LQlogg(ﬁ)J’ we have
E[Netose(w) || Blw,7) 1 Sal > n°]
>
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Let Z ~ Bin(n®, pi"™). We  have

1

E[Ndose(m)MB(m,rn) N Sn| > n] > E[Z] = n° 3.

In addition, for each 2’ € Agose(x) we have

P(gn(z) = gn(a’)) > p*", and thus, invoking
the Chernoff bound,
(k% %) <
P(Z < %n*l)
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< exp( nb_%).




Fast and Bayes-consistent nearest neighbors

The last term we have to bound is the second term in
(20). Notice that

{Near(2) > 6N (), Netose() > sn° "3}
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= {Np((x) > —n’" 2}
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In addition, since p? > po, we have

E[Nee(@)] <phmn<pi™n<p, " n
=p1*=0(1).
Since for each 2/ € Age(z) we have P(gn(z) =

gn(:c’)) < py, if we let Z ~ Bin(n,p5™) then, by
Chernoff’s bound,
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(% k) < P(Z > gns_%) < 25m

For s > % and large enough n s.t. 2¢E [Nfar(:v)} <

2eE[Z] < 2e < gns’%.
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conclude our proof. O

B Proof of Lemma 5

Here we show that with high probability, the variable
N(z) — co. Namely, the number of sample points at
each bucket is increasing as n goes to oo.

Lemma 5. Let x ~ Dy be a test point. Then, for

all M > 0, % < s < 1 the hash table calculated by

Algorithm 1 satisfies:
IP’(N(x) < M) <
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Where, again, the probability is over S,,z ~ D"t!
and the choice of the function g,.

Proof. Fix M > 0. Similar to Lemma 4, we have
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We only have to bound the first term in (21). Observe
that

{N(z) < M} = {Nuose(z) < M}

and that E[Neose(2)||B(x,7, N Sp)| > n°] > E[Z] =
pymn® = n®=%. Now for Z ~ Bin(n®, p""), if we let

£E=1- %, then by Chernoff’s bound we have,
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