A Proof of Lemma 4

The following lemma states that the with high probability, the ratio $\frac{N_{\text {far }}(x)}{N(x)} \rightarrow 0$ as n approaches ∞. Throughout this section, $B(x, r)$ denotes the closed Euclidean r-ball about x.

Lemma 4. Let $x \sim \mathcal{D}_{\mathcal{X}}$. Then, for all $\delta>0, \frac{1}{2}<s<$ 1, the hash table T calculated by Algorithm 1 satisfies:

$$
\begin{aligned}
\mathbb{P}\left(N_{\mathrm{far}}(x)>\right. & \delta N(x)) \leq \\
& 2 \exp \left(-0.09 n^{\frac{1-s}{2}}\right)+\left(\frac{1.6}{n^{1-s} \sqrt{d}^{d}}\right)^{\frac{1}{d+1}} \\
& +\sqrt{\frac{1}{n^{\frac{1-s}{2}}}}+\exp \left(-\frac{1}{8} n^{s-\frac{1}{2}}\right) \\
& +2^{-\frac{\delta}{2} n^{s-\frac{1}{2}}}
\end{aligned}
$$

where the probability is over $S_{n}, x \sim \mathcal{D}^{n+1}$ and the choice of the function g_{n}.

Proof. Fix $\delta>0, \varepsilon=\frac{r_{n}}{\sqrt{d}}$, and let C_{1}, \ldots, C_{t} be a partition of $[0,1]^{d}$ into $t=\left(\frac{1}{\varepsilon}\right)^{d}$ boxes of length ε. Notice that for any x, x^{\prime} in the same box, we have $\left\|x-x^{\prime}\right\| \leq \sqrt{d} \varepsilon$. Put $k=n^{s}$ and define the random variable $L_{\varepsilon, k}\left(S_{n}\right)=\Sigma_{i:\left|C_{i} \cap S_{n}\right|<k} \mathbb{P}\left(C_{i}\right)$, and note that it is precisely the k-missing mass (defined in (2)) associated with the distribution $P=\left(\mathbb{P}\left(C_{1}\right), \ldots, \mathbb{P}\left(C_{t}\right)\right)$. By Theorem $2(\mathrm{a})$, we have $\mathbb{E}\left[L_{\varepsilon, k}\left(S_{n}\right)\right] \leq \frac{1.6 k t}{n}$. By the law of total probability,

$$
\begin{align*}
& \mathbb{P}\left(N_{\mathrm{far}}(x)>\right.\delta N(x)) \\
& \leq \mathbb{P}\left(L_{\varepsilon, m}\left(S_{n}\right)>\frac{1.6}{\varepsilon^{d} n^{1-s}}+\gamma\right) \\
&+ \mathbb{P}\left(N_{\mathrm{far}}(x)>\delta N(x) \mid\right. \\
&\left.\quad L_{\varepsilon, m}\left(S_{n}\right) \leq \frac{1.6}{\varepsilon^{d} n^{1-s}}+\gamma\right) \tag{18}
\end{align*}
$$

For the first term in (18), we apply Theorem 2(b):

$$
\begin{aligned}
\mathbb{P}\left(L_{\varepsilon, m}\left(S_{n}\right)>\right. & \left.\frac{1.6}{\varepsilon^{d} n^{1-s}}+\gamma\right) \\
& \leq \mathbb{P}\left(L_{\varepsilon, m}\left(S_{n}\right)>\mathbb{E}\left[L_{\varepsilon, m}\left(S_{n}\right)\right]+\gamma\right) \\
& \leq 2 \exp \left(-0.09 n^{1-s} \gamma^{2}\right)
\end{aligned}
$$

For the second term in (18), we have

$$
\begin{align*}
\mathbb{P}\left(N_{\text {far }}(x)>\right. & \left.\delta N(x) \left\lvert\, L_{\varepsilon, m}\left(S_{n}\right) \leq \frac{1.6}{\varepsilon^{d} n^{1-s}}+\gamma\right.\right) \\
\leq & \mathbb{P}\left(\left|B\left(x, r_{n}\right) \cap S_{n}\right|<n^{s} \mid\right. \\
& \left.L_{\varepsilon, m}\left(S_{n}\right) \leq \frac{1.6}{\varepsilon^{d} n^{1-s}}+\gamma\right) \\
+ & \mathbb{P}\left(N_{\text {far }}(x)>\delta N(x),\left|B\left(x, r_{n}\right) \cap S_{n}\right| \geq n^{s}\right. \\
& \left.L_{\varepsilon, m}\left(S_{n}\right) \leq \frac{1.6}{\varepsilon^{d} n^{1-s}}+\gamma\right) \\
= & (*)+(* *) \tag{19}
\end{align*}
$$

Since $r_{n}=\sqrt{d} \varepsilon$, we have $\left\{\left|B\left(x, r_{n}\right) \cap S_{n}\right|<n^{s}\right\} \Longrightarrow$ $\left\{\left|C(x) \cap S_{n}\right|<n^{s}\right\}$, where $C(x)$ is the ε-length box containing x. Thus,

$$
(*) \leq \frac{1.6}{\varepsilon^{d} n^{1-s}}+\gamma
$$

We are left to bound the second term in (19)

$$
\begin{align*}
(* *) \leq & \mathbb{P}\left(\left.N_{\text {close }}(x)<\frac{1}{2} n^{s-\frac{1}{2}} \right\rvert\,\right. \\
& \left.L_{\varepsilon, m}\left(S_{n}\right) \leq \frac{1.6}{\varepsilon^{d} n^{1-s}}+\gamma,\left|B\left(x, r_{n}\right) \cap S_{n}\right|>n^{s}\right) \\
& +\mathbb{P}\left(N_{\text {far }}(x)>\delta N(x), \left.N_{\text {close }}(x) \geq \frac{1}{2} n^{s-\frac{1}{2}} \right\rvert\,\right. \\
& \left.L_{\varepsilon, m}\left(S_{n}\right) \leq \frac{1.6}{\varepsilon^{d} n^{1-s}}+\gamma,\left|B\left(x, r_{n}\right) \cap S_{n}\right|>n^{s}\right) \\
& =(* * *)+(* * * *) . \tag{20}
\end{align*}
$$

Since the algorithm set $m_{n}=\left\lfloor\frac{\log n}{2 \log \left(\frac{1}{p_{1}}\right)}\right\rfloor$, we have

$$
\begin{aligned}
\mathbb{E}\left[N_{\text {close }}(x) \mid\right. & \left.\left|B(x, r) \cap S_{n}\right|>n^{s}\right] \\
& \geq p_{1}^{m_{n}} n^{s} \\
& \geq p_{1}^{\frac{\log n}{2 \log \left(\frac{1}{p_{1}}\right)}} n^{s} \\
& \geq\left(2^{\log p_{1}}\right)^{\frac{1}{2 \log \frac{1}{p_{1}}} \log n} n^{s} \\
& \geq n^{s-\frac{1}{2}} .
\end{aligned}
$$

Let $Z \quad \sim \quad \operatorname{Bin}\left(n^{s}, p_{1}^{m_{n}}\right)$. We have $\mathbb{E}\left[N_{\text {close }}(x)| | B\left(x, r_{n}\right) \cap S_{n} \mid>n^{s}\right] \geq \mathbb{E}[Z]=n^{s-\frac{1}{2}}$. In addition, for each $x^{\prime} \in A_{\text {close }}(x)$ we have $\mathbb{P}\left(g_{n}(x)=g_{n}\left(x^{\prime}\right)\right) \geq p_{1}^{m_{n}}$, and thus, invoking the Chernoff bound,

$$
\begin{aligned}
(* * *) & \leq \\
& \mathbb{P}\left(Z<\frac{1}{2} n^{s-\frac{1}{2}}\right) \\
& =\mathbb{P}\left(Z<\frac{1}{2} \mathbb{E}[Z]\right) \\
& \leq \exp \left(-\frac{1}{8} \mathbb{E}[Z]\right) \\
& \leq \exp \left(-\frac{1}{8} n^{s-\frac{1}{2}}\right) .
\end{aligned}
$$

The last term we have to bound is the second term in (20). Notice that

$$
\begin{aligned}
&\left\{N_{\text {far }}(x)>\delta\right.\left.N(x), N_{\text {close }}(x) \geq \frac{1}{2} n^{s-\frac{1}{2}}\right\} \\
& \Longrightarrow\left\{N_{\text {far }}(x)>\frac{\delta}{2} n^{s-\frac{1}{2}}\right\}
\end{aligned}
$$

In addition, since $p_{1}^{2}>p_{2}$, we have

$$
\begin{gathered}
\mathbb{E}\left[N_{\mathrm{far}}(x)\right] \leq p_{2}^{m_{n}} n \leq p_{1}^{2 m_{n}} n \leq p_{1}^{2\left(\frac{\log n}{2 \log \frac{1}{p_{1}}}-1\right)} n \\
=p_{1}^{-2}=O(1)
\end{gathered}
$$

Since for each $x^{\prime} \in A_{\mathrm{far}}(x)$ we have $\mathbb{P}\left(g_{n}(x)=\right.$ $\left.g_{n}\left(x^{\prime}\right)\right) \leq p_{2}^{m_{n}}$, if we let $Z \sim \operatorname{Bin}\left(n, p_{2}^{m_{n}}\right)$ then, by Chernoff's bound,

$$
(* * * *) \leq \mathbb{P}\left(Z>\frac{\delta}{2} n^{s-\frac{1}{2}}\right) \leq 2^{\frac{\delta}{2} n^{s-\frac{1}{2}}}
$$

For $s>\frac{1}{2}$ and large enough n s.t. $2 e \mathbb{E}\left[N_{\text {far }}(x)\right] \leq$ $2 e \mathbb{E}[Z] \leq 2 e \leq \frac{\delta}{2} n^{s-\frac{1}{2}}$.

Finally, setting $\gamma=\sqrt{\frac{1}{n^{\frac{1-s}{2}}}}, r_{n}=\left(\frac{1.6 \sqrt{d}}{n^{d+2}}\right)^{\frac{1}{d+1}}$ we conclude our proof.

B Proof of Lemma 5

Here we show that with high probability, the variable $N(x) \rightarrow \infty$. Namely, the number of sample points at each bucket is increasing as n goes to ∞.
Lemma 5. Let $x \sim \mathcal{D}_{\mathcal{X}}$ be a test point. Then, for all $M>0, \frac{1}{2}<s<1$ the hash table calculated by Algorithm 1 satisfies:

$$
\begin{aligned}
& \mathbb{P}(N(x)<M) \leq \\
& \quad \exp \left(-\frac{n^{s-\frac{1}{2}}}{2}+M\right)+2 \exp \left(-0.09 n^{\frac{1-s}{2}}\right) \\
& \quad+\left(\frac{1.6}{n^{1-s} \sqrt{d}^{d}}\right)^{\frac{1}{d+1}}+\sqrt{\frac{1}{n^{\frac{1-s}{2}}}}
\end{aligned}
$$

Where, again, the probability is over $S_{n}, x \sim \mathcal{D}^{n+1}$ and the choice of the function g_{n}.

Proof. Fix $M>0$. Similar to Lemma 4, we have

$$
\begin{align*}
& \mathbb{P}(N(x)<M) \leq \\
& \qquad \begin{array}{l}
\mathbb{P}(N(x)<M \mid \\
\left.\quad L_{\varepsilon, m}\left(S_{n}\right) \leq \frac{1.6}{\varepsilon^{d} n^{1-s}},\left|B\left(x, r_{n}\right) \cap S_{n}\right|>n^{s}\right) \\
+ \\
2 \exp \left(-0.09 n^{\frac{1-s}{2}}\right)+\frac{1.6 \sqrt{d}^{d}}{r_{n}^{d} n^{1-s}}+\sqrt{\frac{1}{n^{\frac{1-s}{2}}}} .
\end{array}
\end{align*}
$$

We only have to bound the first term in (21). Observe that

$$
\{N(x)<M\} \Longrightarrow\left\{N_{\text {close }}(x)<M\right\}
$$

and that $\mathbb{E}\left[N_{\text {close }}(x)| | B\left(x, r_{n} \cap S_{n}\right) \mid>n^{s}\right] \geq \mathbb{E}[Z]=$ $p_{1}^{m_{n}} n^{s}=n^{s-\frac{1}{2}}$. Now for $Z \sim \operatorname{Bin}\left(n^{s}, p_{1}^{m_{n}}\right)$, if we let $\xi=1-\frac{M}{\mathbb{E}[Z]}$, then by Chernoff's bound we have,

$$
\begin{aligned}
\mathbb{P}\left(N_{\text {close }}(x)\right. & <M \mid \\
& \left.L_{\varepsilon, m}\left(S_{n}\right) \leq \frac{1.6}{\varepsilon^{d} n^{1-s}},\left|B\left(x, r_{n}\right) \cap S_{n}\right|>n^{s}\right) \\
& \leq \mathbb{P}(Z<(1-\xi) \mathbb{E}[Z]) \\
& \leq \exp \left(-\frac{\xi^{2}}{2} \mathbb{E}[Z]\right) \\
& \leq \exp \left(-\frac{n^{s-\frac{1}{2}}}{2}+M\right)
\end{aligned}
$$

