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A Proof of Lemma 4

The following lemma states that the with high prob-

ability, the ratio Nfar(x)
N(x) → 0 as n approaches ∞.

Throughout this section, B(x, r) denotes the closed
Euclidean r-ball about x.

Lemma 4. Let x ∼ DX . Then, for all δ > 0, 1
2 < s <

1, the hash table T calculated by Algorithm 1 satisfies:
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where the probability is over Sn, x ∼ Dn+1 and the
choice of the function gn.

Proof. Fix δ > 0, ε = rn√
d
, and let C1, . . . , Ct be a

partition of [0, 1]d into t = ( 1
ε )d boxes of length ε.

Notice that for any x, x′ in the same box, we have
‖x− x′‖ ≤

√
dε. Put k = ns and define the random

variable Lε,k(Sn) = Σi:|Ci∩Sn|<k P(Ci), and note that
it is precisely the k-missing mass (defined in (2)) as-
sociated with the distribution P = (P(C1), . . . ,P(Ct)).
By Theorem 2(a), we have E[Lε,k(Sn)] ≤ 1.6kt

n . By the
law of total probability,
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For the first term in (18), we apply Theorem 2(b):
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For the second term in (18), we have
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Since rn =
√
dε, we have {|B(x, rn) ∩ Sn| < ns} =⇒

{|C(x) ∩ Sn| < ns}, where C(x) is the ε-length box
containing x. Thus,
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We are left to bound the second term in (19)
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Let Z ∼ Bin(ns, pmn1 ). We have
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The last term we have to bound is the second term in
(20). Notice that
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conclude our proof.

B Proof of Lemma 5

Here we show that with high probability, the variable
N(x) → ∞. Namely, the number of sample points at
each bucket is increasing as n goes to ∞.

Lemma 5. Let x ∼ DX be a test point. Then, for
all M > 0, 1
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Algorithm 1 satisfies:
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Where, again, the probability is over Sn, x ∼ Dn+1

and the choice of the function gn.

Proof. Fix M > 0. Similar to Lemma 4, we have
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We only have to bound the first term in (21). Observe
that
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