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Abstract

Research on nearest-neighbor methods tends
to focus somewhat dichotomously either on
the statistical or the computational aspects
— either on, say, Bayes consistency and rates
of convergence or on techniques for speeding
up the proximity search. This paper aims at
bridging these realms: to reap the advantages
of fast evaluation time while maintaining
Bayes consistency, and further without sac-
rificing too much in the risk decay rate. We
combine the locality-sensitive hashing (LSH)
technique with a novel missing-mass argu-
ment to obtain a fast and Bayes-consistent
classifier. Our algorithm’s prediction runtime
compares favorably against state of the art
approximate NN methods, while maintaining
Bayes-consistency and attaining rates com-
parable to minimax. On samples of size n
in Rd, our pre-processing phase has runtime
O(dn log n), while the evaluation phase has
runtime O(d log n) per query point.

1 Introduction

In the sixty or so years since the introduction of the
nearest neighbor paradigm, a large amount of litera-
ture has been devoted to analyzing and refining this
surprisingly effective classification method. Although
the 1-NN classifier is not in general Bayes-consistent
(Cover and Hart, 1967), taking a majority vote among
the k nearest neighbors does guarantee Bayes consis-
tency, provided that k increases appropriately in sam-
ple size (Stone, 1977; Devroye and Györfi, 1985; Zhao,
1987). However, the k-NN classifier presents issues of
its own. A naive implementation involves storing the
entire sample, over which a linear-time search is per-
formed when evaluating the hypothesis on test points.
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For large samples sizes, this approach is prohibitively
expensive in terms of storage memory and computa-
tional runtime.

Until recently, research on NN-based methods tended
to focus somewhat dichotomously either on the statis-
tical or the computational aspects. On the statistical
front, the most commonly investigated questions in-
volve Bayes consistency and rates of convergence under
various distributional assumptions (Hall et al., 2008;
Kpotufe, 2009; Gadat et al., 2016; Chaudhuri and Das-
gupta, 2014).

An orthogonal body of literature developed a host
of techniques for evaluating the hypothesis (or an
approximation to it) on test points in runtime con-
siderably better than linear in sample size. In this
setting, exact NN search methods suffer from either
space or query time that is exponential in the di-
mension d (Samet, 2006). To overcome this prob-
lem, approximate NN search was proposed. Broadly
speaking, these techniques construct a hierarchical
net during the offline pre-processing (learning) phase
(Krauthgamer and Lee, 2004; Beygelzimer et al., 2006;
Gottlieb et al., 2014), or seek to condense the sample
down to a smaller yet nearly-faithful subsample (Hart,
1968; Gates, 1972; Ritter et al., 1975; Wilson and Mar-
tinez, 2000; Gottlieb et al., 2018), or perform some
sort of dimensionality reduction (Indyk and Motwani,
1998; Charikar, 2002; Datar et al., 2004; Andoni and
Indyk, 2008; Gottlieb et al., 2016). The speedup in
search time is offset by a degraded classification accu-
racy, and with rare exceptions (Gottlieb et al., 2014),
this tradeoff has not been addressed in the literature.

The aim of this paper is to combine the best of both
worlds: to reap the advantages of fast evaluation time
while maintaining Bayes consistency, with the risk de-
caying at a rate not much worse than minimax. We
combine the locality-sensitive hashing (LSH) technique
of Datar et al. (2004) with a novel missing-mass argu-
ment to construct a fast, Bayes-consistent LSH-based
classifier.

Our contribution. Our main contribution consists
of constructing a fast and Bayes-consistent classifier in
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Rd. Our algorithm’s prediction runtime compares fa-
vorably against state of the art approximate NN meth-
ods. An additional advantage our method enjoys over
the latter is provable Bayes-consistency — and a con-
vergence rate that is off by a power of 2 from the min-
imax rate. The concentration inequality for a general-
ized notion of missing mass developed in the course of
our analysis may be of independent interest.

Related work. Following the pioneering work of
Cover and Hart (1967), it was shown by Devroye and
Györfi (1985); Zhao (1987) that the k-NN classifier
is strongly Bayes-consistent. Some of the classic re-
sults on k-NN risk decay rates were later refined by
taking into account the noise margin, i.e., the data
distribution around the decision boundary. In partic-
ular, Chaudhuri and Dasgupta (2014) obtain minimax

rates of the form O(n−
α(β+1)
2α+d ), where α is a Hölder-like

smoothness exponent of the regression function η(x) =
P(Y = 1|X = x) and β is a Tsybakov noise expo-

nent. To obtain this rate, they require k = Θ(n
2α

2α+d ),
which slows down the query time by an additional
poly(n) factor. A recently proposed alternative ap-
proach, based on sample compression and 1-NN clas-
sification has been shown to be Bayes-consisetnt in
doubling metric spaces (Kontorovich et al., 2017) —
and in fact is universally consistent in all spaces where
Bayes consistency is possible (Hanneke et al., 2019).

Various approximate NN techniques have been pro-
posed to speed up the query time. One such result was
obtained by Har-Peled et al. (2012), who show that
(r, cr, p1, p2)-sensitive LSH families (see definition be-
low) achieve an approximate NN query time of O(dnρ),

where ρ = log(1/p1)
log(1/p2) . Other approximation methods in-

clude fast ε-net constructions (Krauthgamer and Lee,
2004), where query time (after sample compression, as
in Gottlieb et al. (2018)) is O(1/εd) but does not de-
pend on n. No risk convergence (or even Bayes consis-
tency) analysis is known for any classifier using these
methods — absent which, as we argue in the discus-
sion below Table 1, comparisons to our approach are
not meaningful.

The recent work of Xue and Kpotufe (2018) proposes
aggregating denoised 1-NN predictors over a small
number of distributed subsamples. This approach,
which requires distributed computing resources, can
achieve nearly the accuracy of k-NN while matching
the prediction time of 1-NN. Since the present paper
does not assume access to parallel processors, this re-
sult is incomparable to ours.

Paper outline. The structure of this paper is as fol-
lows. Section 2 contains the relevant definitions and
notations. Section 3 discusses our main contributions.

In section 4 we present the LSH based learner algo-
rithm. Full detailed proofs are deferred to the supple-
mentary material.

2 Preliminaries

Learning model. We work in the standard agnos-
tic learning model (Mohri et al., 2012; Shalev-Shwartz
and Ben-David, 2014), whereby the learner receives a
sample S consisting of n labeled examples {(xi, yi)}ni=1

drawn iid from an unknown distribution D over X ×Y.
In this work we take X = [0, 1]d equipped with an

`p metric ‖x− x′‖pp =
∑d
i=1 |xi − x′i|p; when the sub-

script p is omitted, its default value is always p = 2:
‖·‖ ≡ ‖·‖2. For simplicity of exposition, we take
Y = {0, 1}; the extension to the multiclass case is
straightforward1.

Let DX denote the induced marginal distribution over
X and let η be the conditional probability over the
labels: η(x) = P(Y = 1|X = x). This function is said
to be (α,L)-Hölder if

|η(x)− η(x′)| ≤ L ‖x− x′‖αp , x, x′ ∈ X . (1)

Based on the training sample S, the learner produces
a hypothesis h : X → {0, 1} whose empirical error is
defined by R̂n(h) = 1

n

∑n
i=1 1 [h(xi) 6= yi] and whose

generalization error is defined by R(h) = P(h(x) 6= y).
The Bayes-optimal risk is defined as R∗ = infhR(h),
where the infimum is over all measurable hypotheses.
This infimum is achieved by the Bayes-optimal classi-
fier, h∗, given by

h∗(x) = argmax
y∈{0,1}

P(Y = y|X = x).

A learning algorithm mapping a sample S of size n to
a hypothesis hn is said to be (weakly) Bayes-consistent
if limn→∞ E[R(hn)] = R∗. (For strong Bayes consis-
tency, the convergence is almost-sure rather than in
expectation, but this paper deals with the former no-
tion.)

Locality Sensitive Hashing. Let H be a family of
hash functions mapping a metric space (M, ρ) to some
set U . The family H is called (r, cr, p1, p2)-sensitive if
for any two points x, x′ ∈ M, using a function h ∈ H
which is drawn from some distribution PH:

• ρ(x, x′) ≤ r =⇒ PH
(
h(x) = h(x′)

)
≥ p1,

• ρ(x, x′) ≥ cr =⇒ PH
(
h(x) = h(x′)

)
≤ p2.

1by replacing “majority vote” in Section 4 by the plu-
rality label, as done in Kontorovich et al. (2017)
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In order for a locality-sensitive hash (LSH) family to
be useful, it must satisfy inequalities p1 > p2 and c > 1
(Datar et al., 2004).

k-missing mass. For a sample S = (X1, . . . , Xn)
drawn iid from a discrete distribution P = (p1, p2, . . .)
over N, the missing mass is the total mass of the atoms
(i.e., points in N) not appearing in S. Let us define
a generalized notion, the k-missing mass. For i, k ∈
[n] and j ∈ N, define ψi,j = 1 [Xi = j] and ξ

(k)
j =

1 [Σni=1ψi,j < k]; in words, ξ
(k)
j is the indicator for the

event that the jth atom was observed fewer than k
times. The k-missing mass is the following random
variable:

U (k)
n =

∑
j∈N

pjξ
(k)
j (2)

(for k = 1, this is the usual missing mass).

3 Main Results

Our first contribution is the construction of a sequence
Hn of (rn, crn, p1, p2)-sensitive families with the fol-
lowing properties:

S1. p2
1 > p2

S2. rn → 0 as n→∞

S3. 1
rn

= o(
√
n).

Following Datar et al. (2004), our construction (given
in Section 4.1) is based on p-stable distributions.

Using this construction, we design a learning al-
gorithm (Alg. 1) with runtime O(dn log n), for the
pre-processing phase and evaluation (online) runtime
O(d log n). The pre-processing phase and evaluation
times are compared to other algorithms in Table 1.

In addition to achieving an exponential speed-up over
the state of the art, our algorithm enjoys the property
of being Bayes-consistent. The price we pay for the
computational speedup is a quadratic slow-down of the
convergence rate:

Theorem 1. Let X = [0, 1]d,Y = {0, 1}, and D be
a distribution over X × Y for which the conditional
probability function, η, is (α,L)-Hölder. Let fn de-
note the classifier constructed by Algorithm 1) on a
sample Sn ∼ Dn. Then the LSH learner is weakly
Bayes-consistent: limn→∞ E[R(fn)] = R∗. Further,
E[R(fn)]−R∗ = O(n−

α
2d+6 ).

Remark. Since we rely on the LSH techniques de-
veloped by Indyk and Motwani (1998); Datar et al.

Algorithm Training time Query time
k-NN O(1) O(dkn)
OptiNet O(dn4) O(dn)
this paper O(dn log n) O(d log n)

Table 1: A comparison of the various algorithms’ run-
times (OptiNet is given in Algorithm 1 of Hanneke
et al. (2019)). Note that while the query time of k-NN

may be improved (e.g., to O(dkn1/c2) using an LSH
family) and the training time of OptiNet can be im-
proved to O(Cd,εn log n) via fast ε-net (Gottlieb et al.,
2014), the effect of the approximate NN techniques on
Bayes consistency is not understood — much less the
effect on the risk decay rates. Indeed, one can trivially
speed up any learning algorithm by discarding all but
a tiny fraction of the training sample. This will obvi-
ously significantly degrade the risk rate, which under-
scores that runtime comparisons are only meaningful
among techniques with comparable risk rates.

(2004); Andoni and Indyk (2008), it might appear that
we are “beating them at their own game” by achiev-
ing an exponential speedup over the state-of-the-art
runtimes based on LSH. A more accurate conceptual
explanation would be that we are “playing a differ-
ent game”. Namely, while the latter works focus on
the approximate nearest neighbor problem, our goal is
rather to efficiently label a test point, without guaran-
teeing anything about its approximate nearest neigh-
bor in the sample. Instead, we guarantee that with
high probability, most of the points in a query point’s
hash bucket will be in its close proximity.

Open problem. Is there an NN-based classification
algorithm with query evaluation time O(d log n) that
achieves, under the conditions of Theorem 1, the min-
imax risk rate of O(n−

α
2α+d )?

Our analysis is facilitated by a bound on the k-missing
mass of possible independent interest:

Theorem 2. Let U
(k)
n be the missing mass variable

defined in (2). For ε > 0, n ∈ N and 1 ≤ k ≤ n, we
have

(a) E[U
(k)
n ] < 1.6‖P‖0 k/n, where

‖P‖0 =
∑
j∈N 1 [pj > 0] is the support size of P ;

(b) P
(
U

(k)
n > E[U

(k)
n ] + ε

)
≤ 2 exp

(
−0.09nε2/k

)
.

Remark. Lemma 16.6 in Shalev-Shwartz and Ben-
David (2014) claims the bound E[U

(k)
n ] ≤ 2‖P‖0 k/n

for k ≥ 2. The proof is an exercise, but a sketch is
provided. Since we provide a complete proof (via a
different method), with a better constant and without
restricting the range of k, we decided to include part
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(a) above. The concentration result in (b) is, to our
knowledge, novel.

4 LSH based Learner

Our LSH-based algorithm (presented formally in
Alg. 1) operates as follows. Given a sample Sn of
size n, we set the radius parameter rn, and pick
mn = O(log n) functions {hi} from an LSH family
Hn, and define gn(x) = (h1(x), . . . , hmn(x)). Using gn
we then we construct the hash table T , which contains
the training set Sn, and each bucket is labeled accord-
ing to the majority vote among the labels of the xi’s
falling into the bucket. Technically, this is done by
taking a single pair, which agrees with the majority
vote, (xi, yi), from the bucket, and inserting it into a
new table T ′, using the same hash function gn. The
LSH learner runs in O(dn log n), and its output is a
classifier defined by a (table, hash function) pair.

We denote by |T | the size of the table, namely, the
number of buckets in T . We use |T (k)| to denote the
number of elements in the bucket whose key is k. The
number of buckets can be reduced, by retaining only
the nonempty buckets using (standard) hashing of the
values gn(x). However, in this work we use single hash-
ing.

Algorithm 1 LSH based learner

Require:
Sample Sn = {(xi, yi)}ni=1

Ensure:
LSH based classifier

1: set mn = b logn
2 log 1

p1

c
2: pick mn functions from Hn where Hn is as in Sec-

tion 4.1
3: Initialize empty hash tables T, T ′

4: set gn = (h1, . . . , hmn)
5: for i = 1→ n do
6: add (xi, yi) to T (gn(xi))
7: end for
8: for bucket j in T do

9: if
∑

(xi,yi)∈T (j)

yi >
|T (j)|

2 then

10: find (x′, y′) ∈ T (j) s.t. y′ = 1
11: add (x′, y′) to T ′(gn(x′))
12: else
13: find (x′, y′) ∈ T (j) s.t. y′ = 0
14: add (x′, y′) to T ′(gn(x′))
15: end if
16: end for
17: return (T ′, gn)

To label a test point x, we need to access the label in

T ′(gn(x)). This can be done in time O(d log n) (see
Algorithm 2).

Algorithm 2 LSH based classifier fT ′,gn

Require:
hash table T ′

hash function gn
test point x ∈ X

1: if T ′(gn(x)) is not empty then
2: (x′, y′)← retrieve element from T ′(gn(x))
3: return y′

4: else
5: return default label 0
6: end if

4.1 LSH familiy

The term Locality-Sensitive Hashing (LSH) was intro-
duced by Indyk and Motwani (1998) to describe a ran-
domized hashing framework for efficient approximate
nearest neighbor search in high-dimensional space. It
is based on the definition of LSH family H, a family
of hash functions mapping similar input items to the
same hash code with higher probability than dissimilar
items. Our LSH learner is using the following family,
proposed by Datar et al. (2004). For the Euclidean
metric we pick a random projection of Rd onto a 1-
dimensional line and chop the line into segments of
length w, shifted by a random value b ∈ [0, w). For-
mally, hα,b(x) = bαx+b

w c, where the projection vector
α ∈ Rd is constructed by picking each coordinate of
α from the standard normal N(0, 1) distribution. The
choice of w is made according to the sample size. A
generalization of this approach to `p norms for any
p ∈ (0, 2] is possible as well; this is done by picking
the vector α from so-called p-stable distribution. We
compute the probability that two vectors v1, v2 ∈ Rd
collide under a hash function drawn from this family.
For the two vectors, let z = ‖v1 − v2‖p and let P (z)
denote the probability that v1, v2 collide for a hash
function chosen from the family H described above.
For a random vector α whose entries are drawn from
a p-stable distribution, αv1−αv2 is distributed as zX
where X is a random variable drawn from a p-stable
distribution. We get a collision if both |αv1−αv2| < w
and a divider does not fall between αv1 and αv2. It is
easy to see that

P(h(v1) = h(v2)) = P (z) =

∫ w
z

0

φp(t)(1−
tz

w
)dt,

where φp is the density of the absolute value of the
p-stable distribution. Notice that for a fixed w, this
probability depends only on the distance z, and it is
monotonically decreasing in z. Finally, given a sample
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S of size n, we set

w =
(1.6d(d+2)/2

n
d+1
2d+6

) 1
d+1

.

Choosing rn = w, we get

p1 = P (rn) =

∫ 1

0

f(t)(1− t)dt,

p2 = P (crn) =

∫ 1
c

0

f(t)(1− ct)dt.

For example, for the Euclidean norm, we have φp(t) =
2√
2π
e−

t2

2 and c = 3, which induces a (rn, 3rn, p1, p2)-

sensitive family with

p1 = P (rn) ≈ 0.367691,

p2 = P (3rn) ≈ 0.131758.

More generally, our Bayes consistency results hold for
the LSH learner whenever the (rn, crn, p1, p2)-sensitive
family Hn satisfies the properties S1-S3.

5 Proof of Theorem 2(a)

Remark. As shown in Berend and Kontorovich
(2012), even for k = 1, one cannot, in general, obtain

estimates on E[U
(k)
n ] independent of the support size

— unlike concentration bounds, which are dimension-
free.

Proof. Decompose U
(k)
n = X + Y , where

X =
∑

j:k≤npj

pjξ
(k)
j , Y =

∑
j:k>npj

pjξ
(k)
j . (3)

Then E[U
(k)
n ] = E[X] + E[Y ] and

E[ξ
(k)
j ] = P(Bin(n, pj) < k) =

k−1∑
`=0

(
n

`

)
p`j(1− pj)n−`.

For k ≤ npj , the multiplicative Chernoff bound

P(Bin(n, p) < (1 − δ)np) ≤ exp(−δ2np/2) yields

E[ξ
(k)
j ] ≤ exp

(
− (npj−k)2

2npj

)
, whence

E[X] ≤
∑

j:k≤npj

pj exp

(
− (npj − k)2

2npj

)
. (4)

We estimate this quantity via the simple strategy of
maximizing each summand independently over pj . To

this end, define the function F (p) = p exp
(
− (np−k)2

2np

)
over p ∈ [k/n, 1] and compute

F ′(p) =
exp

(
− (np−k)2

2np

)
(k2 + np(2− np))

2np
.

The latter vanishes at

p ∈ {p+, p−} :=
1±
√

1 + k2

n
,

of which only p+ lies in the permitted range [k/n, 1].
Since for k ≤ n we always have k2 < n(n+2), it follows
that F ′(1) < 0, and hence either p+ ≤ 1 maximizes F
over [k/n, 1] or else p+ > 1 (which happens iff k2 >
n(n − 2)) and F is maximized at p = 1. We shall
analyze both cases. For the first case, it is a simple
exercise to show that

(np+ − k)2

2np+
=

(1 +
√
k2 + 1− k)2

2(1 +
√
k2 + 1)

≥ 1

(1 +
√

2)k

and hence

nF (p+)

k
≤ (1 +

√
k2 + 1) exp(−[(1 +

√
2)k]−1)

k
=: G(k).

We claim that G is monotonically decreasing in k. In-

deed, k3
√
k2 + 1e

√
2−1
k [
√

2− 1]−1G′(k) =

k2 + 1 +
√
k2 + 1− (

√
2 + 1)k(1 +

√
k2 + 1) < 0,

which follows readily from k ≤
√
k2 + 1 ≤ k+

√
2− 1,

for k ≥ 1. Thus,

G(k) ≤ G(1) = (1 +
√

2) exp(−[1 +
√

2]−1]) < 1.595457,

whence

F (p+) < 1.6k/n. (5)

For the second case, which requires bounding F (1), we
claim that

sup
n≥1

sup
k∈[1,n]

exp

(
− (n− k)2

2n

)
< 1.56k/n. (6)

Indeed, putting x = k/n, we can define G(x) =

exp
(
−n

2(1−x)2

2n

)
/x and verify that G′(x) < 0 on

[1/n, 1]. Thus, the extreme value of exp(−1/4)/2 ≈
1.56 in (6) is achieved at n = 2 and k = 1.

It follows from (5) and (6) that

E[X] ≤ 1.6k/n · |{j ∈ N : pj ≥ k/n}| .

The upper bound on E[Y ] is trivial:

E[Y ] =
∑

j:k>npj

pj E[ξ
(k)
j ] ≤ k/n · |{j ∈ N : pj > 0}| .

Combining the estimates on E[X] and E[Y ] concludes
the proof.
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6 Proof of Theorem 2(b)

We begin by observing that the random variables ξ
(k)
j ,

though not independent, are negatively associated, as
shown in McAllester and Ortiz (2003). Thus, for the
purpose of establishing concentration, one may invoke
the standard Bernstein-Chernoff exponential bounding
argument verbatim (Dubhashi and Ranjan, 1998). We
shall do so in the sequel without further comment.

We maintain the decomposition U
(k)
n = X + Y as in

(3) and derive concentration bounds on X and Y sep-

ararately. A bound for U
(k)
n will then follow via

P(U (k)
n ≥ E[U (k)

n ] + ε) ≤
P(X ≥ E[X] + αε) + P(Y ≥ E[Y ] + (1− α)ε), (7)

for any choice of 0 ≤ α ≤ 1.

Tail bounds for X

In this section, we always assume that n ≥ 1, p ∈
[0, 1] and 1 ≤ k ≤ np. Define the function q =

q(k, n, p) := exp
(
− (np−k)2

2np

)
and the collection of in-

dependent Bernoulli variables ξ′j ∼ Ber(q(k, n, pj)), as
well as X ′ :=

∑
j:k≤npj pjξ

′
j . It follows from (4) that

E[X] ≤ E[X ′] =
∑
j:k≤npj pjq(k, n, pj) and from nega-

tive association that

P(X ≥ E[X] + ε) ≤ P(X ′ ≥ E[X ′] + ε), ε > 0. (8)

Our strategy for bounding (8) is to bound the moment
generating function E exp[λ(X ′ − E[X ′])] — to which
end, it suffices to bound

E eλpj(ξ
′
j−E[ξ′j ]) = q(k, n, pj)e

λpj(1−q(k,n,pj))

+ (1− q)e−λpjq(k,n,pj)

=: Φ(λ, k, n, pj). (9)

Lemma 3. For Φ as defined in (9),

Φ(λ, k, n, p) ≤ exp(CΦλ
2pk/n),

where CΦ ≤ (2+
√

3)/4 log(e−1) < 1.73 is a universal
constant.2

Armed with Lemma 3, the standard argument yields

2Numerical simulations suggest that CΦ < 0.61.

an estimate on (8):

P(X ′ ≥ E[X ′] + ε) = P(exp(λ(X ′ − E[X ′])) ≥ eλε)
≤ e−λε

∏
j:k≤npj

E eλpj(ξ
′
j−E[ξ′j ])

= e−λε
∏

j:k≤npj

Φ(λ, k, n, pj)

≤ e−λε
∏

j:k≤npj

exp(CΦλ
2pjk/n)

≤ exp(CΦλ
2k/n− λε).

Choosing λ = εn/2kCΦ yields

P(X ≥ E[X] + ε) ≤ exp(−ε2n/4kCΦ). (10)

Tail bounds for Y

As done for X in (8), we invoke negative association
to obtain

P(Y ≥ E[Y ] + ε) ≤ P(Y ′ ≥ E[Y ′] + ε), ε > 0, (11)

where Y ′ =
∑
j:k>npj

pjξ
′
j and the ξ′j ∼ Ber(qj) are

independent, and qj :=
∑k−1
`=0

(
n
`

)
p`j(1 − pj)

n−`. In
particular, E[Y ] = E[Y ′].

An application of Hoeffding’s inequality yields

P(Y ′ ≥ E[Y ′] + ε) ≤ exp

(
− 2ε2∑

j:k>npj
p2
j

)
;

it remains to bound
∑
j:k>npj

p2
j . To this end, we in-

voke Hölder’s inequality: ‖x‖22 ≤ ‖x‖∞ ‖x‖1, whence∑
j:k>npj

p2
j ≤

k

n
. (12)

It follows that

P(Y ≥ E[Y ] + ε) < exp(−2ε2n/k). (13)

From (10), we have that P(X ≥ E[X] + αε) ≤
exp(−α2ε2n/4kCΦ) and from (13), that P(Y ≥ E[Y ]+
(1 − α)ε) < exp(−2(1 − α)2ε2n/k). The choice α =
1/(1+(2

√
2CΦ)−1) ≈ 0.7878 makes the two exponents

equal:

max {P(X ≥ E[X] + αε),P(Y ≥ E[Y ] + (1− α)ε)}
< exp(−0.09ε2k/n).

Combining these with (7) concludes the proof.

Proof of Lemma 3. Throughout the proof, n ≥ 1, p ∈
[0, 1], 1 ≤ k ≤ np and q = q(k, n, p) as defined above.
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As in the proof of Lemma 3.5(a) in Berend and Kon-
torovich (2013), we invoke the Kearns-Saul inequality
to obtain

q exp(λ(p− pq)) + (1− q) exp(−λpq) ≤
exp[(1− 2q)λ2p2/4 log[(1− q)/q]].

Thus, to prove the Lemma, it suffices to show that

(1− 2q)/ log[(1− q)/q] ≤ 4CΦk/np.

Holding µ := np fixed, put x = k/µ and reparametrize
q as y(x) = exp(−µ(x−1)2/2); our task is now reduced
to proving

sup
µ≥1

sup
x∈[1/µ,1]

1− 2y(x)

x log[(1− y(x))/y(x)]
≤ 4CΦ. (14)

Note that x ≥ 1/µ implies y ≥ exp(−(µ − 1)2/2µ).
Reparametrize again via z := log(1/y) ≤ (µ− 1)2/2µ;
now proving (14) amounts to showing that

F (z) :=
1− 2e−z(

1−
√

2z/µ
)

log(ez − 1)
≤ 4CΦ,

for µ ≥ 1, z ∈ [0, (µ− 1)2/2µ].

Our proof will not require this, but we note that
F is always non-negative; this is clear from the
parametrization in (14). To prove (14), we consider
the two cases z < 1 and z ≥ 1 below, from which the
estimate CΦ ≤ (2 +

√
3)/4 log(e − 1) < 1.73 readily

follows.

Case I: z < 1. This case will follow from the in-
equalities

sup
0<z<1

∣∣∣∣ 1− 2e−z

log(ez − 1)

∣∣∣∣ ≤ 1

2
(15)

and

sup
µ≥1

sup
0<z<min

{
1,

(µ−1)2

2µ

}
∣∣∣∣∣ 1

1−
√

2z/µ

∣∣∣∣∣
≤ 2 +

√
3 ≈ 3.73; (16)

combining them implies a bound of F (z) ≤ 1+
√

3/2 ≈
1.87 over the specified range of µ and z. Both (15)
and (16) are straightforward exercises. The former is
facilitated by the reparametrization (1− 2/t)/ log(t−
1) while the latter involves analyzing the two cases
(µ − 1)2/2µ ≷ 1, whose boundary is demarcated by
µ = 2 +

√
3.

Case II: z ≥ 1. This case is facilitated by the trivial
estimate

sup
t≥1

t

log(et − 1)
≤ 1/ log(e− 1) < 1.85. (17)

Indeed, since |1− 2e−z| ≤ 1, it follows from (17) that

F (z) ≤ G(z) :=
1.85

z(1−
√

2z/µ)

over the specified range of µ and z, which is z ∈ [1, (µ−
1)2/2µ] and µ ≥ 2 +

√
3 (since for smaller µ, the range

of z is empty). Now the function G(z, µ) := z(1 −√
2z/µ) is unimodal in z for fixed µ, vanishing at z = 0

and at z = µ/2, and achieving a positive maximum
value strictly inbetween. As the actual range of z is
1 ≤ z ≤ (µ−1)2/2µ < µ/2 (the latter inequality holds
for all µ ≥ 1), to analyze the minimum of G(·, µ), we
need only consider the extreme feasible values z1 = 1
and z2 = (µ− 1)2/2µ. A straightforward computation
yields

sup
µ≥2+

√
3

1

G(z1, µ)
= sup

µ≥2+
√

3

1

1−
√

2/µ

=
1

1−
√

4− 2
√

3

= 2 +
√

3

and

sup
µ≥2+

√
3

1

G(z2, µ)
= sup
µ≥2+

√
3

2µ2

(µ− 1)2
= 2 +

√
3.

Combining these implies a bound of F (z) ≤ (2 +√
3)/ log(e − 1) < 6.9 over the specified range of µ

and z.

7 Proof of Theorem 1

Our proof closely follows the argument in Devroye
et al. (1996, Theorem 6.1).

Given a test point x ∈ [0, 1]d drawn from DX , and
gn(x) = j, We would like to know how many sample
points are in the bucket T (j), and what is the ratio of
the near (i.e. at distance at most < crn) and distant
(i.e. at distance at least ≥ crn) points in the bucket.
To deal with these questions, we first set some nota-
tions. Given a test point x ∼ DX and a hash function
gn, we denote by A(x) the set of points from S in
the same bucket with x, and N(x) is the size of that
bucket. Formally,

A(x) = {xi ∈ Sn|gn(xi) = gn(x)}
N(x) = Σni=11 [xi ∈ A(x)].
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In addition, for r > 0 we denote by Aclose(x) the set of
near points from S in the same bucket with x,

Aclose(x) = {xi ∈ Sn|gn(xi) = gn(x), ‖x− xi‖ < crn}

and Afar(x) is the complementary A(x) \Aclose(x). Fi-
nally, we define Nclose(x) and Nfar(x) as the cardinality
of the sets Aclose(x) and Afar(x). Equipped with the
preceding notations, we are now ready to prove the
Theorem 1.

Define η̂n(x) = 1
N(x)Σi:xi∈A(x)yi and η∗(x) =

E
[
η(x′)

∣∣x′ ∈ Aclose(x)
]
. By Devroye et al. (1996, The-

orem 2.2), we have

E[R(fgn,T ′)]−R∗ ≤ 2E
[
|η̂n(x)− η(x)|

]
.

By the triangle inequality,

E
[
|η̂n(x)− η(x)|

]
≤E
[
|η̂n(x)− η∗(x)|

]
+E
[
|η∗(x)− η(x)|

]
.

By conditioning on the variables 1 [xi ∈ A(x)],
1 [xi ∈ Aclose(x)], it is easy to see that Σi:xi∈Aclose(x)yi
is distributed as Bin(Nclose(x), η∗(x)), a binomial ran-
dom variable with parameters Nclose(x), η∗(x). Thus,

E
[
|η̂n(x)− η∗(x)|

∣∣∣ 1 [xi ∈ A(x)] ,1 [xi ∈ Aclose(x)]
]

≤ E
[
| 1

N(x)
Σi:xi∈A(x)yi − η∗(x)|

∣∣∣
1 [xi ∈ A(x)] ,1 [xi ∈ Aclose(x)]

]
+ 1 [N(x) = 0]

≤ E
[
| 1

N(x)
Σi:xi∈Aclose(x)yi − η∗(x)|

∣∣∣
1 [xi ∈ A(x)] ,1 [xi ∈ Aclose(x)]

]
+
Nfar(x)

N(x)
+

1 [N(x) = 0]

= E
[
|Bin(Nclose(x), η∗(x))−N(x)η∗(x)

N(x)
|
∣∣∣

1 [xi ∈ A(x)] ,1 [xi ∈ Aclose(x)]
]

+
Nfar(x)

N(x)
+

1 [N(x) = 0] = (∗) + (∗∗) + (∗ ∗ ∗).

By Cauchy-Schwarz we have

(∗) ≤
( 1

N(x)2
E
[
(Bin(Nclose(x), η∗(x))−N(x)η∗(x))2

]) 1
2

=
( 1

N(x)2

(
E
[
Bin(Nclose(x), η∗(x))2

]
−

2Nclose(x)N(x)η∗(x)2 +N(x)2η∗(x)2
)) 1

2

=
( 1

N(x)2

(
Nclose(x)η∗(x)(1− η∗(x))

+ η∗(x)2(N(x)−Nclose(x))2)
)) 1

2

.

Hence,

(∗) ≤

√
Nclose(x)

4N(x)2
+
(Nfar(x)

N(x)

)2

≤

√
1

4N(x)
+
(Nfar(x)

N(x)

)2

.

Hence,

E
[
|η̂n(x)− η∗(x)|

∣∣∣ 1 [xi ∈ A(x)] ,1 [xi ∈ Aclose(x)]
]

≤

√
1

4N(x)
+

(Nclose(x)−N(x))2

N(x)2
+
Nfar(x)

N(x)

+ 1 [N(x) = 0] .

Taking expectations,

E
[
|η̂n(x)− η∗(x)|

]
≤

E
[√ 1

4N(x)
+
Nfar(x)2

N(x)2
+
Nfar(x)

N(x)

]
+ P(N(x) = 0)

≤
(√

2 + 2
)(

P(N(x) < M)

+ P(Nfar(x) > δN(x))
)

+

√
1

4M
+ δ2 + δ.

For the second term, E
[
|η∗(x) − η(x)|

]
we use

the smoothness assumption on η. Since η∗(x) =
E
[
η(x′)

∣∣ ‖x− x′‖ ≤ cr] then

η(x)− L(crn)α ≥ η∗(x) ≤ η(x) + L(crn)α.

Hence,

E
[
|η∗(x)− η(x)|

]
≤ L(crn)α.

Now, by applying Lemmas 4, 5, and setting δ =√
1

ns−
1
2
, M = ns−

1
2

4 we get

E[R(fT ′,gn)]−R∗ ≤

4

(
2 exp(−1

8
ns−

1
2 ) + 4 exp(−0.09n

1−s
2 )

+ 2
( 1.6

n1−s
√
d
d

) 1
d+1

+

√
4

n
1−s
2

+ 2−
n

2s−1
4
2

)

+

√
1

4M
+ δ2 + δ + L(crn)α.

Finally, we set s = d+5
2d+6 , and for d ≥ 3, we get

by straightforward calculation, E[R(fT ′,gn)] − R∗ ≤

48 exp(−0.09n
1

2d+6 )+ 73Lcα
√
d
d+2
d+1

n
α

2d+6
, which completes the

proof.
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