
Supplementary File
Convex Geometry of Two-Layer ReLU Networks: Implicit

Autoencoding and Interpretable Models

In this file, we present proofs of the main results, details on the algorithms and numerical results,
and extra figures that are not included in the main paper due to the page limit. We refer to the
equations in the main paper as [Main Paper,(#)] to prevent ambiguities.

Contents
1 Additional figures 2

2 Additional details on the numerical experiments 2

3 Cutting plane algorithm with no bias term 3

4 Cutting plane algorithm with a bias term 3

5 Infinite size neural networks 4

6 Proofs of the main results 5

7 Polar convex duality 14

8 Two-layer ReLU networks with general loss functions 15

9 Extension to vector output neural networks 15

1

1 Additional figures
Here, we present additional figures (see Figure 1) that support our claims in the main paper. In 1D
ReLU neural network experiments, we note that even though the weights and biases might take quite
different values for each neuron, their activation points , i.e., −bi/ui for each neuron i, correspond to
the data samples. The distribution of the weights and biases are shown in Figure 1a in this document.
In 1b, we also illustrate a rectified ellipsoid set in three dimensions to complement the two dimensional
figures in the main paper.

(a) Weight and bias distributions for Figure 1 in
the main paper.

(b) 3D Illustration of the rectified ellipsoid.

Figure 1: Additional figures.

2 Additional details on the numerical experiments
In this section, we provide further information about our experimental setup.

In the main paper, we evaluate the performance of the introduced approach on several real data sets.
For comparison, we also include the performance of a two-layer NN trained with the backpropagation
algorithm and the well-known linear least squares approach. For all the experiments, we use the
regularization term (also known as weight decay) to let the algorithms generalize well on unseen data
(Krogh and Hertz, 1992). In addition to this, we use the cutting plane based algorithm along with
the neurons in [Main Paper,(9)] for our convex approach. In order to solve the convex optimization
problems in our approach, we use CVX (Grant and Boyd, 2014). However, notice that when dealing
with large data sets, e.g., CIFAR-10, plain CVX solvers might take a lot of time or return memory
errors. In order to circumvent these issues, we use SPGL1 (van den Berg and Friedlander, 2007) and
SuperSCS (Themelis and Patrinos, 2019) for large data sets. We also remark that all the data sets we
use are publicly available and further information, e.g., training and test sizes, can be obtained through
the provided references (LeCun; Krizhevsky et al., 2014; Torgo; new). Furthermore, we use the same
number of hidden neurons for both our approach and the conventional backpropagation based approach
to have a fair comparison.

For Convex-RF, we use the convolutional neural net architecture in (Coates and Ng, 2012). However,
instead of using random filters as in (Zhang et al., 2016) or applying the k-means algorithm as in
(Coates and Ng, 2012), we use filters that are extracted from the patches using the proposed convex
approach. Particularly, we first randomly obtain patches from the dataset. We then apply [Main Paper,
(9)] to obtain the filter weights. Using these filter weights, we train the architecture in (Coates and Ng,
2012) to obtain the provided results.

In order to gain further understanding of the connection between implicit regularization and initial
standard deviation of the neuron weights, we perform an experiment that is presented in the main
paper, i.e., Figure 1. In this experiment, using the backpropagation algorithm, we train two-layer

2

NNs with different initial standard deviations such that each network completely fits the training data.
Then, we find the maximum absolute difference between the function fit by the NNs and the ground
truth linear interpolation. After averaging our results over many random trials, we obtain Figure 1.
The same settings are also used for the experiment with hinge loss.

3 Cutting plane algorithm with no bias term
In this section, we present the pseudocode for the algorithm provided in the main paper when there is
no bias term.

In the cutting plane method, we first find a violating neuron using [Main Paper, (14)]. After adding
these parameters to U as columns, we solve [Main Paper, (4)]. If we cannot find a new violating neuron
then we terminate the algorithm. Otherwise, we find the dual parameter for the updated U. We repeat
this procedure till we find an optimal solution (see Algorithm 1).

Algorithm 1 Cutting Plane based Training Algorithm for Two-Layer NNs (without bias)

1: Initialize v = y
2: while there exists a violating neuron do
3: Find û1 and û2 via [Main Paper,(14)]
4: U← [U û1 û2]
5: Find v using the dual problem in [Main Paper,(11)]
6: Check the existence of a violating neuron via [Main Paper,(14)]
7: Solve [Main Paper,(4)] using U
8: Return θ = (U,w)

4 Cutting plane algorithm with a bias term
Here, we include the cutting plane algorithm which accommodates a bias term. This is slightly more
involved than the case with no bias because of extra constraints. We have the corresponding dual
problem as in Theorem 3.1

max
v∈Rn, 1Tv=0

vTy s.t.
∣∣vT (Au + b1

)
+

∣∣ ≤ 1 ,∀u ∈ B2,∀b ∈ R (1)

and an optimal (U∗, b∗) satisfies

‖(AU∗ + 1b∗T)T+v
∗‖∞ = 1 ,

where v∗ is the optimal dual variable.
Among infinitely many possible unit norm weights, we need to find the weights that violate the

inequality constraint in the dual form, which can be done by solving the following optimization problems

u∗1 = argmax
u,b

vT (Au + b1)+ s.t. ‖u‖2 ≤ 1

u∗2 = argmin
u,b

vT (Au + b1)+ s.t. ‖u‖2 ≤ 1.

However, the above problem is not convex since ReLU is a convex function. In this case, we can further
relax the problem by applying the spike-free relaxation as follows

(û1, b̂1) = argmax
u,b

vTAu + bvT1 s.t. Au + b1 < 0, ‖u‖2 ≤ 1

(û2, b̂2) = argmin
u,b

vTAu + bvT1 s.t. Au + b1 < 0, ‖u‖2 ≤ 1,

3

where we relax the set {(Au + b1)+|u ∈ Rd, ‖u‖2 ≤ 1} as {Au + b1|u ∈ Rd, ‖u‖2 ≤ 1} ∩Rn+. Now, we
can find the weights and biases for the hidden layer using convex optimization. However, notice that
depending on the sign of 1Tv one of the problems will be unbounded. Thus, if 1Tv 6= 0, then we can
always find a violating constraint, which will make the problem infeasible. However, note that here we
do not use bias for the output layer. If we use add a bias term to the output layer then 1Tv = 0 will
be enforced via the dual.

Based on our analysis, we propose the following convex optimization approach to train the two-layer
NN. We first find a violating neuron. After adding these parameters to U as a column and to b as a row,
we try to solve the original problem. If we cannot find a new violating neuron then we terminate the
algorithm. Otherwise, we find the dual parameter for the updated U. We repeat this procedure until
the optimality conditions are satisfied (see Algorithm 2 for the pseudocode). Since the constraint is
bounded below and ûj ’s are bounded, Algorithm 2 is guaranteed to converge in finitely many iterations
Theorem 11.2 of (Goberna and López-Cerdá, 1998).

Algorithm 2 Cutting Plane based Training Algorithm for Two-Layer NNs (with bias)

1: Initialize v such that 1Tv = 0
2: while there exists a violating neuron do
3: Find û1, û2, b̂1 and b̂2
4: U← [U û1 û2]

5: b← [bT b̂1 b̂2]T

6: Find v using the dual problem
7: Check the existence of a violating neuron
8: Solve the problem using U and b
9: Return θ = (U,b,w)

5 Infinite size neural networks
Here we briefly review infinite size, i.e., infinite width, two-layer NNs (Bach, 2017). We refer the
reader to (Bengio et al., 2006; Wei et al., 2018) for further background and connections to our work.
Consider an arbitrary measurable input space X with a set of continuous basis functions φu : X → R
parametrized by u ∈ B2. We then consider real-valued Radon measures equipped with the uniform
norm (Rudin, 1964). For a signed Radon measure µ, we define the infinite size neural network output
for the input x ∈ X as

f(x) =

∫
u∈B2

φu(x)dµ(u) .

The total variation norm of the signed measure µ is defined as the supremum of
∫
u∈B2

q(u)dµ(u)

over all continuous functions q(u) that satisfy |q(u)| ≤ 1. Now we consider the ReLU basis functions
φu(x) =

(
xTu

)
+
. For finitely many neurons, the network output is given by

f(x) =

m∑
j=1

φuj
(x)wj ,

which corresponds to the signed measure µ =
∑m
j=1 wjδ(u− uj) where δ is the Dirac delta function.

And the total variation norm ‖µ‖TV of µ reduces to the `1 norm ‖w‖1.
The infinite dimensional version of the problem [Main Paper, (4)] corresponds to

min ‖µ‖TV
s.t. f(xi) = yi ,∀i ∈ [n] .

4

For finitely many neurons, i.e., when the measure µ is a mixture of Dirac delta basis functions, the
equivalent problem is

min ‖w‖1
s.t. f(xi) = yi ,∀i ∈ [n] .

which is identical to [Main Paper, (4)] . Similar results also hold with regularized objective functions,
different loss functions and vector outputs.

6 Proofs of the main results
In this section, we present the proofs of the theorems and lemmas provided in the main paper.

Proof of Lemma 2.1. For any θ ∈ Θ, we can rescale the parameters as ūj = αjuj , b̄j = αjbj and
w̄j = wj/αj , for any αj > 0. Then, [Main Paper, (1)] becomes

fθ̄(A) =

m∑
j=1

w̄j(Aūj + b̄j1)+ =
m∑
j=1

wj
αj

(αjAuj + αjbj1)+ =

m∑
j=1

wj(Auj + bj1)+,

which proves fθ(A) = fθ̄(A). In addition to this, we have the following basic inequality

1

2

m∑
j=1

(w2
j + ‖uj‖22) ≥

m∑
j=1

(|wj | ‖uj‖2),

where the equality is achieved with the scaling choice αj =
(|wj |
‖uj‖2

) 1
2 . Since the scaling operation does

not change the right-hand side of the inequality, we can set ‖uj‖2 = 1,∀j. Therefore, the right-hand
side becomes ‖w‖1.

Proof of Lemma 2.2. Consider the following problem

min
θ∈Θ
‖w‖1 s.t. fθ(A) = y, ‖uj‖2 ≤ 1,∀j,

where the unit norm equality constraint is relaxed. Let us assume that for a certain index j, we obtain
‖uj‖2 < 1 with wj 6= 0 as the optimal solution of the above problem. This shows that the unit norm
inequality constraint is not active for uj , and hence removing the constraint for uj will not change
the optimal solution. However, when we remove the constraint, ‖uj‖2 → ∞ reduces the objective
value since it yields wj = 0. Hence, we have a contradiction, which proves that all the constraints that
correspond to a nonzero wj must be active for an optimal solution.

Proof of Lemma 2.3. The first condition immediately implies that {
(
Au
)

+
|u ∈ B2} ⊆ AB2. Since

we also have {
(
Au
)

+
|u ∈ B2} ⊆ Rn+, it holds that {

(
Au
)

+
|u ∈ B2} ⊆ AB2 ∩ Rn+. The projection of

AB2 ∩ Rn+ onto the positive orthant is a subset of QA, and consequently we have QA = AB2 ∩ Rn+.
The second conditions follow from the min-max representation

max
u∈B2

min
z:Az=(Au)+

‖z‖2 ≤ 1 ⇐⇒ [MainPaper, (6)] ,

by noting that (In −AA†)(Au)+ = 0 if and only if there exists z such that Az = (Au)+, which in
that case provided by A†(Au)+. The third condition follows from the fact that the minimum norm
solution to Az = (Au)+ is given by A†(Au)+ under the full row rank assumption on A, which in turn
implies In −AA† = 0.

5

Proof of Lemma 2.4. We have

max
u : ‖u‖2≤1

‖AT (AAT)−1
(
Au
)

+
‖2 ≤ σmax(AT (AAT)−1) max

u : ‖u‖2≤1
‖
(
Au
)

+
‖2

= σ−1
min(A) max

u : ‖u‖2≤1
‖
(
Au
)

+
‖2

≤ σ−1
min(A) max

u : ‖u‖2≤1
‖Au‖2

≤ σ−1
min(A)σmax(A)

≤ 1 .

where the last inequality follows from the fact that A is whitened.

Proof of Lemma 2.5. Let us consider a data matrix A such that A = caT , where c ∈ Rn+ and
a ∈ Rd. Then,

(
Au
)

+
= c

(
aTu

)
+
. If

(
aTu

)
+

= 0, then we can select z = 0 to satisfy the spike-free
condition

(
caTu

)
+

= Az. If
(
aTu

)
+
6= 0, then

(
Au
)

+
= caTu = Au, where the spike-free condition

can be trivially satisfied with the choice of z = u.

Proof of Lemma 2.6. The extreme point along the direction of v can be found as follows

max
u,b

n∑
i=1

vi(aiu+ b)+ s.t. |u| = 1, (2)

Since each neuron separates the samples into two sets, for some samples, ReLU will be active, i.e.,
S = {i|aiu+ b ≥ 0}, and for the others, it will be inactive, i.e., Sc = {j|aju+ b < 0} = [n]/S. Thus,
we modify (2) as

max
u,b

∑
i∈S

vi(aiu+ b) s.t. aiu+ b ≥ 0,∀i ∈ S, aju+ b ≤ 0,∀j ∈ Sc, |u| = 1. (3)

In (3), u can only take two values, i.e., ±1. Thus, we can separately solve the optimization problem for
each case and then take the maximum one as the optimal. Let us assume that u = 1. Then, (3) reduces
to finding the optimal bias. We note that due to the constraints in (3), −ai ≤ b ≤ −aj ,∀i ∈ S,∀j ∈ Sc.
Thus, the range for the possible bias values is [maxi∈S(−ai), minj∈Sc(−aj)]. Therefore, depending on
the direction v, the optimal bias can be selected as follows

bv =

{
maxi∈S(−ai), if

∑
i∈S vi ≤ 0

minj∈Sc(−aj), otherwise
. (4)

Similar arguments also hold for u = −1 and the min version of (2). Note that when
∑
i∈S vi = 0,

the value of the bias does not change the objective in (3). Thus, all the bias values in the range
[maxi∈S(−ai), minj∈Sc(−aj)] become optimal. In such cases, there might exist multiple optimal
solutions for the training problem.

Proof of Lemma 2.7. For the extreme point in the span of ei, we need to solve the following
optimization problem

max
u,b

(aTi u + b) s.t. aTj u + b ≤ 0,∀i 6= j, ‖u‖2 = 1. (5)

Then the Lagrangian of (5) is

L(λ,u, b) = aTi u + b−
n∑
j=1
j 6=i

λj(a
T
j u + b), (6)

6

where we do not include the unit norm constraint for u. For (6), λ must satisfy λ < 0 and 1Tλ = 1.
With these specifications, the problem can be written as

min
λ

max
u

uT
(
ai −

n∑
j=1
j 6=i

λjaj

)
s.t. λ < 0,1Tλ = 1, ‖u‖2 = 1. (7)

Since the u vector that maximizes (7) is the normalized version of the term inside the parenthesis
above, the problem reduces to

min
λ

∥∥∥∥ai − n∑
j=1
j 6=i

λjaj

∥∥∥∥
2

s.t. λ < 0,1Tλ = 1. (8)

After solving the convex problem (8) for each i, we can find the corresponding neurons as follows

ui =

ai −
∑n
j=1
j 6=i

λjaj∥∥∥∥ai −∑n
j=1
j 6=i

λjaj

∥∥∥∥
2

and bi = min
j 6=i

(−aTj ui),

where the bias computation follows from the constraint in (5).

Proof of Lemma 2.8. For any α ∈ Rn, the extreme point along the direction of α can be found by
solving the following optimization problem

max
u,b

αT (Au + b1)+ s.t. ‖u‖2 = 1 (9)

where the optimal (u, b) groups samples into two sets so that some of them activates ReLU with the
indices S = {i|aTi u+ b ≥ 0} and the others deactivate it with the indices Sc = {j|aTj u+ b < 0} = [n]/S.
Using this, we equivalently write (9) as

max
u,b

∑
i∈S

αi(a
T
i u + b) s.t. (aTi u + b) ≥ 0,∀i ∈ S, (aTj u + b) ≤ 0,∀j ∈ Sc, ‖u‖2 = 1,

which has the following dual form

min
λ,ν

max
u,b

uT
(∑
i∈S

(αi + λi)ai −
∑
j∈Sc

νjaj

)
s.t. λ,ν < 0,

∑
i∈S

(αi + λi) =
∑
j∈Sc

νj , ‖u‖2 = 1.

Thus, we obtain the following neuron and bias choice for the extreme point

uα =

∑
i∈S(αi + λi)ai −

∑
j∈Sc νjaj

‖
∑
i∈S(αi + λi)ai −

∑
j∈Sc νjaj‖2

and bα =

{
maxi∈S(−aTi u), if

∑
i∈S αi ≤ 0

minj∈Sc(−aTj u), otherwise
.

Proof of Theorem 3.1 and Corollary 3.1. Using an indicator function, we can reformulate the
problem as follows

P ∗ = min
θ∈Θ\{w}

max
v

vTy + I(‖(AU)T+v‖∞ ≤ 1), s.t. ‖uj‖2 ≤ 1,∀j,

where I(x ≤ a) = 0, if x ≤ a, I(x ≤ a) = −∞, otherwise. Since the set ‖(AU)T+v‖∞ ≤ 1 is closed,
the function Φ(v,U) := vTy + I(‖(AU)T+v‖∞ ≤ 1) is the sum of a linear function and an upper-
semicontinuous indicator function and therefore upper-semicontinuous. The constraint over U is convex
and compact. We use P ∗ to denote the value of the above min-max program. Exchanging the order of

7

min and max we obtain the dual problem given in [Main Paper,(11)], which establishes a lower bound
D∗ for the above problem:

P ∗ ≥ D∗ = max
v

min
θ∈Θ\{w}

vTy + I(‖(AU)T+v‖∞ ≤ 1), s.t. ‖uj‖2 ≤ 1,∀j,

We now show that strong duality holds for infinite size NNs. The dual of the semi-infinite program in
[Main Paper, (11)] is given by (see Section 2.2 of (Goberna and López-Cerdá, 1998) and also (Bach,
2017))

min ‖µ‖TV

s.t.
∫
u∈B2

(
Au
)

+
dµ(u) = y ,

where TV is the total variation norm of the Radon measure µ. This expression coincides with the
infinite-size neural network as given in Section 5, and therefore strong duality holds. Next we invoke
the semi-infinite optimality conditions for the dual problem in [Main Paper,(11)], in particular we apply
Theorem 7.2 of (Goberna and López-Cerdá, 1998). We first define the set

K = cone

{(
s
(
Au
)

+

1

)
,u ∈ B2, s ∈ {−1,+1};

(
0
−1

)}
.

Note that K is the union of finitely many convex closed sets, since the function
(
Au
)

+
can be expressed

as the union of finitely many convex closed sets. Therefore the set K is closed. By Theorem 5.3
(Goberna and López-Cerdá, 1998), this implies that the set of constraints in [Main Paper,(11)] forms a
Farkas-Minkowski system. By Theorem 8.4 of (Goberna and López-Cerdá, 1998), primal and dual values
are equal, given that the system is consistent. Moreover, the system is discretizable, i.e., there exists
a sequence of problems with finitely many constraints whose optimal values approach to the optimal
value of [Main Paper,(11)]. The optimality conditions in Theorem 7.2 (Goberna and López-Cerdá,
1998) implies that y =

(
AU∗

)
+
w∗ for some vector w∗. Since the primal and dual values are equal,

we have v∗Ty = v∗T
(
AU∗

)
+
w∗ = ‖w∗‖1, which shows that the primal-dual pair ({w∗,U∗},v∗) is

optimal. Thus, the optimal neuron weights U∗ satisfy ‖(AU∗)T+v
∗‖∞ = 1.

Proof of Proposition 3.1. Here, we particularly examine the problem in [Main Paper, (4)] when we
have a one dimensional dataset, i.e., {ai, yi}ni=1. Then, [Main Paper, (4)] can be modified as

min
θ∈Θ
‖w‖1 s.t. (auT + 1bT)+w = y, |uj | ≤ 1,∀j. (10)

Then, using Lemma 2.6, we can construct the following matrix

Ae = (au∗
T

+ 1b∗
T

)+,

where u∗ and b∗ consist of all possible extreme points. Using this definition and Corollary 3.2, we can
rewrite (10) as

min
w
‖w‖1 s.t. Aew = y. (11)

In the following, we first derive optimality conditions for (11) and then provide an analytic counter
example to disprove uniqueness. Then, we also follow the same steps for the regularized version of (11).

Equality constraint: The optimality conditions for (11) are

Aew
∗ = y

AT
e,sv

∗ + sign(w∗s) = 0

‖AT
e,scv

∗‖∞ ≤ 1,

(12)

8

where the subscript s denotes the entries of a vector (or columns for matrices) that correspond to a
nonzero weight, i.e. wi 6= 0, and the subscript sc denotes the remaining entries (or columns). We aim
to find an optimal primal-dual pair that satisfies (12).

Now, let us consider a specific dataset, i.e., a = [−2 − 1 0 1 2]T and y = [1 − 1 1 1 − 1]T , and
yields the following

Ae = (au∗
T

+ 1b∗
T

) =


0 0 0 0 1 2 3 4
1 0 0 0 0 1 2 3
2 1 0 0 0 0 1 2
3 2 1 0 0 0 0 1
4 3 2 1 0 0 0 0

 ,

where u∗
T

= [1 1 1 1 − 1 − 1 − 1 − 1] and b∗
T

= [2 1 0 − 1 − 1 0 1 2]. Solving (11) for this dataset
gives

v∗ =


1
−3
2
1
−1

 and w∗ =



0
6419/5000
−3919/2500
−8581/5000
13581/5000
−1081/2500
−1419/5000

0


=⇒ ‖w∗‖1 = 8.

We can also achieve the same objective value by using the following matrix

Âe = (aûT + 1b̂T) =


0 0 0 0 1 2 2.5 4
1 0 0 0 0 1 1.5 3
2 1 0 0 0 0 0.5 2
3 2 1 0.5 0 0 0 1
4 3 2 1.5 0 0 0 0

 ,

where ûT = [1 1 1 1 − 1 − 1 − 1 − 1] and b̂T = [2 1 0 − 0.5 − 1 0 0.5 2]. Solving (11) for this dataset
yields

v̂ =


1

−11/4
5/4
7/4
−5/4

 and ŵ =



0
4/3
0

−10/3
8/3
0
−2/3

0


=⇒ ‖ŵ‖1 = 8.

We also note that both solutions satisfy the optimality conditions in (12).

Regularized case: The regularized version of (11) is as follows

min
w

β‖w‖1 +
1

2n
‖Aew − y‖22, (13)

where the optimal solution w∗ satisfies

1

n
AT
e,s(Aew

∗ − y) + βsign(w∗s) = 0

‖AT
e,sc(Aew

∗ − y)‖∞ ≤ βn,
(14)

9

where the subscript s denotes the entries of a vector (or columns for matrices) that correspond to a
nonzero weight, i.e. wi 6= 0, and the subscript sc denotes the remaining entries (or columns). Now, let
us consider a specific dataset, i.e., a = [−2 − 1 0 1 2]T and y = [1 − 1 1 1 − 1]T . We then construct
the following matrix

Ae = (au∗
T

+ 1b∗
T

) =


0 0 0 0 0 1 2 2.5 3 4
1 0 0 0 0 0 1 1.5 2 3
2 1 0 0 0 0 0 0.5 1 2
3 2 1 0.5 0 0 0 0 0 1
4 3 2 1.5 1 0 0 0 0 0

 ,

where u∗
T

= [1 1 1 1 1 − 1 − 1 − 1 − 1 − 1] and b∗
T

= [2 1 0 − 0.5 − 1 − 1 0 0.5 1 2]. For this
dataset with β = 0.1, the optimal value of (13) can be achieved by the following solutions

w1 =



0
3197/2400
−2497/1500

0
−19997/12000
31961/12000
−997/3000

0
−3997/12000

0


=⇒ β‖w1‖1 +

1

2n
‖Aew1 − y‖22 =

1999

2500000

w2 =



0
191823/140000
−990613/840000
−471683/420000
−128017/120000
367547/140000
−127357/840000
−87827/420000
−31993/120000

0


=⇒ β‖w2‖1 +

1

2n
‖Aew2 − y‖22 =

1999

2500000
,

where each solution satisfies the optimality conditions in (14). We also provide a visualization for the
output functions of each solution in Figure 2.

Proof of Lemma 3.1. Since y has both positive and negative entries, we need at least two u’s with
positive and negative output weights to represent y using the output range of ReLU. Therefore the
optimal value of the `0 problem is at least 2. Note that AA† = In since A is full row rank. Then let
us define the output weights

w1 = ‖A†
(
y
)

+
‖2

w2 = −‖A†
(
−y
)

+
‖2 .

Then note that

w1

(
Au1

)
+

+ w2

(
Au2

)
+

=
(
AA†

(
y
)

+

)
+
−
(
AA†

(
− y

)
+

)
+

=
((
y
)

+

)
+
−
((
− y

)
+

)
+

=
(
y
)

+
−
(
− y

)
+

= y

where the second equality follows from AA† = In.

10

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

Solution1

Solution2

Samples

Figure 2: Solutions provided by w1 and w2 for the problem in (13).

Proof of Lemma 3.2. We first provide the optimality conditions for the convex program in the
following proposition:

Proposition 1. Let U be a weight matrix for [Main Paper, (4)]. Then, U ∈ Rd×m is an optimal
solution for the regularized training problem if

∃α ∈ Rn,w ∈ Rm s.t.
(
AU

)
+
w = y,

(
AU

)T
+
α = sign(w) (15)

and

max
u : ‖u‖2≤1

|αT (Au)+| ≤ 1 . (16)

These conditions follow from linear semi-infinite optimality conditions given in Theorem 7.1 and 7.6
(Goberna and López-Cerdá, 1998) for Farkas-Minkowski systems. Then the proof Lemma 3.2 directly
follows from the solution of minimum cardinality problem given in Lemma 3.1.

Now we prove the second claim. For whitened data matrices, denoting the Singular Value Decom-
position of the input data as A = U where UTU = UUT = In since A is assumed full row rank.
Consider the dual optimization problem

max
|vT (Au)+|≤1, ∀u∈B2

vTy (17)

Changing the variable to u′ = Uu in the dual problem we next show that

max
|vT (u′)+|≤1, ∀u′∈B2

vTy = max
‖(v)+‖2≤1, ‖(−v)+‖2≤1

vTy . (18)

where the equality follows from the upper bound

vT (u′)+ ≤ (v)T+(u′)+ ≤ ‖(v)+‖2‖(u′)+‖2 ≤ ‖(v)+‖2 ,

which is achieved when u′ = (v)+
‖(v)+‖2 . Similarly we have

−vT (u′)+ ≤ (−v)T+(u′)+ ≤ ‖(−v)+‖2‖(u′)+‖2 ≤ ‖(−v)+‖2 ,

11

which is achieved when u′ = (−v)+
‖(−v)+‖2 , which verifies the right-hand-side of (18). Now note that

vTy ≤ (v)T+(y)+ + (−v)T+(−y)+ .

Therefore the right-hand-side of (18) is upper-bounded by ‖(y)+‖2 + ‖(−y)+‖2. This upper-bound is
achieved by the choice

v =
(y)+

‖(y)+‖2
− (−y)+

‖(−y)+‖2
,

since we have

vTy =
yT (y)+

‖(y)+‖2
− yT (−y)+

‖(−y)+‖2
=

(y)T+(y)+

‖(y)+‖2
+

(−y)T+(−y)+

‖(−y)+‖2
= ‖(y)+‖2 + ‖(−y)+‖2 .

Therefore the preceding choice of v is optimal. Consequently, the corresponding optimal neuron weights
satisfy

u′1 =
(y)+

‖(y)+‖2
and u′2 =

(−y)+

‖(−y)+‖2
.

Changing the variable back via u = UTu′ = A†u′ we conclude that the optimal neurons are given by

u1 =
A†(y)+

‖(y)+‖2
and u2 =

A†(−y)+

‖(−y)+‖2
,

or equivalently

u1 =
A†(y)+

‖A†(y)+‖2
and u2 =

A†(−y)+

‖A†(−y)+‖2
,

since A† is orthonormal and yields the claimed expression. Finally, note that the corresponding output
weights are ‖A†(y)+‖2 and ‖A†(−y)+‖2, respectively.

Proof of Proposition 3.2. Since the constraint in [Main Paper,(14)] is bounded below and the
hidden layer weights are constrained to the unit Euclidean ball, the convergence of the cutting plane
method directly follows from Theorem 11.2 of (Goberna and López-Cerdá, 1998).

Proof of Theorem 3.2. Given a vector u we partition A according to the subset S = {i|aTi u ≥ 0},
where ASu < 0 and −AScu < 0 into

A =

[
AS

ASc

]
.

Here AS is the sub-matrix of A consisting of the rows indexed by S, and Sc is the complement of the
set S. Consequently, we partition the vector

(
Au
)

+
as follows

(
Au
)

+
=

[
ASu
0

]
.

Then we use the block matrix pseudo-inversion formula (Baksalary and Baksalary, 2007)

A† =
[(

ASP
⊥
Sc

)† (
AScP⊥S

)†] ,
where PS and PSc are projection matrices defined as follows

PS = Id −AT
S

(
ASA

T
S

)−1
AS

PSc = Id −AT
Sc

(
AScAT

Sc

)−1
ASc .

12

Note that the matrices ASA
T
S ∈ R|S|×|S|, AScAT

Sc ∈ R|Sc|×|Sc| are full column rank with probability
one since the matrix A ∈ Rn×d is i.i.d. Gaussian where n < d. Hence the inverses

(
ASA

T
S

)−1 and(
AScAT

Sc

)−1 exist with probability one. Plugging in the above representation in the spike-free condition
we get

A†
(
Au
)

+
=
(
ASP

⊥
Sc

)†
ASu .

Then we can express the probability of the matrix being spike-free as

P
[

max
u∈B2

‖A†
(
Au
)

+
‖2 > 1

]
= P

[
∃u ∈ B2 | ‖A†

(
Au
)

+
‖2 > 1

]
≤ P

[
∃u ∈ B2, S ⊆ [n] | ‖

(
ASP

⊥
Sc

)†
ASu‖2 > 1

]
.

Finally, observe that PSc ∈ Rd×d is a uniformly random projection matrix of subspace of dimension
|S| ≤ n. Therefore as d→∞, we have P⊥Sc → Id, and consequently

lim
d→∞

‖
(
ASP

⊥
Sc

)†
ASu‖2 = ‖A†SASu‖2 ,

with probability one, and we have

lim
d→∞

P
[
∃u ∈ B2, S ⊆ [n] | ‖

(
ASP

⊥
Sc

)†
ASu‖2 > 1

]
= 0 .

Proof of Theorem 3.3. Since each sample aj is a vertex of Ca, we can find a separating hyperplane
defined by the parameters (uj , bj) so that aTj uj + bj > 0 and aTi uj + bj ≤ 0,∀i 6= j. Then, choosing
{(uj , bj)}nj=1 yields that (AU + 1bT)+ is a diagonal matrix. Using these hidden neurons, we write the
constraint of [Main Paper,(4)] in a more compact form as

(AU + 1bT)+w = y,

which is a least squares problem with a full rank square data matrix. Therefore, selecting w =
((AU + 1bT)+)†y along with U and b achieves a feasible solution for the original problem, i.e., 0
training error.

Proof of Theorem 3.4. Let us define the distance of the ith sample vector to the convex hull of the
remaining sample vectors as di

di , min
z∈Rn :∑
j 6=i zj=1

z<0

‖ai −
∑
j 6=i

ajzj‖2 = min
z∈Rn :∑
j 6=i zj=1

z<0,zi=−1

‖AT z‖2

= min
z∈Rn :∑
j 6=i zj=1

z<0,zi=−1

max
v:‖v‖2≤1

vTAT z

Using Gordon’s escape from a mesh theorem (Gordon, 1988; Ledoux and Talagrand, 2013), we obtain
the following lower-bound on the expectation of di

E di ≥ E min
z∈Rn :∑
j 6=i zj=1

zj≥0,zi=−1

max
v:‖v‖2≤1

hTv‖z‖2 + zTg

= E min
z∈Rn :∑
j 6=i zj=1

zj≥0,zi=−1

||h||2‖z‖2 + zTg

≥
√
d‖z‖2 − E max

j∈[n],j 6=i
gj + gi

≥
√
d√
n
−
√

2 log(n− 1) , (19)

13

where h ∈ Rd and g ∈ Rn are random vectors with i.i.d. standard Gaussian components, and the
second inequality follows from a well-known result on finite Gaussian suprema (Ledoux and Talagrand,
2013). Therefore, the expected distance of the ith sample to the convex hull is guaranteed to be positive
whenever d > 2n log(n− 1). Note that the lower bound (19) is vacuous for d < 2n log(n− 1) since the
random variable di can only take non-negative values.

The distance di is a Lipschitz function of the random Gaussian matrix A. This can be seen via the
following argument

min
z∈Rn :∑
j 6=i zj=1

zj≥0,zi=−1

‖AT z‖2 − min
z∈Rn :∑
j 6=i zj=1

zj≥0,zi=−1

‖ÃT z‖2 ≤ min
z∈Rn :∑
j 6=i zj=1

zj≥0,zi=−1

‖
(
A− ÃT

)
z‖2

≤ ‖(A− Ã)‖2 max
z∈Rn :∑
j 6=i zj=1

zj≥0,zi=−1

‖z‖2

≤ ‖(A− Ã)‖F max
z∈Rn :∑
j 6=i zj=1

zj≥0,zi=−1

‖z‖1

≤ 2‖(A− Ã)‖F

Applying the Lipschitz concentration for Gaussian measure (Ledoux and Talagrand, 2013) yields that

P
[
di >

√
d−

√
2n log(n− 1)− t

]
≥ 1− 2e−t

2/2 .

Therefore, we have di > 0 for d > 2n log(n − 1) with probability exceeding 1 − 2e−t
2/2. Taking a

union bound over every index i ∈ {0, ..., n}, we can upper-bound the failure probability by 2ne−t
2/2.

Choosing t2 = 4 log(n− 1) will yield a failure probability O(1/n) and conclude the proof.

Proof of Theorem 4.1. The proof follows from a similar argument as in the proof of Theorem 3.1,
and is omitted.

Proof of Theorem 5.1. The proof follows from a similar argument as in the proof of Theorem 3.1,
and is omitted.

7 Polar convex duality
In this section we derive the polar duality and present a connection to minimum `1 solutions to linear
systems. Recognizing the constraint v ∈ QA can be stated as

v ∈ Q◦A, v ∈ −Q◦A ,

which is equivalent to

v ∈ Q◦A ∩ −Q◦A .

Note that the support function of a set can be expressed as the gauge function of its polar set (see e.g.
(Rockafellar, 1970)). The polar set of Q◦A ∩ −Q◦A is given by(

Q◦A ∩ −Q◦A
)◦

= convQA ∪ −QA .

Using this fact, we express the dual problem [Main Paper, (11)] as

D∗ = inf
t∈R

t (20)

s.t. y ∈ t conv
{
QA ∪ −QA

}
,

where conv represents the convex hull of a set.

14

Let us restate dual of the two-layer ReLU neural network training problem given by

max
v

vTy s.t. v ∈ Q◦A , − v ∈ Q◦A (21)

where Q◦A is the polar dual of QA defined as Q◦A = {v|vTu ≤ 1 ∀u ∈ QA} .

Remark 1. The dual problem given in (21) is analogous to the convex duality in minimum `1 norm
solutions to linear systems. In particular, for the latter it holds that

min
w :Aw=y

‖w‖1 = max
v∈conv{â1,...,âd}◦, −v∈conv{â1,...,âd}◦

vTy ,

where â1, ..., âd are the columns of A. The above optimization problem can also be put in the gauge
optimization form as follows.

min
w :Aw=y

‖w‖1 = inf
t∈R

t s.t. y ∈ t conv{±â1, ...âd},

which parallels the gauge optimization form in (20).

8 Two-layer ReLU networks with general loss functions
Now we consider the scalar output two-layer ReLU networks with an arbitrary loss function

min
θ∈Θ

`((AU)+w,y) + β‖w‖1 s.t. ‖uj‖2 ≤ 1,∀j, (22)

where `(·,y) is a convex loss function.

Theorem 1. The dual of (22) is given by

max
v
−`∗(v) s.t. v ∈ βQ◦A,−v ∈ βQ◦A ,

where `∗ is the Fenchel conjugate function defined as

`∗(v) = max
z

zTv − `(z,y) .

The proof follows from classical Fenchel duality (Boyd and Vandenberghe, 2004), and a similar
argument as in the proof of Theorem 3.1. We omit the details. The general form of the dual can be
easily extended to vector output networks.

9 Extension to vector output neural networks
In this section, we describe the implementation of the cutting plane algorithm when we have vector
outputs, particularly, o outputs. In this case, we have Y ∈ Rn×o and f(A) =

(
AU

)
+
W , where

W ∈ Rm×o. Then, we formulate the following dual problem

max
V

tr(VTY) s.t. ‖VT
(
Au
)

+
‖∞ ≤ 1 ,∀u ∈ B2

and an optimal U satisfies

‖(AU∗)T+V
∗‖∞ = 1 ,

where V∗ is the optimal dual variable and tr represents the trace of a matrix. Note that we can also
consider block `1-`2 norms and their duals in formulating the vector output objective. We use this
particular form as it admits a simpler solution with the cutting-plane method.

15

We again relax the problem using the spike-free relaxation and then we solve the following problem
for each k ∈ [o]

ûk,1 = argmax
u

vTkAu s.t. Au < 0, ‖u‖2 ≤ 1

ûk,2 = argmin
u

vTkAu s.t. Au < 0, ‖u‖2 ≤ 1,

where vk is the kth column of V. After solving these optimization problems, we select the two neurons
that achieve the maximum and minimum objective value among o neurons for each problem. Thus, we
can find the weights for the hidden layers using convex optimization.

Consider the minimal cardinality problem

min
θ∈Θ
‖W‖0 s.t. fθ(A) = Y, ‖uj‖2 = 1,∀j.

The following result provides a characterization of the optimal solutions to the above problem

Lemma 1. Suppose that n ≤ d, A is full row rank, and Y ∈ Rn×o+ , e.g., one hot encoded outputs for
multiclass classification and we have at least one sample in each class. Then an optimal solution to
[Main Paper, (12)] is given by

uk =
A†
(
yk
)

+

‖A†
(
yk
)

+
‖2

and wk = ‖A†
(
yk
)

+
‖2ek

for each k ∈ [o], where wk and yk are the kth row and column of W and Y, respectively.

Proof. The proof is a straightforward generalization of the scalar output case in Lemma 3.1.

Lemma 2. We have `1-`0 equivalence if the following condition holds

min
v:vT

(
Auk

)
+

=1,∀k
max

u:u∈B2

vT
(
Au
)

+
≤ 1 .

Proof. The proof is a straightforward generalization of the scalar output case in Lemma 3.2.

References
20 newsgroups. http://qwone.com/~jason/20Newsgroups/.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.

Jerzy K Baksalary and Oskar Maria Baksalary. Particular formulae for the moore–penrose inverse of a
columnwise partitioned matrix. Linear algebra and its applications, 421(1):16–23, 2007.

Yoshua Bengio, Nicolas L Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte. Convex
neural networks. In Advances in neural information processing systems, pages 123–130, 2006.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Adam Coates and Andrew Y Ng. Learning feature representations with k-means. In Neural networks:
Tricks of the trade, pages 561–580. Springer, 2012.

Miguel Angel Goberna and Marco López-Cerdá. Linear semi-infinite optimization. 01 1998. doi:
10.1007/978-1-4899-8044-1_3.

Yehoram Gordon. On milman’s inequality and random subspaces which escape through a mesh in rn.
In Geometric Aspects of Functional Analysis, pages 84–106. Springer, 1988.

16

http://qwone.com/~jason/20Newsgroups/

Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming, version
2.1. http://cvxr.com/cvx, March 2014.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset. http://www.cs.toronto.
edu/kriz/cifar.html, 2014.

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Advances in
neural information processing systems, pages 950–957, 1992.

Yann LeCun. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/.

Michel Ledoux and Michel Talagrand. Probability in Banach Spaces: isoperimetry and processes.
Springer Science & Business Media, 2013.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, 1964.

Andreas Themelis and Panagiotis Patrinos. Supermann: a superlinearly convergent algorithm for
finding fixed points of nonexpansive operators. IEEE Transactions on Automatic Control, 2019.

L. Torgo. Regression data sets. http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html.

E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse reconstruction, June
2007. http://www.cs.ubc.ca/labs/scl/spgl1.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. On the margin theory of feedforward neural
networks. arXiv preprint arXiv:1810.05369, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

17

http://cvxr.com/cvx
http://www. cs. toronto. edu/kriz/cifar. html
http://www. cs. toronto. edu/kriz/cifar. html
http://yann. lecun. com/exdb/mnist/
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

	Additional figures
	Additional details on the numerical experiments
	Cutting plane algorithm with no bias term
	Cutting plane algorithm with a bias term
	Infinite size neural networks
	Proofs of the main results
	Polar convex duality
	Two-layer ReLU networks with general loss functions
	Extension to vector output neural networks

