
Esfandiari, HajiAghayi, Lucier, Mitzenmacher

A Conclusion and Open Problems

We have provided several new results for the best-choice problem in the prophet inequality and prophet secretary
settings, where the goal is to maximize the probability of selecting the largest value from a sequence of values
drawn independently from known distributions. Many of our proofs involve Poissonization-style arguments, where
we approximate the number of values above a threshold with a Poisson random variable. This approach was
particularly useful for generalizing results from the i.i.d. setting to the different setting of arbitrary distributions
in a random order. We believe this approach may be useful for other related problems.

Our main open problems relate to our most technical result, namely that, under the no superstars assumption, we
can use an algorithm with multiple thresholds to select the maximum with probability approximately 0.5801 in the
setting with arbitrary distributions in a random order. It is open to determine what probability can be achieved
for arbitrary distributions in a random order without the no superstars assumption. A related open question
would be to simplify our proof; it would be interesting to know if there is a more straightforward argument,
and such an argument might more readily lead to results without the no superstars assumption. Indeed, we
conjecture the following: that for any n, the worst-case instance of the best-choice prophet secretary problem
is an i.i.d. instance, so in particular the worst-case success probability matches that of the i.i.d. best-choice
problem.

Another open problem is to consider “best-case” orderings, where the player trying to select the maximum is
allowed to choose the order of the distributions for observation. Does the ability to choose the ordering provide
an advantage over random order, in the worst case? Even beyond worst-case instances, there is a computational
problem of finding the best ordering. Can the best ordering for an arbitrary problem instance be found in
polynomial time?

We extended our results to the problem of selecting one of the top k values. More generally, one could consider
the problem of maximizing other functions of the rank of the value selected, such as minimizing the expected
rank. One could also study variants in which multiple values can be selected, subject to a downward-closed
constraint, and the goal is to maximize a function of the set of ranks of the selected values. For example, how
should one select values subject to a matroid constraint, so as to maximize the probability that the largest value
is among the values selected?

B Proof of Theorem 2

Next we prove Theorem 2.

Consider the following example. There are n random variables x1, . . . , xn from distributions D1, . . . , Dn as
follows: for any i ∈ {1, · · · , n}, xi is i with probability qi =

1
i

and 0 otherwise.6 Note that the nonzero random
variable with the largest index is the maximum. Hence the probability of xi being the maximum is independent
of the xj values with j < i. Moreover, x1 is always 1 and hence the maximum is never 0. We let pi be the
probability that xi is the maximum. The distributions will arrive in index order.

We claim that p1 = · · · = pn = 1
n

. We show this by strong induction.7 The base case holds for i = n where

pn = qn = 1
n

. Assuming pi+1 = · · · = pn = 1
n

, we have

pi = qi · Pr [xi+1 = · · · = xn = 0]

= qi · Pr [maximum is not in {xi+1, . . . , xn} ]

= qi

(
1−

n∑
j=i+1

pj

)
=
1

i

i

n
=
1

n
.

Hence we have p1 = p2 = · · · = pn = 1
n

. Also, we have Pr
[
xi = maxnj=1 xj|xi 6= 0

]
= i
n

.

Let Alg be the best online algorithm and let Algi+1→n be the probability that Alg picks the maximum assuming
that it rejects x1, . . . , xi. Notice that if Alg picks a nonzero number xj from {xi+1, . . . , xn}, it is larger than all

6One can make this atomless by assuming that xi is drown uniformly at random from [i, i+ ε] with probability qi =
1
i

and 0 otherwise.
7This follows similar reasoning to the analysis of reservoir sampling.
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numbers in {x1, . . . , xi}. Hence Algi+1→n is independent of x1, . . . , xi. Notice that if Alg rejects xi+1 it picks the
maximum with probability Algi+2→n. Hence Algi+1→n ≥ Algi+2→n, which means Algi+1→n is decreasing in i.

Indeed, if xi 6= 0, when Pr
[
xi = maxnj=1 xj|xi 6= 0

]
≥ Algi+1→n, Alg picks xi and stops. Otherwise, Alg rejects

xi and continues. Also remember that Pr
[
xi = maxnj=1 xj|xi 6= 0

]
is increasing in i and Algi+1→n is decreasing

in i. Therefore, there exists an index i such that for all j < i, Alg rejects xi and accepts the first nonzero xj with
j ≥ i. Therefore, Alg picks the maximum with probability

n∑
j=i

Pr [xi = · · · = xj−1 = 0]Pr

[
xj =

n
max
j ′=1

xj ′

]

=
1

n
+

n∑
j=i+1

Πj−1k=i(1− 1/k)
1

n

=
1

n
+

n∑
j=i+1

i− 1

j− 1

1

n

=
1

n
+
i− 1

n

n∑
j=i+1

1

j− 1

≤ 1

n
+
i− 1

n

(
ln(
n+ 1

i
) +

1

i

)
≤ 2

n
+
i− 1

n
ln(
n+ 1

i
)

≤ 2

n
+

i

n+ 1
ln(
n+ 1

i
)

≤ 2

n
+ α ln(1/α) for α =

i

n+ 1
∈ [0, 1].

Note that α ln(1/α) maximizes at α = 1
e

. Thus, Alg picks the maximum with probability at most 1
e
+ 2
n

.

C An Algorithm for Best-Choice Prophet Secretary

Before we describe our algorithm for the best-choice prophet secretary problem, we must first provide some
definitions and fix some parameters. Throughout this subsection, for an arbitrary γ ∈ (0, 1) we set λ0 = γ,

ρ = γ3, q = γ2

2
, and δ = γ6

4
. Notice that we have γλ0

2ρ
= γ2

2γ3
= 1
2γ
≥ γ2

2
= q. We will then set ε = γ2q2ρλ0

2 log 2
δ

=

γ10

8 log( 8
γ6

)
= γ10

24 log( 2
γ2

)
; this will be the value ε we require in the no-superstars assumption. We note that we have

not aimed to optimize these parameters.

Set c = 1−λ0
ρ

. We let t0, . . . , tc be the (unique) sequence of thresholds such that, for each ζ ∈ {0, . . . , c}, we

have Pr [maxni=1(xi) ≤ tζ] = λ0+ζρ. That is, the probability that maxni=1(xi) falls between any two consecutive
thresholds is ρ, and the probability that it falls below t0 is λ0.

The next definition captures our desire to combine multiple distributions Di into a single collection, and study
the maximum of the values drawn from that collection of distributions.

Definition 10 (Collection Distribution) Let S ⊆ {D1, . . . , Dn} be an arbitrary set. We define the collection
distribution DS using the following procedure: DS draws xi from distribution Di for each Di ∈ S, then returns
maxDi∈S xi. We use xS to indicate an outcome of DS.

The following lemma provides a concentration result for the distribution DS, when S is a set of size qn chosen
uniformly at random without replacement from D1, . . . , Dn. Intuitively, this says that if we decompose a random
order sequence of D1, . . . , Dn into 1

q
subsequences, each of size qn, these subsequences behave similarly to an

i.i.d. distribution. We use this to prove our main result. We defer the proof to Section E.1.
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Algorithm 1:

Parameters: Thresholds τ1, . . . , τ1/q
Input: Iteratively receive values x̃Sη , for η ∈ {1, . . . , 1

q
}.

1: With probability 4γ, do not pick x̃Sη and move to the next number.
2: Set t0 such that Pr [maxni=1(xi) ≤ t0] = λ0.
3: if x̃Sη ≤ t0 then
4: Do not pick x̃Sη and move to the next number.
5: if x̃Sη ≤ τη then
6: Do not pick x̃Sη and move to the next number.
7: else
8: Pick x̃Sη .

Lemma 11 Let S be a set of size qn, chosen uniformly at random without replacement from D1, . . . , Dn. With

probability 1− γ3

2
for all ζ ∈ {0, . . . , c− 1} we have

(1− 3γ)q

n∑
i=1

pζi ≤ Pr [tζ ≤ xS < tζ+1] ≤ (1+ γ)q

n∑
i=1

pζi ,

where pζi = Pr [tζ ≤ xi < tζ+1], assuming the no ε-superstars assumption with ε = γ10

24 log( 2
γ2

)
.

We use the following definitions in our proof of Theorem 18.

Definition 12 For a given number x ≥ t0, we write x̃ = max{tζ : tζ ≤ x}. That is, x̃ is x rounded down to the
nearest tζ. Similarly, for a distribution D we use D̃ to represent the distribution that draws x from D and then
returns x̃.

Definition 13 We define a distribution Dmin as follows: for any ζ ∈ {0, . . . , c − 1}, Dmin returns tζ with
probability (1− 3γ)q

∑n
i=1 p

ζ
i , and otherwise Dmin returns 0.

Definition 14 For η ∈ {1, . . . , 1
q
}, let Sη be the set of distributions Dπ(η−1)qn+1

, . . . Dπ(η)qn
. Let D̂Sη be a

distribution that returns x̃Sη with probability 1− 4γ and returns 0 otherwise. We use x̂Sη to indicate an outcome

of D̂Sη .

We now present results for two algorithms, Algorithm 1 and Algorithm 2, whose pseudocode is listed in the
text. These algorithms take, as parameters, a sequence of thresholds defining an arbitrary threshold-based
algorithm for the i.i.d. setting with 1/q observations. Algorithm 1 provides an intermediary result. In particular,
Algorithm 1 is meant to work with the values x̃Sη , which recall are “rounded down” values drawn from the
collection distributions. This algorithm is used to bound the success rate if we used the 1/q collection distributions
to generate our input instead of the actual observations. We then show that Algorithm 2, which works with the
real observations, performs nearly as well as Algorithm 1.

We first show that Algorithm 1 can simulate an arbitrary i.i.d. algorithm with minimal loss, under a no-superstars
assumption.

Lemma 15 Let Algτ be any threshold-based algorithm that selects the maximum with probability at least α
for 1/q instances of Dmin, with thresholds τ1, . . . , τ1/q. For any arbitrary γ ∈ (0, 1), Algorithm 1 selects the

maximum with probability at least (α− 10γ) for D̃S1 , . . . , D̃S1/q , assuming the no ε-superstars assumption with

ε = γ10

24 log( 2
γ2

)
.

Proof : First of all notice that the probability that the maximum is less than t0 is λ0 = γ. We assume
that any number less than t0 is 0 and we do not pick it. We miss the maximum with probability γ due to this
assumption. Algorithm 1 handles this assumption by the condition in line 3.
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Algorithm 2:

Parameters: Thresholds τ1, . . . , τ1/q
Input: Iteratively receive values xπi , for i ∈ {1, . . . , n}.
1: With probability 4γ, do not pick xπi and move to the next number.
2: Set t0 such that Pr [maxni=1(xi) ≤ t0] = λ0.
3: if x̃πi ≤ t0 then
4: Do not pick xπi and move to the next number.
5: if x̃πi ≤ τdqie then
6: Do not pick xπi and move to the next number.
7: else
8: Pick xπi .

By Lemma 11 with probability 1− γ3

2
for all ζ ∈ {0, . . . , c} we have

Pr
[
x̂Sη = tζ

]
≤ Pr [xmin = tζ] ≤ Pr

[
x̃Sη = tζ

]
, (3)

where the first inequality follows from (1− 4γ)(1+γ) ≤ 1− 3γ (where 1+γ and 1− 3γ are coming from Lemma
10 and 1 − 4γ is coming from the definition of x̂Sη i.e. Definition 13). By the union bound this holds for all

η ∈ {1, . . . , 1
q
} and all ζ ∈ {0, . . . , c} with probability at least 1− 1

q
γ3

2
= 1−γ. In the rest of the proof we assume

that Inequality 3 holds for all η ∈ {1, . . . , 1
q
} and all ζ ∈ {0, . . . , c}.

We define φη to be the probability that Algτ reaches the η-th number when running on 1
q

instances of Dmin. Sim-

ilarly, we define φ̃η to be the probability Algorithm 1 reaches the η-th number when running on D̃S1 , . . . , D̃S1/q .
We also define ση to be the probability that Algorithm Algτ, conditioned on reaching the η-th number, accepts
the η-th number when running on 1

q
instances of Dmin and succeeds. Similarly, we define σ̃η to be the probability

Algorithm 1, conditioned on reaching the η-th number, accepts the η-th number when running on D̃S1 , . . . , D̃S1/q
and succeeds. We refer to this notion as the probability of success at η. Notice that the probability that Algτ
and Algorithm 1 succeed are

∑1/q
η=1φηση and

∑1/q
η=1 φ̃ησ̃η respectively.

In fact, running Algorithm 1 on D̃S1 , . . . , D̃S1/q is equivalent to running Lines 3 to 8 on D̂S1 , . . . , D̂S1/q . Hence
by inequality 3 we have

1/q∑
η=1

φ̃ησ̃η ≥
1/q∑
η=1

φησ̃η.

Now, let η ∈ {1, . . . , 1
q
} be an arbitrary index. Assume for all η ′ ∈ {1, . . . , 1

q
} \ {η} we replace distributions D̃Sη ′

with Dmin. By Inequality 3 this increases the the probability of success at η by at most a factor 1
1−4γ . Next,

if we replace D̃Sη with Dmin the probability of success at η decreases and becomes (1 − 4γ)ση. Thus, we have
1

1−4γ σ̃η ≥ (1− 4γ)ση, which implies σ̃η ≥ (1− 4γ)2ση ≥ (1− 8γ)ση. Therefore we have

1/q∑
η=1

φησ̃η ≥ (1− 8γ)

1/q∑
η=1

φηση ≥ (1− 8γ)α ≥ α− 8γ.

Remember that as we mentioned in the beginning, Algorithm 1 misses the maximum with probability γ due to
the condition in line 3, and it loses another γ probability by assuming that Inequality 3 holds for all η ∈ {1, 1

q
}

and all ζ ∈ {0, . . . , c}. Hence the probability of selecting the maximum drops to α− 10γ. 2

We now want to prove that Algorithm 2 can likewise simulate an arbitrary i.i.d. algorithm with minimal loss,
by comparing to the performance of Algorithm 1. Recall that Algorithm 2 attempts to simulate Algorithm 1 by
applying threshold τη to each of the qn values in collection η. There are two ways that this simulation might fail.
First, it might be that two values in collection η are above threshold τη, and Algorithm 2 chooses the smaller
one. Second, it could be that the maximum value from two different collections both round to the same value
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x̃, and Algorithm 1 chooses the smaller one; this is fine for Algorithm 1, since it cares only about the rounded
values, but leads to failure for Algorithm 2.

The following two concentration results handle these two modes of failure. Lemma 16 shows that it is unlikely
that two or more values in any given collection lie above the corresponding threshold. Lemma 17 shows that it
is unlikely that the maximum value in two different collections round to the same tζ. We defer the proofs to
Section E.1.

Lemma 16 Consider arbitrary numbers λ0, γ, δ, q ∈ (0, 1), ρ ∈ (0, 1 − λ0). Set ε = γ2q2ρλ0
2 log 2

δ

. Let S be

a set of size qn, chosen uniformly at random without replacement from D1, . . . , Dn. Let τ0 be such that
Pr
[
maxni=1(xi) ≤ τ0

]
= 1 − ρ. Let yi be a random binary variable that is 1 if τ0 ≤ xi and 0 otherwise.

Let p ′i = Pr [yi = 1]. Assuming the no ε-superstars assumption, with probability 1− δ we have

Pr [∃i∈Syi = 1] ≤
2q

λ0

and

Pr

[∑
i∈S

yi ≥ 2

]
≤ 4q

2

λ20
.

Lemma 17 Consider arbitrary numbers ρ, λ0 ∈ (0, 1) and λ ∈ [0, 1 − (λ0 + ρ)]. Let τ0 and τ1 be such that
Pr
[
maxni=1(xi) ≤ τ0

]
= 1− (λ+ ρ) and Pr

[
maxni=1(xi) ≤ τ1

]
= 1− λ. Let yi be a random binary variable that

is 1 if τ0 ≤ xi ≤ τ1 and 0 otherwise. We have

Pr

[
n∑
i=1

yi ≥ 2

]
≤ ρ

2

λ20
.

These lemmas in hand, we are now ready to bound the success probability of Algorithm 2. This is Theorem 18,
which was a restatement of our main result for the best-choice prophet secretary problem under a no-superstars
assumption, Theorem 8.

Theorem 18 Let Algτ be a threshold based algorithm that selects the maximum with probability at least α for 1/q
instances of Dmin, with thresholds τ1, . . . , τ1/q. For any arbitrary γ ∈ (0, 1), Algorithm 2 selects the maximum

with probability at least (α−13γ) for Dπ1 , . . . , Dπn , assuming the no ε-superstars assumption with ε = γ10

24 log( 2
γ2

)
.

Proof : There are two basic differences between Algorithm 1 and Algorithm 2. First, for each of the sets of
qn consecutive numbers Sη, Algorithm 1 has the privilege to observe the maximum number in the set at once,
while Algorithm 2 sees the numbers in the set one by one. Second, the input numbers in Algorithm 1 are all
rounded to tζ’s, but this is not true for the input of Algorithm 2. Therefore, there are two cases where Algorithm
1 selects the maximum of the x̃Sη but Algorithm 2 does not choose the maximum of the xπi .

• Algorithm 1 picks x̃Sη . There are two numbers τη < xi < xi ′ with i, i ′ ∈ Sη, and Algorithm 2 picks xi.

• Algorithm 1 picks x̃Sη . But there is another η ′ such that x̃Sη = x̃Sη ′ = tζ but xSη < xSη ′ .

We show that first case happens with probability at most 2γ and the second case happens with probability at
most γ. This together with Lemma 15 proves the theorem. Notice that the probability of the first case is at
most

Pr
[
∃i ′∈Sη\{i}xi ′ ≥ max(τη, t0)

]
≤ Pr

[
∃i ′∈Sηxi ′ ≥ max(τη, t0)

]
≤ 2q
λ0

= γ, By Lemma 16

where Lemma 16 holds with probability 1 − δ ≥ 1 − γ. Hence the first case happens with probability at most
γ+ γ = 2γ.
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Notice that in the second case for some ζ there are at least two numbers xi (corresponds to η) and xi ′ (corresponds

to η ′) such that tζ ≤ xi ≤ xi ′ ≤ tζ+1. By Lemma 17, for a particular ζ this happens with probability at most ρ
2

λ2
0

.

By the union bound over all choices of ζ, the second case happens with probability at most cρ
2

λ2
0

≤ ρ
λ2
0

= γ3

γ2
= γ.

2

Now we are ready to prove Theorem 9, which is an unconditional improvement that holds even without the
no-superstars assumption.

Proof of Theorem 9: By Theorem 8, there is a positive constant ε > 0 such that the statement of Theorem 9
holds whenever the distributions satisfy the no ε-superstars assumption. We will therefore assume that there
exists a distribution in the input that violates the no ε-superstars assumption for this positive constant ε. That
is, Pr

[
i = arg maxnj=1 xj

]
≥ ε for some i. Without loss of generality we assume that this distribution is D1.

Let τ be the threshold selected by the algorithm in Theorem 4. Recall that Theorem 4 shows that, for any
arbitrary ε ′ > 0, there exists a single threshold algorithm that chooses the maximum value with probability at

least maxλ
∑∞
k=1

(
1
k
λke−λ

k!

)
−ε ′, for the best-choice prophet secretary problem. For the purpose of this theorem,

we set ε ′ = e−1.5ε2

32
. We will consider two cases. In the first case we have Pr

[
x1 < τ and 1 = arg maxnj=1 xj

]
≥ ε
2

.
In the second case we have Pr [x1 ≥ τ] ≥ ε

2
. Note that we must be in one of these cases, since

Pr

[
x1 < τ and 1 =

n
arg max
j=1

xj

]
+ Pr [x1 ≥ τ] ≥ Pr

[
1 =

n
arg max
j=1

xj

]
≥ ε.

Case 1. In this case we apply the single threshold algorithm of Theorem 4, with a slight modification: if D1 is
one of the last εn

2
items, and we reach it, we stop and accept it regardless of its value. Note that the probability

that D1 appears in one of the last εn
2

positions, and at the same time the maximum appears after D1 (and hence

also somewhere in the last εn
2

positions), is at most ε
2
× ε
2
× 1
2
= ε2

8
. This is an upper bound on the loss of using

this modification of the algorithm. On the other hand, the probability that D1 appears as one of the last εn
2

items, is the maximum item, and is below the threshold τ (which also means no item is above the threshold) is

at least Pr
[
x1 < τ and 1 = arg maxnj=1 xj

]
× ε
2
≥ ε2

4
. This is a lower bound on the expected gain of using this

modification to the algorithm. Therefore in this case we improve Theorem 4 by at least ε
2

4
− ε2

8
= ε2

8
.

Case 2. In this case we show that the analysis of Theorem 4 in not tight and hence we provide a better
bound for the algorithm with threshold τ. To prove this, we show a constant gap in Inequality 2, which
directly translates to a constant improvement on the probability of success of the algorithm. Specifically, we
consider the case where D1 is the only item above the threshold, but more than one of its corresponding dummy
distribution is above the threshold (i.e., K ′ ≥ 2). In this situation, the algorithm certainly selects the maximum;
however, in the analysis, we assumed that of the K ′ values above the threshold from the dummy distributions,
the algorithm would only choose the maximum with probability 1

K ′ ≤ 1
2

due to the ordering of items. Recall

that Pr [maxni=1(xi) ≤ τ] = e−λ > e−1.5 and hence Pr [maxni=2 xi ≤ τ] > e−1.5. Moreover, note that Pr[x1≥τ]
2

is a lower bound on the probability that we see at least one item above the threshold in half of the dummy

distribution corresponding to D1 and hence with probability at least
(

Pr[x1≥τ]
2

)2
we see at least one item above

the threshold in the first half of the distributions and at least one in the second half. Thus, we have

Pr
[
K ′ ≥ 2 and x1 ≥ τ and ∀i∈{2,...,n}xi < τ

]
≥
(Pr [x1 ≥ τ]

2

)2
× Pr

[
∀i∈{2,...,n}xi < τ

]
≥ e

−1.5ε2

8
,

Therefore, in an event that occurs with probability at least e
−1.5ε2

8
, we can improve our bound from something

at most 1
2

to 1. This leads to a gap of e
−1.5ε2

16
in Inequality 2, and hence a corresponding improvement to

Theorem 4.

Thus, in either case, we obtain an improvement of ε0 =
ε2

16e1.5
to the bound in Theorem 4, which says we select the

maximum value with probability at least maxλ
∑∞
k=1

(
1
k
λke−λ

k!

)
− ε ′+ ε2

16e1.5
= maxλ

∑∞
k=1

(
1
k
λke−λ

k!

)
+ ε2

32e1.5
.

2
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D Appendix: Omitted Proofs from Section 5

We present the proof of Theorem 5, which states that one can solve the top-k-choice prophet inequality problem
with a failure rate that is exponentially decreasing in k. We restate the theorem below for completeness.

Theorem 19 For any k ≥ 1, there exists a single-threshold algorithm for the top-k-choice prophet inequality
problem that succeeds with probability at least 1− 2e−γk, where γ = (3−

√
5)/2.

Proof : We’ll begin by showing a bound with a slightly worse constant in the exponent. We will then describe
a way to optimize the constant at the end of the proof.

For a given constant t, let X(t) be the random variable corresponding to the number of items i such that xi ≥ t.
Choose τ so that E [X(τ)] = k/2.

The single threshold algorithm with threshold τ will succeed unless X(τ) = 0 or X(τ) > k. We note that X(τ) is
the sum of n Bernoulli random variables, where variable i is 1 with probability Pr[xi ≥ t]. By the additive form
of the Chernoff bound, we have that

Pr[X(τ) = 0] = Pr[X(τ) ≤ E [X(τ)] − k/2] < e−KL(0||k/2n)·n

where KL(p||q) denotes the Kullback-Leibler (KL) divergence. Using the bound KL(p||q) ≥ (p−q)2/q for p < q,
we have that

Pr[X(τ) = 0] < e−KL(0||k/2n)·n < en·(k/2n)
2/(k/2n) = e−k/4.

Similarly, we have

Pr[X(τ) > k] = Pr[X(τ) > E [X(τ)] − k/2] < e−KL(k/n||k/2n)·n < en·(k/2n)
2/(k/n) = e−k/2

where the second inequality uses the bound KL(p||q) ≥ (p− q)2/p for p > q. Taking a union bound over these
two events completes the proof.

We note that if we choose a threshold τ so that E [X(τ)] = γk for γ = (3 −
√
5)/2, we obtain a slightly better

probability of success 1− 2e−γk with the same argument. We have not sought to optimize the constant further.
2

We next present the proof of Theorem 6, which shows that one cannot improve upon this exponential dependence
on k, regardless of n and even for i.i.d. instances. We restate the theorem below.

Theorem 20 There exists a constant c such that, for any fixed k ≥ 1, no algorithm for the top-k-choice prophet
inequality problem with identical distributions selects the maximum with probability more than 1− e−c·k.

Proof : Take n > k sufficiently large. Our problem instance is i.i.d., with distribution D as follows. With
probability k/n, distribution D takes a value drawn uniformly from [1, 2]; with the remaining probability, the
value is 0. We say that an observation is successful if it takes on a non-zero value. In order to describe our
analysis more conveniently, we will think of the random process that generates our sequence of observations in
the following alternative—but equivalent—way.

• We first draw n values uniformly from [1, 2], say v1 < v2 < . . . < vn. We think of vi as the value that xi
will take if xi is non-zero. We write Di for the distribution that takes on value vi with probability k/n and
0 otherwise. We will think of value xi as being drawn from distribution Di.

• We choose a permutation π on {1, · · · , n}; π(i) is the position in the sequence that distribution Di appears.

• We choose a number of successes Z1 for the first n/2 observations, and correspondingly a number of successes
Z2 for the second n/2 observations. Both Z1 and Z2 are binomial random variables Bin(n/2, k/n) and are
chosen accordingly.

• We choose permutations σ1 on {1, · · · , n/2} and σ2 on {n/2+ 1, · · · , n}; σ1 gives the order of the successful
observations in the first n/2 observations, and similarly for σ2, as described below.
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More formally, we see observations in the order xπ(1), . . . , xπ(n). For each t ∈ {1, · · · , n/2}, xπ(t) = vπ(t) if
σ1(t) ≤ Z1, and otherwise xπ(t) = 0. Similarly, for each t ∈ {n/2 + 1, · · · , n}, xπ(t) = vπ(t) if σ2(t) ≤ Z2, and
otherwise xπ(t) = 0. This process generates a distribution over value sequences that is identical to the distribution
of value sequences in our i.i.d. top-k-choice problem.

We now consider the following events. Event A is that Z1 = k; that is, the first half has k non-zero values. Event
B is that, for each t1, t2 satisfying t1 ≤ n/2, t2 > n/2, σ1(t1) ≤ k, and σ2(t2) ≤ k, we have that π(t1) ≤ π(t2).
That is, event B is that the first k non-zero values in the first half of the observations (as determined by σ1)
will be less than the first k non-zero values in the second half (as determined by σ2). Note that, from the way
we have defined event B, it is independent of Z1 and Z2, as it depends only on π, σ1, and σ2. Because of this,
events A and B are independent of each other (and independent of the value of Z2).

We make the following claims. First, each of the events A and B happen with probability e−θ(k). Second,
conditioned on both A and B occurring, any algorithm must fail with probability at least e−θ(k). The result
follows immediately from these claims.

For event A, Z1 is distributed as Bin(n/2, k/n), and a simple calculation shows that it equals k with probability
at least e−c1k for a suitable constant c1 and large enough k. Indeed, the distribution is well approximated by a
Poisson distribution, so the desired probability is approximately e−k/2(k/2)k/k!, which is e−θ(k).

For event B, since π is a random ordering on the elements, the probability the first k values determined by σ1
are all less than the first k values determined by σ2 is just

(
2k
k

)
≈ 22k/

√
πk, which is e−θ(k).

Now, for any algorithm, consider any realization of {v1, . . . , vn}, π, σ1, σ2, and Z1 for which events A and B
both occur. Note that specifying Z2 then specifies the entire process. Let us give the algorithm the additional
power to decide, knowing {v1, . . . , vn}, π, σ1, σ2, and Z1 (but not Z2), whether to have selected an element or
not after the first n/2 observations. If the algorithm does not select an item, it will fail when Z2 = 0, as then
the k largest items have all appeared in the first half. If the algorithm does select an item, it will fail when
Z2 ≥ k, as then the k largest items all appear in the second half. As Z2 is distributed as Bin(n/2, k/n), each of
these possibilities for Z2 occurs with probability e−θ(k). Thus, if we condition on A and B both occurring, the
algorithm fails with probability e−θ(k) whether or not it chooses a value from among the first n/2 observations,
and the result follows. 2

E Appendix: Omitted Proofs from Appendix C

E.1 Concentration Bounds

This section is dedicated to the proofs of Lemmas 11, 16, and 17. To begin, we require several prelimiary
lemmata. The following lemma, for an arbitrary pair of thresholds τ0 ≤ τ1, bounds the probability that at least
one of the xi’s is within the range [τ0, τ1].

Lemma 21 Consider arbitrary numbers ρ ∈ (0, 1) and λ ∈ [0, 1 − ρ). Let τ0 and τ1 be such that
Pr
[
maxni=1(xi) ≤ τ0

]
= 1 − (λ + ρ) and Pr

[
maxni=1(xi) ≤ τ1

]
= 1 − λ. Let yi be a random binary variable

that is 1 if τ0 ≤ xi ≤ τ1 and 0 otherwise. We have

ρ ≤ Pr
[
∃i∈{1,...,n}yi = 1

]
≤ ρ

1− λ
.

Proof : On one hand we have

Pr
[
∃i∈{1,...,n}yi = 1

]
≥ Pr

[
τ0 ≤ n

max
i=1

(xi) ≤ τ1
]
= ρ.
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On the other hand we have

λ+ ρ = Pr

[
n

max
i=1

(xi) > τ
0

]
= Pr

[
n

max
i=1

(xi) > τ
1

]
+ Pr

[
n

max
i=1

(xi) ≤ τ1
]
× Pr

[
∃i∈{1,...,n}τ0 ≤ xi ≤ τ1

∣∣∣∀i∈{1,...,n}xi ≤ τ1]
≥ Pr

[
n

max
i=1

(xi) > τ
1

]
+ Pr

[
n

max
i=1

(xi) ≤ τ1
]
× Pr

[
∃i∈{1,...,n}τ0 ≤ xi ≤ τ1

]
= λ+ (1− λ)Pr

[
∃i∈{1,...,n}τ0 ≤ xi ≤ τ1

]
= λ+ (1− λ)Pr

[
∃i∈{1,...,n}yi = 1

]
.

This implies

Pr
[
∃i∈{1,...,n}yi = 1

]
≤ ρ

1− λ
.

2

For an arbitrary index i, the following lemma upper bounds the probability that xi is within the range [τ0, τ1].
Later, we use this to show a concentration bound in Lemma 25.

Lemma 22 Consider arbitrary numbers ρ ∈ (0, 1) and λ ∈ [0, 1 − ρ). Let τ0 and τ1 be such that
Pr
[
maxni=1(xi) ≤ τ0

]
= 1 − (λ + ρ) and Pr

[
maxni=1(xi) ≤ τ1

]
= 1 − λ. Let yi be a random binary variable

that is 1 if τ0 ≤ xi ≤ τ1 and 0 otherwise. Assuming the no ε-superstars assumption we have

Pr [yj = 1] ≤
Pr [j = arg maxni=1 xi]

1− (λ+ ρ)
≤ ε

1− (λ+ ρ)
.

Proof : For any j we have

Pr

[
j =

n
arg max
i=1

xi

]
≥ Pr

[
xj ≥ τ0

]
Pr

[
arg max
i∈{0,...,n}\j

xi < τ
0

]

≥ Pr
[
xj ≥ τ0

]
Pr

[
arg max
i∈{0,...,n}

xi < τ
0

]
= Pr

[
xj ≥ τ0

] (
1− (λ+ ρ)

)
≥ Pr

[
τ1 ≥ xj ≥ τ0

] (
1− (λ+ ρ)

)
= Pr [yj = 1]

(
1− (λ+ ρ)

)
.

This together with the no-superstars assumption implies that

Pr [yj = 1] ≤
Pr [j = arg maxni=1 xi]

1− (λ+ ρ)
≤ ε

1− (λ+ ρ)
.

2

The following lemma, for an arbitrary set S of indices, compares the expected number of xi’s that are in a range
[τ0, τ1] with the probability of observing at least one xi in the range [τ0, τ1]. We later use this to exchange
Pr
[
∃i∈Sxi ∈ [τ0, τ1]

]
and

∑
i∈S Pr

[
xi ∈ [τ0, τ1]

]
.

Lemma 23 Consider arbitrary numbers ρ ∈ (0, 1) and λ ∈ [0, 1 − ρ). Let τ0 and τ1 be such that
Pr
[
maxni=1(xi) ≤ τ0

]
= 1 − (λ + ρ) and Pr

[
maxni=1(xi) ≤ τ1

]
= 1 − λ. Let yi be a random binary variable

that is 1 if τ0 ≤ xi ≤ τ1 and 0 otherwise. Let p ′i = Pr [yi = 1]. For any set S ⊆ {1, . . . , n} we have

max
(
1−

∑
i∈S

p ′i, 1−
ρ

1− λ

)∑
i∈S

p ′i ≤ Pr [∃i∈Syi = 1] ≤
∑
i∈S

p ′i.
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Proof : We have

Pr [∃i∈Syi = 1] = 1− Pr [∀i∈Syi = 0]
= 1− Πi∈S(1− p

′
i)

≥ 1− exp
(
−
∑
i∈S

p ′i

)
.

This implies that ∑
i∈S

p ′i ≤ log
( 1

1− Pr [∃i∈Syi = 1]

)
≤ 1

1− Pr [∃i∈Syi = 1]
− 1 log(ξ) ≤ ξ− 1

=
Pr [∃i∈Syi = 1]

1− Pr [∃i∈Syi = 1]

≤ Pr [∃i∈Syi = 1]
1− Pr

[
∃i∈{1,...,n}yi = 1

]
≤ Pr [∃i∈Syi = 1]

1− ρ
1−λ

. Using Lemma 21

This implies (
1−

ρ

1− λ

)∑
i∈S

p ′i ≤ Pr [∃i∈Syi = 1] .

Similarly, we have ∑
i∈S

p ′i ≤
Pr [∃i∈Syi = 1]

1− Pr [∃i∈Syi = 1]

≤ Pr [∃i∈Syi = 1]
1− E

[∑
i∈S Yi

]
=

Pr [∃i∈Syi = 1]
1−

∑
i∈S p

′
i

,

which implies (
1−

∑
i∈S

p ′i
)∑
i∈S

p ′i ≤ Pr [∃i∈Syi = 1] .

On the other hand we have

Pr [∃i∈Syi = 1] ≤ E

[∑
i∈S

yi

]
=

∑
i∈S

p ′i.

2

In Lemma 25 below we show the concentration of
∑
i∈S Pr

[
xi ∈ [τ0, τ1]

]
for a set S chosen uniformly at random

without replacement. To prove Lemma 25 we use a variation of Massart’s inequality for sampling without
replacement Van Der Vaart and Wellner (1996). Then to apply Massart’s bound to

∑
i∈S Pr

[
xi ∈ [τ0, τ1]

]
, we

use Lemma 22 to upper bound Pr
[
xi ∈ [τ0, τ1]

]
and use Lemma 21 to lower bound E

[∑
i∈S Pr

[
xi ∈ [τ0, τ1]

]]
.

Lemma 24 (Massart’s inequality) Let Ψ1, . . . , Ψn be a set of n numbers and let ψ1, . . . , ψc be a subset of
Ψ1, . . . , Ψn drawn uniformly at random without replacement. We have

Pr

[∣∣∣1
c

c∑
i=1

ψi − Ψ̄
∣∣∣ ≥ γ] ≤ 2 exp

(
−

c2γ2∑n
i=1(Ψi − Ψ̄)

2

)
,

where Ψ̄ = 1
n

∑n
i=1 Ψi, and n is assumed to be divisible by c.
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Now we are ready to prove Lemma 25.

Lemma 25 Consider arbitrary numbers ρ, γ, ε, q ∈ (0, 1), λ ∈ [0, 1 − ρ). Let S be a set of size qn, chosen
uniformly at random without replacement from D1, . . . , Dn. Let τ0 and τ1 be such that Pr

[
maxni=1(xi) ≤ τ0

]
=

1 − (λ + ρ) and Pr
[
maxni=1(xi) ≤ τ1

]
= 1 − λ. Let yi be a random binary variable that is 1 if τ0 ≤ xi ≤ τ1

and 0 otherwise. Let p ′i = Pr [yi = 1]. Assuming the no ε-superstars assumption, with probability 1 − 2 exp
(
−

γ2q2ρ(1−(λ+ρ))
2ε

)
we have

(1− γ)q

n∑
i=1

p ′i ≤
∑
i∈S

p ′i ≤ (1+ γ)q

n∑
i=1

p ′i

Proof : Let zi be a random variable that is 1 when i ∈ S and 0 otherwise. We have

n∑
i=0

p ′i ≥ Pr [∃i∈Syi = 1] By Lemma 23

≥ ρ. By Lemma 21

Moreover, by Lemma 22 we have 0 ≤ p ′i ≤ ε
1−(λ+ρ) . Thus,

Pr

[∣∣∣∑
i∈S

p ′i − q

n∑
i=1

p ′i

∣∣∣ ≥ γq n∑
i=1

p ′i

]
=

Pr

[∣∣∣ 1
qn

∑
i∈S

p ′i −
1

n

n∑
i=1

p ′i

∣∣∣ ≥ γ 1
n

n∑
i=1

p ′i

]
= Multiply both sides by

1

qn

2 exp
(
−

(qn)2
(
γ 1
n

∑n
i=1 p

′
i

)2∑n
i=1

(
p ′i −

1
n

∑n
i=1 p

′
i

)2) = Massart bound

2 exp
(
− q2γ2

(∑n
i=1 p

′
i

)2∑n
i=1

(
p ′i −

1
n

∑n
i=1 p

′
i

)2) ≤
2 exp

(
− q2γ2

(∑n
i=1 p

′
i

)2∑n
i=1 p

′
i
2 +

∑n
i=1

(
1
n

∑n
i=1 p

′
i

)2) ≤
2 exp

(
− q2γ2

(∑n
i=1 p

′
i

)2
2
∑n
i=1 p

′
i
2

)
≤

2 exp
(
− q2γ2

(∑n
i=1 p

′
i

)2
2 ε
1−(λ+ρ)

∑n
i=1 p

′
i

)
= p ′i ≤

ε

1− (λ+ ρ)

2 exp
(
−
q2γ2(1− (λ+ ρ))

2ε

n∑
i=1

p ′i

)
≤

2 exp
(
−
γ2q2ρ(1− (λ+ ρ))

2ε

) n∑
i=1

p ′i ≥ ρ

2

Next, we use Lemma 25 together with Lemma 23 to show the concentration of Pr
[
∃i∈Sxi ∈ [τ0, τ1]

]
for a set S

chosen uniformly at random without replacement.

Lemma 26 Consider arbitrary numbers ρ, γ, ε, q ∈ (0, 1), λ ∈ [0, 1 − ρ). Let S be a set of size qn, chosen
uniformly at random without replacement from D1, . . . , Dn. Let τ0 and τ1 be such that Pr

[
maxni=1(xi) ≤ τ0

]
=
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1 − (λ + ρ) and Pr
[
maxni=1(xi) ≤ τ1

]
= 1 − λ. Let yi be a random binary variable that is 1 if τ0 ≤ xi ≤ τ1

and 0 otherwise. Let p ′i = Pr [yi = 1]. Assuming the no ε-superstars assumption, with probability 1 − 2 exp
(
−

γ2q2ρ(1−(λ+ρ))
2ε

)
we have

(
1− γ−

2qρ

1− (λ+ ρ)

)
q

n∑
i=1

p ′i ≤ Pr [∃i∈Syi = 1] ≤ (1+ γ)q

n∑
i=1

p ′i

Proof : With probability 1− 2 exp
(
− γ2q2ρ(1−(λ+ρ))

2ε

)
Lemma 25 holds and we have

Pr [∃i∈Syi = 1] ≤
∑
i∈S

p ′i By Lemma 23

≤ (1+ γ)q

n∑
i=1

p ′i. By Lemma 25

Moreover, we have

Pr [∃i∈Syi = 1] ≥
(
1−

∑
i∈S

p ′i
)∑
i∈S

p ′i By Lemma 23

≥
(
1−

∑
i∈S

p ′i
)
(1− γ)q

n∑
i=1

p ′i By Lemma 25

≥
(
1− (1+ γ)q

n∑
i=1

p ′i
)
(1− γ)q

n∑
i=1

p ′i By Lemma 25

≥
(
1− (1+ γ)q

1− λ

1− (λ+ ρ)
Pr [∃i∈Syi = 1]

)
(1− γ)q

n∑
i=1

p ′i By Lemma 23

≥
(
1− 2q

1− λ

1− (λ+ ρ)
Pr [∃i∈Syi = 1]

)
(1− γ)q

n∑
i=1

p ′i

≥
(
1− 2q

1− λ

1− (λ+ ρ)

ρ

1− λ

)
(1− γ)q

n∑
i=1

p ′i By Lemma 21

≥
(
1−

2qρ

1− (λ+ ρ)

)
(1− γ)q

n∑
i=1

p ′i

≥
(
1− γ−

2qρ

1− (λ+ ρ)

)
q

n∑
i=1

p ′i.

2

The following corollary is a simplified (and restricted) variation of Lemma 26.

Corollary 27 Consider arbitrary numbers ρ, λ0, γ, δ ∈ (0, 1), λ ∈ [0, 1−(λ0+ρ)] and q ∈
(
0,min

(
γλ0
2ρ
, 1
))

. Set

ε = γ2q2ρλ0
2 log 2

δ

. Let S be a set of size qn, chosen uniformly at random without replacement from D1, . . . , Dn. Let

τ0 and τ1 be such that Pr
[
maxni=1(xi) ≤ τ0

]
= 1−(λ+ρ) and Pr

[
maxni=1(xi) ≤ τ1

]
= 1−λ. Let yi be a random

binary variable that is 1 if τ0 ≤ xi ≤ τ1 and 0 otherwise. Let p ′i = Pr [yi = 1]. Assuming the no ε-superstars
assumption, with probability 1− δ we have

(1− 2γ)q

n∑
i=1

p ′i ≤ Pr [∃i∈Syi = 1] ≤ (1+ γ)q

n∑
i=1

p ′i
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Proof : Note that Lemma 26 holds with probability

1− 2 exp
(
−
γ2q2ρ(1− (λ+ ρ))

2ε

)
≥ 1− 2 exp

(
−
γ2q2ρλ0

2ε

)
= 1− 2 exp

(
−

γ2q2ρλ0

2
(
γ2q2ρλ0
2 log 2

δ

))

= 1− 2 exp
(
− log

2

δ

)
= 1− δ. (4)

Note that Lemma 26 directly gives us Pr [∃i∈Syi = 1] ≤ (1+ γ)q
∑n
i=1 p

′
i. Moreover, we have

Pr [∃i∈Syi = 1] ≥
(
1− γ−

2qρ

1− (λ+ ρ)

)
q

n∑
i=1

p ′i Lemma 26

≥
(
1− γ−

2qρ

λ0

)
q

n∑
i=1

p ′i

≥
(
1− γ−

2γλ0
2ρ
ρ

λ0

)
q

n∑
i=1

p ′i

= (1− 2γ)q

n∑
i=1

p ′i.

2

We can now prove Lemma 11. We will restate it as Lemma 28 below for convenience. Recall that for the purpose

of this lemma for some arbitrary γ ∈ (0, 1) we set λ0 = γ, ρ = γ3, q = γ2

2
, and δ = γ6

4
.

Lemma 28 Let S be a set of size qn, chosen uniformly at random without replacement from D1, . . . , Dn. With

probability 1− γ3

2
for all ζ ∈ {0, . . . , c− 1} we have

(1− 3γ)q

n∑
i=1

pζi ≤ Pr [tζ ≤ xS < tζ+1] ≤ (1+ γ)q

n∑
i=1

pζi ,

where pζi = Pr [tζ ≤ xi < tζ+1], assuming the no ε-superstars assumption with ε = γ10

24 log( 2
γ2

)
.

Proof : Note that by Corollary 27, for a fixed ζ ∈ {0, . . . , c− 1} with probability 1− δ = 1− γ6

4
we have

(1− 2γ)q

n∑
i=1

pζi ≤ Pr [∃i∈Stζ ≤ xi < tζ+1] ≤ (1+ γ)q

n∑
i=1

pζi . (5)

By the union bound, this holds for all ζ ∈ {0, . . . , c− 1} with probability at least

1− c
γ6

4
= 1−

1− λ0
ρ

γ6

4
≥ 1− γ6

4ρ
= 1−

γ3

4
.

Similarly, using Lemma 16 with probability at least 1− γ3

4
for all ζ ∈ {0, . . . , c− 1} we have

Pr [∃i∈Stζ+1 ≤ xi] ≤
2q

λ0
= γ. (6)

Next, we prove the statement of the lemma assuming that for all ζ ∈ {0, . . . , c − 1} Inequalities 5 and 6 hold.
First note that we have

Pr [tζ ≤ xS < tζ+1] ≤ Pr [∃i∈Stζ ≤ xi < tζ+1]

≤ (1+ γ)q

n∑
i=1

pζi . By Inequality 5
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This proves the upper bound. On the other hand we have

Pr [tζ ≤ xS < tζ+1] ≥ Pr [@i∈Sxi ≥ tζ+1]× Pr [∃i∈Stζ ≤ xi < tζ+1]

=
(
1− Pr [∃i∈Sxi ≥ tζ+1]

)
× Pr [∃i∈Stζ ≤ xi < tζ+1]

≥ (1− γ)Pr [∃i∈Stζ ≤ xi < tζ+1] By Inequality 6

≥ (1− γ)(1− 2γ)q

n∑
i=1

pζi By Inequality 5

≥ (1− 3γ)q

n∑
i=1

pζi .

2

The following technical lemma will be useful for proving Lemma 16 and Lemma 17.

Lemma 29 Let χ1, . . . , χm be a sequence of independent binary random variables. We have

Pr

[
m∑
i=1

χi ≥ 2

]
≤ Pr [∃iχi = 1]2 .

Proof : We have

Pr

[
m∑
i=1

χi ≥ 2

]
=

m∑
j=1

(
Pr [∀i<jχi = 0]Pr [χj = 1]Pr

 m∑
i=j+1

χi ≥ 1

)

≤
m∑
j=1

(
Pr [∀i<jχi = 0]Pr [χj = 1]Pr

[
m∑
i=0

χi ≥ 1

])

= Pr

[
m∑
i=0

χi ≥ 1

]
m∑
j=1

(
Pr [∀i<jχi = 0]Pr [χj = 1]

)

= Pr

[
m∑
i=0

χi ≥ 1

]2
= Pr [∃iχi = 1]2 .

2

We can now prove Lemma 16. For a small set of indices S chosen uniformly at random, we wish to upper bound
the probability of observing at least two xi’s with i ∈ S above a threshold τ0. We declare this as a failure case
in our algorithm in subsection C. For convenience we restate as Lemma 30 below.

Lemma 30 Consider arbitrary numbers λ0, γ, δ, q ∈ (0, 1), ρ ∈ (0, 1 − λ0). Set ε = γ2q2ρλ0
2 log 2

δ

. Let S be

a set of size qn, chosen uniformly at random without replacement from D1, . . . , Dn. Let τ0 be such that
Pr
[
maxni=1(xi) ≤ τ0

]
= 1 − ρ. Let yi be a random binary variable that is 1 if τ0 ≤ xi and 0 otherwise.

Let p ′i = Pr [yi = 1]. Assuming the no ε-superstars assumption, with probability 1− δ we have

Pr [∃i∈Syi = 1] ≤
2q

λ0

and

Pr

[∑
i∈S

yi ≥ 2

]
≤ 4q

2

λ20
.
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Proof : With probability 1− 2 exp
(
− γ2q2ρ(1−(λ+ρ))

2ε

)
≥ 1− δ (see Inequality 4), Lemma 25 holds and hence

we have

Pr [∃i∈Syi = 1] ≤
∑
i∈S

p ′i By Lemma 23

≤ 2q
n∑
i=1

p ′i By Lemma 25 with γ < 1

≤ 2q
n∑
i=1

Pr
[
i = arg maxnj=1 xj

]
λ0

By Lemma 22 with λ = 0, ρ = 1− λ0

≤ 2q
λ0
.

n∑
i=1

Pr

[
i =

n
arg max
j=1

xj

]
= 1

and hence, we have

Pr

[∑
i∈S

yi ≥ 2

]
≤ Pr [∃i∈Syi = 1]2 By Lemma 29

≤ 4q
2

λ20
.

2

Finally we will prove Lemma 17. We wish to upper bound the probability of observing at least two xi’s within
a narrow range [τ0, τ1]. We declare this as a failure case in our algorithm in subsection C. For convenience we
restate as Lemma 31 below.

Lemma 31 Consider arbitrary numbers ρ, λ0 ∈ (0, 1) and λ ∈ [0, 1 − (λ0 + ρ)]. Let τ0 and τ1 be such that
Pr
[
maxni=1(xi) ≤ τ0

]
= 1− (λ+ ρ) and Pr

[
maxni=1(xi) ≤ τ1

]
= 1− λ. Let yi be a random binary variable that

is 1 if τ0 ≤ xi ≤ τ1 and 0 otherwise. We have

Pr

[
n∑
i=1

yi ≥ 2

]
≤ ρ

2

λ20
.

Proof : We have

Pr

[
n∑
i=1

yi ≥ 2

]
≤ Pr [∃ni=1yi = 1]

2
By Lemma 29

≤
( ρ

1− λ

)
By Lemma 21

≤ ρ
2

λ20
.

2


