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1 Algorithm of Generating A Cut in ♦′ and
Not Crossing into ♦

Algorithm 1 GenCutNorCross(♦′,♦)

1: (d∗1, d
∗
2) ∼ Cat(L̃(1,2)(♦′) − L̃(1,2)(♦), . . .,

L̃(d−1,d)(♦′)− L̃(d−1,d)(♦))
2: θ ∼ p(θ) ∝ |lllΠ(d∗1 ,d

∗
2)(♦′)(θ)| − |lllΠ(d∗1 ,d

∗
2)(♦)(θ)|, θ ∈

(0, π]
3: Sample uuu uniformly on |lllΠ(d∗1 ,d

∗
2)(♦′)(θ)| −

|lllΠ(d∗1 ,d
∗
2)(♦)(θ)|

4: Form cutting hyperplane based on (d∗1, d
∗
2), θ,uuu

2 Some visualisations

Left panel of Figure 1 visualizes the difference between the
convex hull representation of tree node in the BSP-Tree par-
tition and Mondrian tree partition. Convex hulls are formed
recursively, and larger hulls contain smaller ones. The BSP-
Tree generates smaller convex hulls than the Mondrian-Tree,
which means the BSP-Tree is a “tight” representation of the
space. Right panel of Figure 1 visualizes oblique line slice
of the BSP-Tree Process.

3 Proof of Lemma 1

Lemma 1. (Oblique line slice) For any oblique line that
crosses into the domain of a BSP-Tree process with budget
τ , its intersection points with the partition forms a homoge-
neous Poisson process with intensity 2τ .

Proof. The self-consistent property of the BSP-Tree process
guarantees that this 1-dimensional slice follows the same
way of directly generating a BSP-Tree partition on the line.

To define the BSP-Tree partition on the line segment, we
first consider the BSP-Tree partition in an obtuse trian-
gle. Two vertices of the triangle form a line segment with
the length L. Another vertex lies between these two ver-
tices and has an ε distance to the line segment. Based on

the generative process of the BSP-Tree process, the cost
of cut in this triangle follows an Exponential distribution
with rate parameter being the perimeter of the triangle,
which is PE = (L1 + L2) +

√
L2

1 + ε2 +
√
L2

2 + ε2. As
PE → 2(L1 +L2) when ε→ 0, the cost has an exponential
distribution with rate parameter 2L accordingly. As a result,
the number of cuts follows a Poisson distribution with pa-
rameter τ · 2L. The cut position is Uniformly distributed
in the line segment. (For each projection in the direction
of θ, the crossing point between the cuts and line segment
is Uniformly distributed.) This can verify the independent
increments of the partition points in the line.

As the two condition of Poisson process is satisfied, accord-
ing to Theorem 1.10 in [2], we can get the conclusion.

4 Proof of Theorem 2

It is noted the main idea of the following proof largely
follows the work of [6]. We make modifications to make
the proof suitable to online BSP-Forest case.

Lemma 2. (Block diameter) Let xxx ∈ [0, 1]d, and let D(xxx)
be the L2-diameter of the block containing xxx in the BSP-
Tree partition with budget τ/2. If τ →∞, then Dτ (xxx)→ 0
in probability. More precisely, for every δ, τ > 0, we have

P(Dτ (xxx) ≥ δ) ≤ d(1+
τδ√
d

) exp(− τδ√
d

), E[Dτ (xxx)2] ≤ 4d

τ2
.

Proof. Let �τ (xxx) denotes the block of a Binary Space
Partitioning-Tree partition containing xxx ∈ [0, 1]d. In the
space of [0, 1]d, we can build up d orthogonal basises to
describe the block �τ (xxx), with one basis is in the direction
of largest diameter in �τ (xxx). While it is obvious that rota-
tions of the bock will not affect the diameter, w.l.o.g., we
rotate the block and treat the direction with largest diam-
eter as dimension 1. By definition, the L∞-norm diame-
ter Dτ (xxx) of �τ (xxx) is max{�(d′)

τ (xxx)}d′ . While recording
these smallest and largest interceptions in these rotated di-
mensions as {L(d′)

τ , R
(d′)
τ }d′ , all of the random variables

Rτ (xxx) − Lτ (xxx) have the same distribution, it suffices to
consider D(1)

τ (xxx) = R
(1)
τ (xxx)− L(1)

τ (xxx).
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(b) BSP Convex Hull(a) Mondrian Tree

Figure 1: Left: example visualization comparing the Mondrian-Tree and BSP-Tree convex hulls. Point colors identify
different data labels, and the dotted, dashed and solid lines denote the whole space, the convex hulls and the cuts, respectively.
Right: 2d visualization of oblique line slice of the BSP-Tree Process partition. Red solid line denotes the oblique line and
blue dots represents the intersection points.

Figure 2: Visualization for the 1-dimansional space case.

In this rotated block, consider the segment I(1)(xxx) =
[0,
√
d] × xxx−i containing xxx, and denote φ1

τ (xxx) ⊂ [0,
√
d]

the restriction of the partition to I(1)(x). Note that
R

(1)
τ (xxx) (L(1)

τ (xxx)) is the lowest (highest) element of φ(1)
τ (xxx)

that is larger (smaller) than x1, and is equal to
√
d (0) if

φ
(1)
τ (xxx)∩ [x1,

√
d] (φ(1)

τ (xxx)∩ [0, x1]) is empty. By Theorem
1 and Lemma 1, φτ (xxx) is a Poisson process with intensity
τ .

This implies the distribution of (L
(1)
τ (xxx), R

(1)
τ (xxx)) is the

same as that of (L̃
(1)
τ (xxx) ∨ 0, R̃

(1)
τ (xxx) ∧

√
d), where φ̃1

τ (xxx)

is a Poisson process on R with intensity τ , and L̃(1)
τ (xxx) =

sup(φ̃
(1)
τ (x1) ∪ (−∞, x1)), R̃

(1)
τ (xxx) = inf(φ̃

(1)
τ (x1) ∩

(x1,∞)). By the property of the Poisson point process, this
implies that x1−L(1)

τ (xxx), R
(1)
τ (xxx)−x1

d
= (E1, E2), where

E1, E2 are independent exponential random variables with
parameter τ . D

(1)
τ (xxx) = R

(1)
τ (xxx) − x1 + x1 − L

(1)
τ (xxx)

is upper bounded by E1 + E2 ∼ Gamma(2, τ). Thus,
we have ∀δ > 0,P(D1

τ (xxx)) ≥ δ) ≤ (1 + τδ)e−τδ and
E[D1

τ (xxx)2] ≤ E(E2
1) + E(E2

2) = 4
τ2 . The bound of Dτ (xxx)

can be obtained by Dτ (xxx) =
√∑

d′ D
d′
τ (xxx).

Lemma 3. If Kτ denotes the number of cuts in the BSP-
Tree process, we have E[Kτ ] ≤ (1 + τ)ded(d−1).

Proof. Let � ⊂ [0, 1]d be an arbitrary block, and let K�
τ

denotes the number of splits performed in the BSP-Tree
process with budget value τ/2. As shown in [4][5], the
waiting time of a cut occurs in a leaf node φ of the BSP-Tree
process follows an exponential distribution of rate L(�φ) ≤
L(�), where L(�) denotes the perimeter of the block �.
The number of leaves Kt + 1 ≥ Kt at time t is dominated
by the number of individuals in a Yule process with rate

L(�) [7]. Thus, we have: E(K�
τ ) ≤ eτL(�).

Considering the covering C of � by a regular grid of dτed
boxes obtained by equally dividing each coordinate of �
in dτe parts. Each cut in � will induce a split in at least
one box Cin C and BCτ is also a BSP-Tree process in box
C (due to the self-consistency of the BSP-Tree process),

we have: E(K�
τ ) ≤

∑
C∈C E(KC

τ ) ≤ dτedeτ
L(�)
dτe ≤ (τ +

1)deL(�).

Lemma 4. Assume that the total number of splits
Kτ performed by the BSP-Tree partition satisfies
limn→∞ E(Kτn)/n → 0. For Nn(xxx) being the number
of datapoints in xxx1:N fall in Aτn(xxx), we have Nn(xxx)→∞
in probability.

Proof. We fix n ≥ 1, and conditionally on the BSP-Tree
partition at the budget of τn, Bτn is independent of xxx by
construction. Note that the number of leaves is |L(Bτn)| =
Kτn + 1, and (�φ)φ∈L(Bτn ) is the corresponding blocks,
where φ refers tot he leaf node. For φ, we define Nφ to be
the number of points among xxx1, . . . ,xxxn that fall in the cell
�φ. Since xxx1, . . . ,xxxn are i.i.d., so that the joint distribution
of xxx1, . . . ,xxxn is invariance under the permutation of the
n+ 1 datapoints, conditionally on the set S = xxx1, . . . ,xxxn
the probability that xxx falls in the block �φ. Therefore, for
each t > 0, we have:

P(Nn(xxx) ≤ t) =E{P(Nn(xxx) ≤ t|S,Bτn)}

=E

 ∑
φ∈L(Bτn ):Nφ≤t

Nφ
n+ 1

 (1)

≤E
{
t|L(Bτn)|
n+ 1

}
=
t(E(Kτn) + 1)

n+ 1
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which tends to 0 as n→∞.

Before proving Theorem 2, we first invoke a consistency
theorem (Theorem 6.1 in [3] and we use � to denote the
block for notation consistency)

Theorem 4. Consider a sequence of randomised tree
classifiers (g̃n(·, Z)), grown independently of the labels
Y1, . . . , Yn. For xxx ∈ [0, 1]d, denote �n(xxx) = �n(xxx, Z)
the block containing xxx, Dn(xxx) its diameter and Nn(xxx) =
Nn(xxx, Z) the number of input vectors among xxx1, . . . ,xxxn
that fall in �n(xxx). Assume that, if xxx is drawn from the
distribution with the following conditions:

1. limn→∞Dn(xxx)→ 0 in probability;

2. limn→∞Nn(xxx)→∞ in probability.

Then the tree classifier g̃n is consistent.

The proof of Theorem 2 is:

Proof. We can show the two conditions in Theorem 4
are satisfied. First, Lemma 1 ensures that, if τn → ∞,
Dτn(xxx) → 0 in probability for every xxx ∈ [0, 1]d. In
particular, for every δ > 0, we have P(�τn(xxx) ≥ δ) =∫

[0,1]d
P(Dτn(xxx) > δ)µ(dxxx) → 0 as n → ∞ by the domi-

nated convergence theorem.

Since Lemma 4 provides the proof for the second condition,
the proof of Theorem 2 is concluded.

5 Proof of Theorem 3

It is noted the main idea of the following proof largely
follows the work of [6]. We make modifications to make
the proof suitable to online BSP-Forest case.

Proof. By the convexity of the quadratic loss func-
tion and the fact that all the BSP-Tree has the
same distribution, we have that E

[
(g(xxx)− ĝn(xxx))2

]
≤

1
m

∑m
k=1 E

[
(g(xxx)− ĝn,k(xxx))2

]
= E

[
(g(xxx)− ĝn,1(xxx))2

]
.

Thus, we can prove the result for a single treee algorithm to
get the conclusion.

We firs write use the bias-variance decomposition of the
quadratic loss by:

R(f̂n) = E
[
(f(xxx)− f̄n(xxx))2

]
+ E

[
(f̂n(xxx)− f̄n(xxx))2

]
(2)

where f̄n(xxx) := E [f(xxx|xxx ∈ An(xxx))] denotes the
groundtruth label value for the block containing xxx. The
first term is bias and it measures the closeness of f(xxx) to
the best approximator f̄n(xxx) (of which the label value is
constant on the block containing xxx). The second term is

variance and it measures the closeness of he best approxi-
mator f̄n(xxx) to the empirical approximator f̂n(xxx).

For the bias term, we have:

|f(xxx)− f̄n(xxx)| ≤| 1

µ(An(xxx))

∫
An(xxx)

(f(xxx)− f̄n(zzz))µ(dzzz)|

≤ sup
zzz∈An(xxx)

|f(xxx)− f(zzz)|

≤L sup
zzz∈An(xxx)

‖xxx− zzz‖2 = L ·Dn(xxx) (3)

where Dn(xxx) is the l2-diameter of An(xxx). According to the
result of Lemma 1, we get:

E
[
(f(xxx)− f̄n(xxx))2

]
≤ L2E

[
Dn(xxx)2

]
≤ 4dL2

τ2
n

(4)

For the variance term, based on the Proposition 2 of [1]: if
U is a random tree partition of the unit space with k + 1
blocks, we have:

E
[
(f̄U (xxx)− f̂U (xxx))2

]
≤ k + 1

n
(2σ2 + 9‖f‖∞) (5)

. Thus, we can have:

E
[
(f̄n(xxx)− f̂n(xxx))2

]
=

∞∑
k=0

P(k)E
[
(f̄U (xxx)− f̂U (xxx))2|k

]
≤
∞∑
k=0

P(k)
k + 1

n
(2σ2 + 9‖f‖∞)

=
E(Kn) + 1

n
(2σ2 + 9‖f‖∞) (6)

Based on the result of Lemma 2, we get

E
[
(f̄n(xxx)− f̂n(xxx))2

]
≤ (1 + τn)ded(d−1) + 1

n
(2σ2 + 9‖f‖∞) (7)

Combining the result of Eq. (4)(7), we get:

R(f̂n)

≤4dL2

τ2
n

+
(1 + τn)ded(d−1) + 1

n
(2σ2 + 9‖f‖∞) (8)

Taking τn = n
1
d+2 can make R(f̂n) scales to O(n−

2
d+2 ).

6 Additional Experimental Results

Figure 3 illustrates the observed and predicted labels (and
their difference) for the UK Apartment Price Data. The
online BSP-Forest appears to be able to capture the price
variation reasonably well, and provide an accurate predic-
tion of the true test data. Spatially, the prediction error looks
broadly pattern free (in colour distribution), indicating that
the regression model is adequate for these data.
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Figure 3: Visualisation of the online BSP-Forest’s spatial
predictions on the UK Apartment Price data. Plots show
[L-R] actual test data, predictions, and prediction errors.
Red–blue colour denotes low–high prices.
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