Sebastian Farquharf, Michael A. Osborne*, Yarin Gal'

Appendices

A Understanding the Soap Bubble

The emergence of a ‘soap-bubble’ is a well-known prop-
erty in multi-variate Gaussian distributions as the num-
ber of dimensions increases (e.g., see Bishop| [20006]).
The observation is that, even though the highest prob-
ability density is near the mean, because there is just
so much more volume further from the mean in high-
dimensional spaces it ends up being the case that most
of the probability mass is far from the mean.

One way to understand this is to examine the prob-
ability density function of the multivariate Gaussian
along its radius. Consider a D-dimensional isotropic
Gaussian. We examine a thin shell with thickness 7,
which tends to zero, at distance r between a sampled
point, w, and the mean of the multivariate Gaussian,
p. The probability density function over the radius is
given by:

Jim p(r = < |lw = pf| <r+n)

N ©
~ (2n02)D/2 e

where Sp is the surface area of a hypersphere in a
D-dimensional space.

The first term of the product is just a normalizing
constant (Sp is the surface area of a D-dimensional
hypersphere).

The second term, r?~1!, reflects the growing volume in

shells away from the origin. In the region where r is
small, and for the large D found in BNNs with many
parameters, this term (red in figure [8) dominates and
drives the probability density towards zero.

2

L

The exponential term e~ 202 reflects the Gaussian den-
sity (inverse shown in green in figure . For larger r
the exponential term becomes very small and drives the
probability density towards zero. Almost all the prob-
ability mass is in the ‘soap-bubble’ in the region where
neither term becomes very small. We consider the
isotropic case here for simplicity, but the non-isotropic
Gaussian has a similar ‘soap—bubble’EI

A.1 Radial Approximate Posterior Over
Each Weight

In order to achieve an approximate posterior distribu-
tion which does not have a soap bubble, we must use

90h et al.| [2018] consider ‘soap-bubbles’ in Bayesian
optimization. But it has not been considered for MFVI.

Magnitude

0 5 10 15 20
Euclidean distance from the mean

Figure 8: We can understand the ‘soap-bubble’ by
looking at components of the p.d.f. in eq. [} For small
r the volume term (red) dominates and the normalized
p-d.f. is very small. For big r the Gaussian density
term (inverse shown in green) dominates and the p.d.f.
is small again. Almost all the probability mass is in
the intermediate region where neither term dominates:
the ‘soap bubble’. The intermediate region becomes
narrower and further from the mean as D is bigger.
Here we show D = 10.

a lighter tailed distribution over each weight than a
Gaussian would.

In Figure[9] we show the distribution for a single weight
from a Radial BNN layer with 10 weights. It is much
more sharply peaked than for a typical multivariate
Gaussian and has lighter tails. As a result, each indi-
vidual weight in a sample from a Radial BNN is much
more similar to other samples of that weight. From
the perspective of viewing the model function as a sam-
ple from the entire weight-space, however, the Radial
BNN distribution is more attractive, because it does
not display the ‘soap-bubble’ pathology.

B Derivation of the Entropy Term of
the KL-divergence

In this section, we show that the component of KL-
divergence term of the loss which is the entropy of the

posterior distribution over the weights q(w(m)) can be
estimated as:

Lentropy = / (W) loglg(w®)dw™® (7

=— Z log[agx)} + const (8)

where 7 is an index over the weights of the model.

Throughout this section we use a superscript indicates

Radial Bayesian Neural Networks

2.5 A Radial
oy —— MFVI
@ 2.0 -

35

> 1.5 1
2 1.0 A
S

& 0.5 1

0.0 ——————
-2 0 2
Weight

Figure 9: One-dimensional marginal distribution for
a single weight. For each single weight, the Radial
approximate posterior is lighter-tailed than the MFVI
Gaussian, and more so the larger the layer. Here, we
show a 10-dimensional layer.

the basis—an (x) means we are in the Cartesian co-
ordinate system tied to the weight-space while (r) is
the hyperspherical coordinate system (the letter is the
canonical ‘first’ coordinate of that coordinate system).

We begin by applying the reparameterization trick
|[Kingma et al., 2014, Rezende et al., 2014]. Following
the auxiliary variable formulation of |Gal [2016], we
express the probability density function of ¢(w(®)) with
an auxiliary variable.

g(w®) = / (W@, e))ge ()
_/ (w z)|€(7’)) (e (r))de(r) (10)
/5) — g(p, 0, €M)q(e)de™ . (11)

In equation (11)), we have used a reparameterization
trick transformation:

91, 0,€")) = p+ 0 © Typ(e) (12)

where p and o are parameters of the model and where
T, is the standard transformation from hyperspherical
into Cartesian coordinates.

Substituting equation into the definition of the
entropy loss term in equation , and applying the
definition of the Kronecker delta we can eliminate de-
pendence on w(®):

Lentropy = | a(w'™)loglg(w®)]dw® (13)

/

()") ogly(w'
(14

- / g€ loglg(g(ps, o, €7))]de. (15)

Then, we perform a coordinate transformation from
g(p, o, €M) to € using the Jacobian of the transfor-
mation and simplify.

Myt
= [ateog e | 220 7))]dem

[()86() -1
= [atetog ate)| [Tof" 25| e (17
J
el
Z

2) |-

- / q(e)log | q(€')|diag(o)

 [ateoes 1

In the last line we have used the fact that Vi : JZ@ >0
allowing us to pull the determinant of this diagonal
matrix out.

T

((r) 86(1‘)

Lo E””’

PG
_1] de” (19)

8e§w>
formation from Cartesian to hyperspherical coordinates
for which we use the result by Muleshkov and Nguyen
[2016]:

is the determinant of the Jacobian for the trans-

‘ e
86§-T)

D .
_ abs((. 1)D—1(6((Jr))D—1 H (sin(egr)))Zﬂ) '

=2
(20)

We know that eg') > 0 because the radial dimension
in hyperspherical coordinates can be assumed positive
without loss of generality. We also know 0 < egr) <
for 2 < ¢ < D for the hyperspherical coordinate system.
So we can simplify the signs:

Sebastian Farquhar',

Michael A. Osborne*, Yarin Gal'

Therefore, plugging equation into :

e 9l
Ce’“”"y:/ q(e(r))log[pe ‘ @
abs([[; 0;7") 1 O¢;

—1
]de(”

(22)
:/«wm%mwm

—loglabs(] [o1*))]

i

D .
—log [(eér))Dl H (sin(eET')))Zl] de™.

i (23)

Very simply, we can observe that only the middle term
depends on the parameters and we must therefore only
compute this term in order to compute gradients. For
sake of completeness, we address the other integrals
below, in case one wants to have the full value of the
loss (though since it is a lower bound in any case, the
full value is not very useful).

The probability density function of the noise variable is
separable into independent distributions. The distribu-
tion of eér) is a unit Gaussian. The angular dimensions
are distributed so that sampling is uniform over the
hypersphere. However, this does not mean that the
distribution over each angle is uniform, as this would
lead to bunching near the n-dimensional generalization
of the poles. (Intuitively, there is more surface area
per unit of angle near the equator, as is familiar from
cartography.) Instead, we use the fact that the area
element over the hypersphere is:

D—1
dA = deg) H sin(el(.r))D_ideZ(-T)

=1

(24)

where we remember that eg) is between —7 and 7, and

the rest of the angular elements of €™ are between 0
and 7. The resulting probability density function is:

(r) H q (7”) (25)
D—1

S eié . H sin(el(»T))D*i. (26)
V21 i=1

As a result, all three of the terms in equation are
analytically tractable. Inserting the probability density
function from equation into the first term of the
loss, splitting up the product inside the logarithm, and
separating independent terms we get:

/w%mwwwﬂ

/ deg/ de(r)/ Hde(r)

-\/276_7 Hsm (r)yD—i
s

D-1
1 <3 . (r)\D—
lo [e 2 - sin(e l} 27
[e I o) 0
= de(()r)/ deg)/ H degr)
0 —T (U —

We can simplify the first two of the terms in equation
but the third is difficult to solve in general (though
tractable for any specific D). Regardless, this term is
constant and therefore not needed for our optimization.

Inserting the probability density function from equation
into the second term of the loss in equation
we get

/ (T)) log H o, de(’”) = log H o,
= Z log[agm)}.

(31)
(32)
This second term is identical to the entropy of the

multivariate Gaussian variational posterior typically
used in MFVL

And for the third term we begin by expanding the

Radial Bayesian Neural Networks

logarithm and simplifying:

[ateos (6 T (sin(el) aerr @3

1=2

—(0-1) [(e logleljdel)
0
D

+; Gl / log[sm((T))]dﬁgo) (34)
(35)

and then inserting the p.d.f. from equation and
solving analytically tractable integrals:

(- = ()
T Vo / ‘

D

log[e (T)]deg')

+ Z (Z%) - —7log[2] (36)
D
:(D\/;?l) —;\/;’y—i—log Zl—l) - log[2]
- (37)
=D gy - LD
(38)
:7(D;1)77 (D—1)512D—3) log[2]. (39)
(40)
where v is the Euler-Mascheroni constant. This is,

again, constant and may be neglected for optimization.

As a result, we can minimize the entropy term of the
loss simply by finding

L:entropy =

- Z log[agm)] + const (41)

C Setting a Radial Prior

In most of our experiments, we use a typical multivari-
ate Gaussian unit prior in order to ensure comparability
with prior work. However, in some settings, such as the
Variational Continual Learning setting, it is useful to
use the radial posterior as a prior. We begin similarly
to the previous derivation, with all unchanged expect
that we are estimating

Loromsentropy = / (W) log[p(w®))dw®. (42)

The derivation proceeds similarly until equation ,
and the second and third terms are identical except the

second term taking a product over elements of o
of the prior, not the posterior.

()
(

prior)

Evaluating the gradient of the log probability density
function of the prior depends only on the radial term,
since the distribution is uniform in all angular dimen-
sions. We therefore find

(z))
-))]dem. (43)

(
w B ior
[ot toglp (=

(prior)

Rather than solve the integral, we can estimate this as
a Monte Carlo approximation:

2
N (z) _ ,,(®)
]. 1 w M rior
%7277 (prior) || (44)
N < 2 o®
=1 (prior)
By adding the three terms we estimate the cross-

entropy term of the ELBO loss function.

D Experimental Settings

D.1 Diabetic Retinopathy Settings

The diabetic retinopathy data are publicly
available at https://www.kaggle.com/c/
diabetic-retinopathy-detection/data. We
augment and preprocess them similarly to [Leibig et al.
[2017]. The images for our main experiments in are
downsampled to 512x512 while the smaller robustness
experiment in §L.1.3] uses images downsampled to
256x256 We randomly flip horizontally and vertically.
Then randomly rotate 180 degrees in either direction.
Then we pad by between 0 and 5% of the width
and height and randomly crop back down to the
intended size. We then randomly crop to between
90% and 110% of the image size, padding with zeros if
needed. We finally resize again to the intended size
and normalize the means and standard deviations
of each channel separately based on the training set
means and standard deviations. The training set has
44,594 RGB images. There are 7,026 validation and
10,000 test images.

The smaller model used for robustness experiments is
loosely inspired by VGG-16, with only 16 channels,
except that it is a Bayesian neural network with mean
and standard deviations for each weight, and that in-
stead of fully connected networks at the end it uses a
concatenated global mean and average pool. The larger
model used in the main experiments is VGG-16 but
with the concatenated global mean and average pool
instead of fully connected layers as above. The only
difference is that we use only 46 channels, rather than
64 channels as in VGG-16, because the BNN has twice
as many parameters as a similarly sized deterministic

https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data

Sebastian Farquharf, Michael A. Osborne*, Yarin Gal'

network and we wanted to compare models with the
same number of parameters. For the dropout model we
use VGG-16 with the full 64 channels, and similarly for
each of the models in the deep ensemble. The prior for
training MFVI and Radial BNNs was a unit multivari-
ate Gaussian. (We also tried using the scale mixture
prior used in Blundell et al.|[2015] and found it made no
difference.) Instead of optimizing o directly we in fact
optimize p such that o = log(1 4 e”) which guarantees
that o is always positive. In some cases, as described in
the paper, the first epoch only trained the means and
uses a NLL loss function. This helps the optimization,
but in principle can still allow the variances to train
fully if early stopping is not employed (unlike reweight-
ing the KL-divergence). Thereafter we trained using
the full ELBO loss over all parameters. Unlike some
prior work using MFVI, we have not downweighted the
KL-divergence during training.

For the larger models, we searched for hyperparameters
using Bayesian optimization. We searched between 0
and -10 as the initial value of p (equivalent to o values
of log(2) and 2-107Y). For the learning rate we
considered 1073 to 107 using Adam with a batch
size of 16. Otherwise, hyperparameters we based on
exploration from the smaller model.

We then computed the test scores using a Monte Carlo
estimate from averaging 16 samples from the varia-
tional distribution. We estimate the model’s uncer-
tainty about a datapoint using the mutual information
between the posterior’s parameters and the prediction
on a datapoint. This estimate is used to rank the data-
points in order of confidence and compute the model’s
accuracy under the assumption of referring increasingly
many points to medical experts.

For the smaller models, we performed an extensive
random hyperparameter search. We tested each con-
figuration with both MFVI and Radial BNNs. We
tested each configuration for both an SGD optimizer
and Amsgrad. When training with SGD we used Nes-
terov momentum 0.9 and uniformly sampled from 0.01,
0.001 and 0.0001 as learning rates, with a learning rate
decay each epoch of either 1.0 (no decay), 0.98 or 0.96.
When training with Amsgrad we uniformly sampled
from learning rates of 0.001, 0.0001, and 0.00001 and
did not use decay. We uniformly selected batch sizes
from 16, 32, 64, 128, and 256. We uniformly selected
the number of variational distribution samples used
to estimate the loss from 1, 2, and 4. However, be-
cause we discarded all runs where there was insufficient
graphics memory, we were only able to test up to 64x4
or 256x1 and batch sizes above 64 were proportionately
less likely to appear in the final results. We selected the
initial variance from p values of -6, -4, -2, or 0. We also
tried reducing the number of convolutional channels by

a factor of 5/8 or 3/8 and found that this did not seem
to improve performance. We ran our hyperparameter
search runs for 150 epochs. We selected the best hyper-
parameter configurations based on the best validation
accuracy at any point during the training. We trained
the models for 500 epochs but selected the models saved
from 300 epochs as all models had started to overfit
by the end of training. For MF VI, this was using the
SGD optimizer with learning rate 0.001, decay rate
0.98 every epoch, batch size 16, 4 variational samples
for estimating the loss during training and p of -6. This
outperformed the others by a significant margin. Using
our code on a V100 GPU with 8 vCPUs and an SSD
this took slightly over 13 hours to train each model.
For the radial posterior, this was the Adam optimizer
with learning rate 0.0001, batch size 64, 1 variational
sample for estimating the loss during training and a
p of -6. Using our code on the same GPU, this took
slightly over 3h to run. However, for the radial pos-
terior there were very many other configurations with
similar validation accuracies (one of the advantages of
the posterior).

For the experiment shown in Figure [7} we have se-
lected slightly different hyperparameters in order to
train more quickly. For both models, we use Adam
with learning rate 0.0001 and train for 500 epochs. The
models have 5/8 the number of channels of VGG-16.
The models are trained with batch size 64 and 4 vari-
ational samples to estimate the loss and its standard
deviation.

D.2 Variational Continual Learning Settings

We build on the code provided by |Nguyen
et al| |2018] at https://github.com/nvcuong/
variational-continual-learning adapted for Fash-
ionMNIST. The FashionMNIST dataset was down-
loaded using pytorch’s built in vision datasets. The
data were normalized by subtracting the training set
mean and dividing by the training set standard devia-
tion.

The classes are ordered in the conventional order. The
model is initialized randomly—without pretraining the
means (unlike Nguyen et al.|[2018]). The model is then
trained on the first two classes. The weights are carried
over to the next task and set as a prior, while the model
is trained on the next two classes, and so on. Note that
we perform the tasks in a multi-headed way—each task
has its own output head. This may not be an ideal
exemplar of the continual learning problem |Chaudhry|
et al., 2018, [Farquhar and Gall [2018a] but it forms an
effective test of the posterior. We do not use coresets,
unlike Nguyen et al.| [2018], as this would not form an
effective test of the quality of the posterior.

https://github.com/nvcuong/variational-continual-learning
https://github.com/nvcuong/variational-continual-learning

Radial Bayesian Neural Networks

Models are Bayesian MLPs with four hidden layers
with 200 units in each. The prior for training was a
unit multivariate Gaussian. Instead of optimizing o
directly we in fact optimize p such that o = log(1 + e”)
which guarantees that o is always positive. Models
are optimized using Amsgrad |Reddi et al., 2018] with
learning rate 0.001 with shuffling and discarding final
incomplete batches each epoch. We perform a grid
search over the number of epochs each task is trained
over (3, 5, 10, 15, 20, 60, 120) and batch sizes (1024,
2048, 10000). We used 90% of the standard training
dataset (54000 points) as a training dataset, with 10%
(6000 points) withheld as a validation dataset. We
initialize p to —6 and use the initialization by
for the means. The radial posterior would work
with a much larger p, but we wanted to use comparable
initializations for each. We optimized for average vali-
dation accuracy over all models on the final task. We
used the standard 10000 points as a test dataset. The
best configuration for the MFVI posterior was found to
be 60 epochs of batch size 1024 (note that this differs
from the 120 epochs of batch size 12000 reported in
[Nguyen et al.| [2018] perhaps because they pretrain the
means). The best configuration for the radial posterior
was found to be 20 epochs of batch size 1024. We
report the individual accuracies for each head on the
test dataset.

D.3 Single-headed FashionMNIST continual
learning

Previous authors have noted that for continual learning
the single-headed environment—where the model has
a single output head shared over all tasks and must
therefore identify the task as well as the output based
on the input—is a much harder task, possibly more
reflective of continual learning [Chaudhry et al. [2018|
[Farquhar and Gal| 2018a]. While the multi-headed
setting suffices to demonstrate improvement to the
posterior, we offer some results for the single-headed
setting here in the appendix for the interest of continual
learning specialists, though we do not find that our
posterior solves the problem.

We perform a similar grid search as before, selecting
the hyperparameters that offer the highest average
validation set accuracy for the final model over all five
tasks. Note that in our grid search each task gets the
same hyperparameters, reflecting the idea that the task
distribution is not known in advance.

Our Radial BNN does not solve the continual learning
single-headed problem, but it does show improved per-
formance relative to the MFVI baseline. As we show in
Figure the Radial BNN shows some remembering
on old tasks (which includes identifying the task that
the image comes from). Moreover it is able to maintain

m Radial BNN s MFVI (VCL)

0.8 A

o
(9]
1

Task Accuracy
o
D
L

0.2 A

1 2 3 4 5
Evaluated on Task #X

Figure 10: FashionMNIST. In the single-headed setting,
where all training and testing ignores the task label,
the situation is more difficult. MFVI (VCL) forgets
tasks—any hyperparameter configuration that allows
it to fully learn the most recent task makes it forget
old tasks completely. The shown run offers the best
average accuracy over all tasks for the last model. Our
Radial BNN preserves information somewhat better
even while training to a higher accuracy on the final
task. Average accuracy is the dotted line.

good accuracy on the newest task. Meanwhile, the
hyperparameters that allow MFVI to optimize last-
task average accuracy mean it learns a very uncertain
model which has bad accuracy on the newest tasks.
This is because hyperparameters that would let it learn
a high-accuracy model for the newest task would cause
it to forget everything it saw earlier.

E Results on the UCI datasets

We do not believe that the standard UCI Bayesian
learning experiments which are heavily used in the
field offer much insight in this case. This is because all
of the problems have low dimension (4-16) and because
the experimental design allows only for a single hidden
layer with 50 units. This is required because many of
the expensive techniques that researchers develop and
evaluate on the UCI datasets only scale to very small
models and inputs.

For sake of completeness we show some results of our
methods on the UCI datasets. As expected, our method
does not outperform the more expensive techniques
with complex covariances within the approximate pos-
terior. Moreover, as expected our method performs

Sebastian Farquhar’, Michael A. Osborne*, Yarin Gal'

o
O
1

— 1 sample
0.8 - —— 16 samples

— 32 samples
L0 e
0.6

Accuracy
o
w
1

o©
>
1

o
W
1

o
[N)
1

©
=
1

0 2 4 6 8 10
Truncation size

Figure 11: Dotted lines show untruncated Gaussian per-
formance. Highly truncated Gaussians improve MFVI.
This effect is most significant when small numbers of
samples from the posterior are used to estimate the gra-
dient. We conclude that despite bias, the low variance
offered by truncation improves gradient estimates. Re-
sults averaged over 10 initial seeds for each truncation
size.

very similarly to MFVI. In the small number of param-
eters involved in the UCI dataset experimental settings,
the sampling problems for MFVI do not become se-
vere. In this low-dimensional regime, we do not expect
any particular advantage of Radial BNNs over MFVI,
which is what we find.

Note that in some cases the MFVI and Radial BNN
results we show are somewhat worse than those re-
ported in other papers. We believe this is because of
the fact that the resources devoted to hyperparameter
search are not always the same in different papers. We
only searched over learning rates of 0.001 and 0.0001
using Adam and batch sizes of 16, 64, and 1000. In the
majority of datasets listed our results are competitive
with what previous authors report for MFVI.

F Further Gradient Experiment

A further analysis demonstrates that we can improve
the performance of MFVI models by using a low-
variance but highly biased estimator of the NLL loss.
We do this by estimating the NLL with a truncated
version of the Gaussian sampling distribution, without
changing how we analytically calculate the KL terms
of the loss. We use rejection sampling, selecting only
samples from a Gaussian distribution which fall under

a threshold.

Our new estimate of the loss is biased (because we are
not sampling from the distribution used to compute
the KL divergence) but has lower variance (because
only samples near the mean are used).

In Figure [11]) we show that the truncated models to
outperform ‘correct’” MFVI with standard deviations
initialized slightly too high (we used o = 0.12). This is
despite the fact that we are using a biased estimator.
This supports the hypothesis that MFVI training is
hamstrung by high gradient variance.

Moreover, the smaller the number of samples, the
higher the variance of the estimator will be, and the
bigger a problem we might expect variance to be for
training. Indeed, we show that the effect of truncation
is smaller for larger numbers of samples. This suggests
that estimating the gradient of the loss function for
MFVTI is hampered by sampling far from the mean, and
that this effect is linked to the variance of estimates of
the gradient.

Radial Bayesian Neural Networks

Dataset MFVI Radial Dropout VMG FBNN PBP MV DVI
Avg. Test LL and Std. Errors
Boston -2.584+0.06 -2.58+ 0.05 -2.464+0.25 -2.46+0.09 -2.30+0.04 02.54+0.08 -2.414+0.02
Concrete -5.08+0.01 -5.084+0.01 -3.04+0.09 -3.01+£0.03 -3.10+0.01 -3.04+0.03 -3.06+0.01
Energy -1.05+0.01 -0.91+0.03 -1.99+0.09 -1.06+£0.03 -0.68+0.02 -1.01+0.01 -1.01 &+ 0.06
Kin8nm 1.0840.01 1.354+0.00 0.95+0.03 1.1040.01 - 1.2840.01 1.134+0.00
Naval -1.57+0.01 -1.5840.01 3.80+£0.05 2.46+0.00 7.13+0.02 4.85+0.06 6.29+0.04
Pow. Plant -7.544+0.00 -7.544+0.00 -2.804+0.05 -2.82+0.01 - -2.7840.01 -2.80+0.00
Protein -3.67+£0.00 -3.66+0.00 -2.89+0.01 -2.84+0.00 -2.894+0.00 -2.77+0.01 -2.85+0.01
Wine -3.15+0.01 -3.15+0.01 -0.93+0.06 -0.95+£0.01 -1.0440.01 -0.97+0.01 -0.90+0.01
Yacht -4.20+0.05 -4.20+0.05 -1.55+0.12 -1.30+£0.02 -1.03£0.03 -1.64+0.02 -0.47+0.03
Avg. Test RMSE and Std. Errors
Boston 3.42+0.23 3.36+0.23 2.97+0.85 2.70+0.13 2.38+0.10 3.114+0.15 -
Concrete 5.71+£0.15 5.62+0.14 5.234+ 0.53 4.89+0.12 4.94+0.18 5.08+0.14 -
Energy 0.81+0.08 0.66+0.03 1.66+£0.19 0.54+0.02 0.41+0.20 0.45+0.01 -
Kin8nm 0.37£0.00 0.16+£0.00 0.10£0.00 0.08=+0.00 - 0.07+0.00 -
Naval 0.01£0.00 0.01£0.00 0.01£0.00 0.00=£0.00 0.00+£0.00 0.00£0.00 -
Pow. Plant 4.02+0.04 4.04+0.04 4.02+0.18 4.04+0.04 - 3.91+0.14 -
Protein 4.40+0.02 4.344+0.03 4.36+0.04 4.1340.02 4.33+0.03 3.9440.02 -
Wine 0.65+£0.01 0.64+0.01 0.62+0.04 0.63£0.01 0.674+0.01 0.64+0.01 -
Yacht 1.75+0.42 1.86+0.37 1.11+0.38 0.714+0.05 0.61£0.07 0.81£0.06 -

Table 2: Avg. test RMSE, predictive log-likelihood and s.e. for UCI regression datasets. Bold where one model is
better than the next best + their standard error. Results are from multiple papers and hyperparameter search is
not consistent. MFVI and Radial are our implementations of standard MFVI and our proposed model respectively.
Dropout is |Gal and Ghahramani| [2015]. Variational Matrix Gaussian (VMG) is [Louizos and Welling| [2016].
Functional Bayesian Neural Networks (FBNN) is Sun et al|[2019]. Probabilistic Backpropagation Matrix Variate

Gaussian (PBP_MYV) is|Sun et al.|[2017]. Deterministic VI (DVI) is [Wu et al.| [2019].

