
Learning with minibatch Wasserstein : asymptotic and gradient
properties

Supplementary material
Outline. The supplementary material of this paper is organized as follows:

• In section A, we first review the formalism with definitions, basic property proofs, statistical proofs and optimization
proofs. Then we give details about the 1D case.

• In section B, we give extra experiments for domain adaptation, minibatch Wasserstein gradient flow in 2D and on the
celebA dataset and finally, color transfer.

A Formalism

In what follows, without any loss of generality and in order to simplify the notations we will work with the cost matrix
C = C(X,Y ) = (|Xi − Yi|)16i,j6n.

A.1 Definitions

We start giving the formal definitions for the transportation plan Πm. We recall that the discrete entropy of a coupling ma-
trix is defined as H(P ) = −

∑
i,j Pi,j (log (Pi,j)− 1) [chapitre 4, [Peyré and Cuturi, 2019]]. The entropic regularization

parameter ε ∈ R+.

Definition 1 (Mini-batch Transport). Let A ∈ Pm(αn) and B ∈ Pm(βn) be two sets. We denote by Π0
A,B(αn, βn) =

(Π0
A,B(i, j))16i,j6m ∈ Rm×m an optimizer of the optimal transport. Formally,

Π0
A,B = argmin

Π∈U(A,B)

〈Π, C|A,B〉 − εH(Π) (1)

where C|A,B ∈ Rm×m is the matrix extracted from C by considering elements of the lines (resp. columns) of C which
belong to A (resp. B) and H the entropy term. ε is a positive real number that can be equal to 0 to get the original OT
problem.

For two sets A ∈ Pm(αn) and B ∈ Pm(βn) we denote by ΠA,B(αn, βn) ∈ Rn×n the matrix

ΠA,B = (Π0
A,B(i, j)1A(i)1B(j))(i,j)∈αn×βn (2)

Definition 2 (Averaged mini-batch transport). We define the empirical averaged mini-batch transport matrix Πm(αn, βn)
by the formula

Πm :=
1(
n

m

)2

∑
A∈Pm(αn)

∑
B∈Pm(βn)

ΠA,B (3)

Moreover, we can define the averaged Wasserstein distance over all mini batches as :

UW (αn, βn) = 〈Πm, C〉 (4)

Remark 1. Note that this construction is consistent with Uh(αn, βn).

A.2 Basic properties

Proposition 1. Πm is a transportation plan between the empirical distributions αn, βn.

Proof. We need to verify that the marginals sum to one -e.g. that the sum over any row (resp. column) is equal to
1
n . Without loss of generality, we will fix a source sample (or row): i0. A simple combinatorial argument gives that∑
A∈Pm(αn) 1A(i0) =

(
n− 1

m− 1

)
. Now we are ready to sum over the row i0.



n∑
j=1

Πm(i0, j) =
1(

n

m

)(
n

m

) n∑
j=1

∑
A∈Pm(αn)

∑
B∈Pm(βn)

ΠA,B(i0, j) (5)

=
1(

n

m

)(
n

m

) ∑
B∈Pm(βn)

n∑
j=1

Π0
A,B(i0, j)1B(j)

∑
A∈Pm(αn)

1A(i0) (6)

=
1(

n

m

)(
n

m

) ∑
B∈Pm(βn)

n∑
j=1

Π0
A,B(i0, j)1B(j)︸ ︷︷ ︸

=1/m

(
n− 1

m− 1

)
(7)

=
1(

n

m

)(
n

m

)(n
m

)
1

m

(
n− 1

m− 1

)
(8)

=
1

n
(9)

The argument is similar for the summation over any column.

Remark 2 (Positivity, symmetry and bias). Let m < n, the quantity Uh is positive and symmetric but also stricly positive,
i.e Uh(αn, αn) > 0. Indeed,

Uh(αn, αn) :=
1(
n

m

)2

∑
A∈P(αn)

∑
A′∈P(αn)

h(A,A′) (10)

=
1(
n

m

)2

∑
(A,A′)∈P(αn)×P(βn),A 6=A′

h(A,A′) > 0 (11)

Convexity We introduce a few notations. Let D(Rd) be the space defined by

D(Rd) := {
p∑
i=1

γiδxi : (γi)1≤i≤p ∈ (R+)p,

p∑
i=1

γi = 1; p ∈ N; (xi)1≤i≤p ∈ (Rd)p} (12)

It is easy to see that D(Rd) is convex. One can actually extend in a natural way the definition of Uh to the set D(Rd) ×
D(Rd). Assuming this can be done, the intuition for convexity is that Uh is an average of convex terms [(section 9.1 and
prop 4.6, [Peyré and Cuturi, 2019]]. We then claim the convexity of the following maps:

(αn, βn) 7→ UW (αn, βn)

D(Rd)×D(Rd)→ R

and for h = Wε or h = Sε:

αn 7→ Uh(αn, βn)

D(Rd)→ R
βn 7→ Uh(αn, βn)

D(Rd)→ R

A.3 Statistical proofs

Note that because the distributions α and β are compactly supported, there exists a constant M > 0 such that for any
1 6 i, j 6 n, |Xi − Yj | 6M with M := diam(Supp(α) ∪ Supp(β)). We define the following quantity depending on the



OT loss h:

Mh =

{
diam(Supp(α) ∪ Supp(β)) if h = W
3
2 {diam(Supp(α) ∪ Supp(β)) + ε(2 log2(m) + 1)} if h = Wε or Sε

(13)

Lemma 1 (Upper bounds). Let (A,B) ∈ P(αn)×P(βn). We have the following bound for each of the above considered
OT losses h:

|h(A,B)| 6 2Mh (14)

Proof. We start with the case h = W . Note that with our choice of cost matrix C = (Ci,) one has 0 6 Ci,j 6 MW . We
have for a transport plan Π = (Πi,j) between A and B (with respect to the cost matrix C|A,B)

|〈Π, C|A,B〉| 6
∑

16i,j6m

(C|A,B)ijΠi,j 6MW

∑
16i,j6m

Πi,j = MW

Hence, h(A,B) 6MW .
If h = Wε for an ε > 0. Let us denote by E(q) = −

∑r
i=1 qi log(qi) the Shannon entropy of the discrete probability

distribution q = (qi)16i6r. Using the classical fact : 0 6 E(q) 6 log2(r) one estimates for a transport plan Π:

|〈Π, C|A,B〉 − εH(Π)| 6MW + ε(E(Π) + 1) 6MW + ε(log2(m2) + 1) 6 2Mh

which gives the intended bound by definition of Wε. Lastly, for h = Sε, since it is basically the sum of three terms of the
form Wε one can conclude.

Proof of Theorem 1 We now give the details of the proof of theorem 1. We start by recalling the definitions of our losses.
Definition 3 (Minibatch Wasserstein definitions). Given an OT loss h and an integer m ≤ n, we define the following
quantities:

The continuous loss:
Uh(α, β) := E(X,Y )∼α⊗m⊗β⊗m [h(X,Y )] (15)

The semi-discrete loss:

Uh(αn, β) :=

(
n

m

)−1 ∑
A∈P(αn)

EY∼β⊗m [h(A, Y )] (16)

The discrete-discrete loss:

Uh(αn, βn) :=

(
n

m

)−2 ∑
A∈P(αn)

∑
B∈P(βn)

h(A,B) (17)

The subsample discrete-discrete loss. Pick an integer k > 0. We define:

Ũkh (αn, βn) := k−1
∑

(A,B)∈Dk

h(A,B) (18)

where Dk is a set of cardinality k whose elements are drawn at random from the uniform distribution on Γ :=
Pm({X1, · · · , Xn}) × Pm({Y1, · · · , Yn}). Where h can be the Wasserstein distance W , the entropic loss Wε or the
sinkhorn divergence Sε for a cost c(x,y).
Lemma 2 (U-statistics concentration bound). Let δ ∈ (0, 1) and m be fixed, we have a concentration bound between
Uh(αn, βn) and the expectation over minibatches Uh(α, β) depending on the number of empirical data n which follow α
and β.

|Uh(αn, βn)− Uh(α, β)| ≤Mh

√
log(2/δ)

2bn/mc
(19)

with probability at least 1 − δ. Furthermore, a Bernstein concentration bound is available. Let us denote the variance of
the OT loss h over the batches σ2

h, i.e., σ2
h = V ar(h(X1, · · · , Xm, Y1, · · · , Ym)). The variance is bounded by M2

h . Then
we have with probability at least ε:

P (|Uh(αn, βn)− Uh(α, β)| ≥ ε) 6 2 exp

(
−bn/mcε2

2(σ2
h + Mh

3 ε)

)
6 2 exp

(
−bn/mcε2

2(M2
h + Mh

3 ε)

)
(20)



Proof. Uh(αn, βn) is a two-sample U-statistic and Uh(α, β) is its expectation as αn and βn have iid random variables.
Uh(αn, βn) is a sum of dependant variables and Hoeffding found a way to rewrite Uh(αn, βn) as a sum of independent
random variables. As our data are iid and our OT loss is bounded, we can apply its third theorem to our U-statistic. The
proof can be found in [Hoeffding, 1963, Section 5] (the two sample U-statistic case is discussed in 5.b) .

Lemma 3 (Deviation bound). Let αn and βn be empirical distributions of respectively α and β, let δ ∈ (0, 1) and k > 1.
We have a deviation bound between Ũkh (αn, βn) and Uh(αn, βn) depending on the number of batches k.

|Ũkh (αn, βn)− Uh(αn, βn)| 6Mh

√
2 log(2/δ)

k
(21)

with probability at least 1− δ.

Proof. First note that Ũkh (αn, βn) is an incomplete U-statistic of Uh(αn, βn). Let us consider the sequence of random
variables ((1l(A,B)(A,B)∈Γ)16l6k such that 1l(A,B) is equal to 1 if (A,B) has been selected at the l−th draw and 0

otherwise. By construction of Ũkh , the aforementioned sequence is an i.i.d sequence of random vectors and the 1l(A,B)
are bernoulli random variables of parameter 1/|Γ|. We then have

Ũkh (αn, βn)− Uh(αn, βn) =
1

k

k∑
l=1

ωl (22)

where ωl =
∑

(A,B)∈Γ(1l(A,B) − 1
|Γ| )h(A,B). Conditioned upon X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn), the

variables ωl are independent, centered and bounded by 2Mh thanks to lemma 1. Using Hoeffding’s inequality yields

P(|Ũkh (αn, βn)− Uh(αn, βn)| > ε) = E[P(|Ũkh (αn, βn)− Uh(αn, βn)| > ε|X,Y )] (23)

= E[P(|1
k

k∑
l=1

ωl)| > ε|X,Y )] (24)

6 E[2e
−kε2

2M2 ] = 2e
−kε2

2M2 (25)

which concludes the proof.

Theorem 1 (Maximal deviation bound). Let δ ∈ (0, 1), k > 1 andm be fixed, we have a maximal deviation bound between
Ũkh (αn, βn) and the expectation over minibatches Uh(α, β) depending on the number of empirical data n which follow α
and β and the number of batches k.

|Ũkh (αn, βn)− Uh(α, β)| ≤Mh

√
log(2/δ)

2bn/mc
+Mh

√
2 log(2/δ)

k
(26)

with probability at least 1 - δ

Proof. Thanks to lemma 3 and A.3 we get

|Ũkh (αn, βn)− Uh(α, β)| ≤ |Ũkh (αn, βn)− Uh(αn, βn)|+ |UW (αn, βn)− Uh(α, β)| (27)

≤Mh

√
log(2/δ)

2bn/mc
+Mh

√
2 log(2/δ)

k
(28)

with probability at least 1 − ( δ2 + δ
2 ) = 1 − δ. We can get a sharper bound using the Bernstein inequality instead of the

Hoeffding inequality as detailed in lemma .

Proof of Theorem 2 We now give the details of the proof of theorem 2. In what follows, we denote by Π(i) the i-th row of
matrix Π. Let us denote by 1 ∈ Rn the vector whose entries are all equal to 1.



Theorem 2 (Distance to marginals). Let δ ∈ (0, 1), we have for all k > 1 and all 1 6 j 6 n:

|Πk(αn, βn)(i)1−
1

n
| 6

√
2 log(2/δ)

k
(29)

with probability at least 1− δ.

Proof. We would like to remind that Πm is a transportation plan between the full input distributions αn and βn
and hence, it verifies the marginals, i.e Πm(αn, βn)i × 1 = 1

n . Let us consider the sequence of random variables
((1p(A,B)(A,B)∈Γ)16p6k such that 1p(A,B) is equal to 1 if (A,B) has been selected at the p−th draw and 0 otherwise.
By construction of Πk(αn, βn), the aforementioned sequence is an i.i.d sequence of random vectors and the 1p(A,B) are
bernoulli random variables of parameter 1/|Γ|. We then have

Πk(αn, βn)(i)1 =
1

k

k∑
p=1

ωp (30)

where ωp =
∑

(A,B)∈Γ

∑n
j=1(ΠA,B)i,j1p(A,B). Conditioned upon X = (X1, · · · , Xn) and Y = (Y1, · · · , Yn), the

random vectors ωp are independent, and bounded by 1. Moreover, one can observe that E[Πk(αn, βn)i1] = Πm(αn, βn)i1.
Using Hoeffding’s inequality yields

P(|Πk(αn, βn)i1−Πm(αn, βn)i1)| > ε) = E[P(|1
k

k∑
p=1

ωp − E[
1

k

k∑
p=1

ωp])| > ε|X,Y )] (31)

6 2e−2kε2 (32)

which concludes the proof.

A.4 Optimization

The main goal of this section is to give a justification of optimization for our minibatch OT losses by giving the
proof of theorem 3. More precisely, we show that for the losses Wε and Sε, one can exchange the gradient symbol ∇
and the expectation E. It shows for example that a stochastic gradient descent procedure is unbiased and as such legitimate.

Main hypothesis. We assume that the map λ 7→ C(A, Yλ) is differentiable. For instance for GANs, it is verified when the
neural network in the generator is differentiable -which is the case if the nonlinear activation functions are all differentiable-
and when the cost chosen in the Wasserstein distance is also differentiable.
We introduce the map

g : (Π, C) 7→ 〈Π, C〉 − εH(Π)

To prove this theorem, we first define a map we will use the ”Differentiation Lemma”.

Lemma 4 (Differentiation lemma). Let V be a nontrivial open set in Rp and let P be a probability distribution on Rd.
Define a map C : Rd × Rd × V → R with the following properties:

• For any λ ∈ V,EP [|C(X,Y, λ)|] <∞

• For P -almost all (X,Y ) ∈ Rd × Rd, the map V → R, λ→ C(X,Y, λ) is differentiable.

• There exists a P -integrable function ϕ : Rd × Rd → R such that |∂λC(X,Y, λ)| ≤ g(x) for all λ ∈ V .

Then, for any λ ∈ V , EP [|∂λC(X,Y, λ)|] <∞ and the function λ→ EP [C(X,Y, λ)] is differentiable with differential:

EP∂λ[C(X,Y, λ)] = ∂λEP [C(X,Y, λ)] (33)

The following result will also be useful.



Lemma 5 (Danskin, Rockafellar). Let g : (z, w) ∈ Rd × Rd → R be a function. We define ϕ : z 7→ maxw∈W g(z, w)
where W ⊂ Rd is compact. We assume that for each w ∈ W , the function g(·, w) is differentiable and that ∇zg depends
continuously on (z, w). If in addition, g(z, w) is convex in z, and if z is a point such that argmaxw∈W g(z, w) = {w},
then ϕ is differentiable at z and verifies

∇ϕ(z) = ∇zg(z, w) (34)

The last theorem shows that the entropic loss is differentiable with respect to the cost matrix. Indeed, the theorem directly
applies since the problem is strongly convex. This remark enables us to obtain the following result.
Theorem 3 (Exchange gradient and expectation). Let us suppose that we have two distributions α and β on two bounded
subsets X and Y , a C1 cost. Assume λ 7→ Yλ is differentiable. Then for the entropic loss and the Sinkhorn divergence:

∇λ E
Yλ∼β⊗mλ

h(A, Yλ) = E
Yλ∼β⊗mλ

∇λh(A, Yλ) (35)

Proof. Regarding the Sinkhorn divergence, as it is the sum of three terms of the form Wε, it suffices to show the theorem
for h = Wε

The first and the third conditions of the Differentiation Lemma are trivial as we have supposed that our distributions have
compact supports. Hence, the minibatch Wasserstein exists and is bounded on a finite set. We can also build a measurable
function ϕ which takes the biggest cost value ||c||∞ inside X and 0 outside. As X is compact, the integral of the function
over Rd is finite.
The problem is in the second hypothesis where we need to prove that Wε is differentiable almost everywhere. We have to
show that the following function λ 7→ ϕA(λ) is differentiable:

ϕA : λ 7→ min
Π∈U(a,b)

〈Π, C(A, λ)〉 − εH(Π)

where C(A, λ) is the cost computed using pairwise distances between A and Yλ. Since λ 7→ C(A, λ) is differentiable
almost everywhere by our hypothesis on λ 7→ yλ, it suffices, by composition, to show that C 7→ minΠ∈U(a,b)〈Π, C〉 −
εH(Π) is differentiable in C ∈ Rm×m. We obtain this using lemma 5 and the fact that there is one unique solution to the
entropically regularized optimal transport problem.

A.5 1D case

We now give the full combinatorial calculus for the 1D case. We start by sorting all the data and give to each of them an
index which reprensents their position after the sorting phase. Then we select and sort all the minibatches. xj can not be
at a position superior to its index j inside a batch. For a fixed xj , a simple combinatorial arguments tells you that there are
Cixj sets where xj is at the i-th position:

Cm,ni,xj
=

(
j − 1

i− 1

)(
n− j
m− i

)
(36)

Suppose that xj is transported to a yk points in the target mini batch. Then, they both share the same positions i in their
respective minibatch. As there are several i where xj is transported to yk, we sum over all those possible positions. Hence
our current transportation matrix coefficient Πj,k can be calculated as :

Πj,k =

imax∑
i=imin

Cm,ni,xj
Cm,ni,yk

(37)

Where imin = max(0,m − n + j,m − n + k) and imax = min(j, k). imin and imax represent the sorting constraints.
Furthermore, as we have uniform weight histograms, we will transport a mass of 1

m and averaged it by the total number of
transportation. So finally, our transportation matrix coefficient Πj,k are:

Πj,k =
1

m

(
n

m

)2

imax∑
i=imin

Cm,ni,xj
Cm,ni,yk

(38)



B Extra experiments

In this section, we present extra experiments on the utility of using minibatch Wasserstein loss for domain adaptation,
gradient flow and color transfer. We also give the algorithm which computes the barycentric mapping incrementally.

B.1 Generative models

We give implementation details of our batch Wasserstein generative models. We use a normal Gaussian noise in a latent
space of dimension 10 and the generator is designed as a simple multilayer perceptron with 2 hidden layers of respectively
128 and 32 units with ReLu activation functions, and one final layer with 2 output neurons. For the different OT losses,
the generator is trained with the same learning rate equal to 0.05. The optimizer is the Adam optimizer with β1 = 0 and
β2 = 0.9. For the Sinkhorn divergence we set ε to 0.01. For WGAN and WGAN-GP we train a discriminator with the
same hidden layers than the generator. We update the discriminator 5 times before one update of the generator. WGAN
is trained with RMSprop optimizer and WGAN-GP with Adam optimizer (β1 = 0, β2 = 0.9) as done in their original
papers. The learning rate is set to 10−4 for both. WGAN-GP has a gradient penalty parameter set to 10. All models are
trained for 30000 iterations with a batch size of 100. Our minibatch OT losses use k = 1, which means that we compute
the stochastic gradient on only one minibatch, and larger k was not needed to get meaningful results.

B.2 Domain adaptation

Domain adaptation problems consist to transfer knowledge from a source domain to a target domain. The goal is to use
the labeled data in the source domain in order to classify the unlabeled data in the target domain. [Courty et al., 2017] used
optimal transport to transport the source data to the target data by computing an OT map. Then they used a barycentric
mapping to transport the source data to the target domain with their label. Optimal transport has been successful on this
problem and we now want to study the impact of the minibatch OT losses and different OT variants.

We consider two common datasets for domain adaptation problems : MNIST [LeCun and Cortes, 2010] and USPS
[Hull, 1994]. The datasets are composed of hand written digits betwenn 0 and 9. MNIST have 60000 training samples and
USPS have 7291 training samples. We select 7000 samples from each dataset. The used cost for those experiments is a
normalized squared euclidean cost. We want to study the number of samples which are transported on same labeled data
from the source dataset to the target dataset. That is why we will study the proportion of mass between same labeled data
in the transportation matrix.

The experiments use minibatch Wasserstein loss. We will use several k and m values, while for the entropic OT loss we
will consider values of epsilon between 10−3 and 1. For each m and k, we conducted the experiments 10 times and we
plot the mean and standard deviation for each m and k.

This experiment shows that considering a very small batch size hurts the number of images transported on correct labels
and taking a large number of batches does not correct the performance. We also see that the number of batches k reduces
the variance and should decrease when the batch size increases. Furthermore, we see that when m decreases, we have a
similar performance than for the entropic OT loss with a large regularization parameter ε. We conjecture, that doing the
minibatch entropic loss with a large ε parameter can lead to over regularization and can hurt the performance.

B.3 Minibatch Wasserstein gradient flow

We experimented the minibatch OT gradient flow to distributions in 2D. The purpose is to see the relevance of minibatch
Wasserstein gradient flow for shape matching applications. We used the same experiments as in [Feydy et al., 2019] and re-
lied on the geomloss package. In 2D we selected 500 data points following the image’s pixel distribution. The experiments
were conducted with the minibatch Wasserstein loss. We observe that we are not able to recover the target distribution, it
is expected as our loss is strictly positive. However, for large enough batch size, the final distribution fits almost perfectly
the target distribution and our loss leads to a good approximation.

Nevertheless we can see that taking a batch size too small results in a loss of information and drives the data toward the
high density area as pointed in the 2D experiments. Regarding the number of minibatches k, it does not influence the shape
of the final distribution.

Regarding the gradient flow on the celebA dataset, we now show the results when we use the minibatch Sinkhorn divergence
instead of the minibatch Wasserstein distance. The minibatch Sinkhorn divergence is slower in practice than the minibatch
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Figure 1: Proportion of correct transfered data between S/T domains for OT MB.

MB size = 10, K = 1, t = 0.0 MB size = 10, K = 1, t = 50.0 MB size = 10, K = 1, t = 125.0 MB size = 10, K = 1, t = 250.0

MB size = 10, K = 5, t = 0.0 MB size = 10, K = 5, t = 50.0 MB size = 10, K = 5, t = 125.0 MB size = 10, K = 5, t = 250.0

MB size = 50, K = 1, t = 0.0 MB size = 50, K = 1, t = 50.0 MB size = 50, K = 1, t = 125.0 MB size = 50, K = 1, t = 250.0

MB size = 50, K = 5, t = 0.0 MB size = 50, K = 5, t = 50.0 MB size = 50, K = 5, t = 125.0 MB size = 50, K = 5, t = 250.0

Figure 2: Gradient flow between 2D distributions for several batch sizes m and several number of batches k. The source
and the target distributions have 500 samples each.

Wasserstein distance and the samples converge toward different pictures. However, we can still see a natural evolution in
the images along the gradient flow.

B.4 Color transfer between subset of images

In order to present the influence of k for barycentric mapping, we present extra experiments for color transfer. We compute
a k-means clustering with l clusters for each point cloud. For each image, we computed 1000 k-means clusters of the point
clouds and applied the optimal transport algorithms between those subsets. We consider batch size of 10, 50 and 100. We
show the color transfer for each image for k = 5000 and k = 20000 batches.

In what follows, we present the algorithm which computes the color transfer vectors incrementally without requiring the
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Figure 3: Gradient flow on the CelebA dataset. Source data are 5000 male images while target data are 5000 female
images. The batch size m is set to 500 and the number of minibatch k is set to 10. The results were computed with the
minibatch Sinkhorn divergence.

storage of the full cost matrix neither the full transportation matrix Πk.

Algorithm 1: Computation of incremental color transfer

1 Inputs: m, k, source domain Xs ∈ Rn×d, target domain Xt ∈ Rn×d ;
2 Results : Ys, Yt ;
3 Initialisation : Ys ∈ Rn×d, Yt ∈ Rn×d;
4 for t=1, · · · , k do
5 Select a set A of m samples in Xs;
6 Select a set B of m samples in Xt;
7 Compute the restricted cost CA,B ;
8 G← argmin

Π∈U(A,B)

〈CA,B ,Π〉;

9 Ys

∣∣
A
← Ys

∣∣
A

+G.Xt

∣∣
B

;
10 Yt

∣∣
B
← Yt

∣∣
B

+GT .Xs

∣∣
A

;
11 end
12 return n

kYs, nkYt

We see that for each batch size m, when the number of batches k increases, we get better resolution for our images. It
is expected as our matrix Πk gets closer to Πm. However, when m is small, we will need to have a large k to get good
resolutions for images. We can see this phenomenon for m = 10, where k = 5000 was not enough to have a good
resolution. However, k = 5000 was enough to get good resolutions for m = 1000.
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