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Abstract

Risk assessment tools are widely used around
the country to inform decision making within
the criminal justice system. Recently, con-
siderable attention has been devoted to the
question of whether such tools may su↵er
from racial bias. In this type of assessment,
a fundamental issue is that the training and
evaluation of the model is based on a vari-
able (arrest) that may represent a noisy ver-
sion of an unobserved outcome of more cen-
tral interest (o↵ense). We propose a sensi-
tivity analysis framework for assessing how
assumptions on the noise across groups af-
fect the predictive bias properties of the risk
assessment model as a predictor of reo↵ense.
Our experimental results on two real world
criminal justice data sets demonstrate how
even small biases in the observed labels may
call into question the conclusions of an anal-
ysis based on the noisy outcome.

1 Introduction

The goal of recidivism risk assessment instruments
(RAI’s) is to estimate the likelihood that an individ-
ual will reo↵end at some future point in time, such as
while on release pending trial, on probation or parole
(Desmarais and Singh, 2013). Risk assessment tools
have long been used in the criminal justice system to
guide interventions aimed at reducing recidivism risk
(James, 2015). More recently they have received con-
siderable attention as major components of broader
pretrial reform e↵orts seeking to reduce unnecessary
pretrial detention without compromising public safety.
From a public safety standpoint, society incurs a cost
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when a crime is committed, irrespective of whether the
crime results in an arrest. The relevant fairness ques-
tion in this context is thus whether a tool provides an
“unbiased” prediction of who goes on to commit future
crimes. However, because o↵ending is not directly ob-
served, risk assessment models are trained and eval-
uated on data where the target variable is rearrest,
reconviction, or reincarceration.

While these observed proxies for o↵ending may be of
interest in their own right, they are problematic as a
basis for predictive bias assessment, particularly with
respect to race. Racial disparities in rearrest rates
may stem from two separate causes: di↵erential in-
volvement in crime, and di↵erential law enforcement
practices, also known as di↵erential selection (Piquero
and Brame, 2008). Rearrest is a result of not only
an individual’s actions, but also of law enforcement
practices a↵ecting the likelihood of getting arrested
for crimes committed (or even for crimes not commit-
ted). The limited evidence that exists suggests that
di↵erential law enforcement is not a major factor in
arrests for violent crimes (Piquero, 2015). Problem-
atically, though, for lower level o↵enses, which form
the majority of arrests in existing data, there is reason
to believe that the likelihood of getting arrested for a
committed o↵ense does di↵er across racial groups. Ev-
idence of di↵erential selection is strongest in the case of
drug crimes, where surveys suggest that whites are at
least as likely as blacks to sell or use drugs; yet blacks
are more than twice as likely to be arrested for drug-
related o↵enses (Rothwell, 2014). This racially di↵er-
ential discrepancy between the unobservable outcome
Y ⇤ (reo↵ense) and the noisy observed variable Y (rear-
rest) poses a critical challenge when evaluating RAI’s
for racial predictive bias. In this paper, we will refer
to such di↵erential discrepancy as target variable bias
(TVB). As we show, in the presence of TVB, a model
that appears to be fair with respect to rearrest could
be an unfair predictor of reo↵ense.

We develop a statistical sensitivity analysis frame-
work for evaluating RAI’s according to several of the
most common fairness metrics, including calibration,
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predictive parity, and error rate balance. Our ap-
proach is conceptually inspired by sensitivity analy-
sis approaches widely used in causal inference studies
(Rosenbaum, 2014). When presenting analytic results
it is common to report not only point estimates and
confidence intervals, but also a parameter � reflecting
the magnitude of unobserved confounding that would
be su�cient to nullify the observed results. In this
work we introduce a similar parameter, ↵, that gov-
erns the level of label bias in the observed data. Our
methods characterize how the fairness properties of a
model vary with ↵, and can be used to determine the
level of label noise su�cient to contradict the observed
findings about those properties. We illustrate our ap-
proach through a reanalysis of the fairness properties
of the COMPAS RAI used in the ProPublica debate,
and a risk assessment tool developed on data provided
by the Pennsylvania Commission on Sentencing.

1.1 Related work

What we call target variable bias is often referred to
as di↵erential outcome measurement bias or di↵eren-
tial outcome misclassification bias in the statistics and
epidemiology literature on measurement error (Carroll
et al., 2006; Grace, 2016). Most of the measurement
error literature is concerned with the problem of non-
di↵erentially mismeasured exposure (treatment), co-
variates, and outcomes. That is, while this form of
data bias has a name, it has received little attention
relative to other measurement issues. The work of Imai
and Yamamoto (2010) is a notable exception. They do
consider the setting of di↵erential measurement error,
but their goal is di↵erent from ours in that they are
seeking to estimate a causal e↵ect parameter.

In the machine learning literature, our setting is
known as censoring positive and unlabeled (PU) learn-
ing (Menon et al., 2015). This literature di↵ers from
the current work in two key ways. First, while the case
of feature-independent noise has been widely studied
(Elkan and Noto, 2008; Scott and Blanchard, 2009;
Du Plessis et al., 2014; Liu and Tao, 2016; Menon
et al., 2015), our work contributes to the nascent liter-
ature on feature-dependent noise (Menon et al., 2016;
Bekker and Davis, 2018; Scott, 2018; Bootkrajang and
Chaijaruwanich, 2018; Cannings et al., 2018; He et al.,
2018). We believe our paper is among the first to con-
sider issues of fairness in the context of PU learning.

There are also connections between the goal of our
work and causal approaches to algorithmic bias that
have recently been proposed in the fairness literature
(Kusner et al., 2017; Loftus et al., 2018; Kilbertus
et al., 2017; Nabi and Shpitser, 2018). These works
provide an approach to addressing biases in the ob-
served data by attempting to directly model the causal

structure governing the data generating process. Prob-
lematically, the underlying assumptions are often not
empirically testable, and when violated may result in
incorrect inference.

Lastly, label noise has been briefly mentioned in prior
work as a potential concern in the training and eval-
uation of RAI’s (Johndrow and Lum, 2017; Corbett-
Davies et al., 2017; Corbett-Davies and Goel, 2018).
However, none of these works undertake a formal anal-
ysis of how label noise a↵ects training or evaluation.

2 Problem setup

We denote the observed noisy outcome (e.g., rearrest)
by Y , the true unobserved outcome (e.g., reo↵ense)
by Y ⇤, the set of covariates (e.g. age, criminal his-
tory) by X, the group indicator (race) by A 2 {b, w},
and the risk score (our RAI) by S = S(X,A). The
risk score S(x, a) can be thought of as an empiri-
cal estimate of E[Y |X = x,A = a]. When dis-
cussing binary classification metrics, we will set a risk
threshold sHR applied to S to obtain the classifier
Ŷ = 1S>sHR

. The discrepancy between the observed
and true outcome is captured in the noise rate func-
tion �(x, a, y) := P(Y = 1� y|X = x,A = a, Y ⇤ = y).
A central aim of this work is to characterize
what can be learned about the predictive bias
properties of S as a predictor of the true unob-
served outcome Y ⇤ under assumptions on the
magnitude but not the structure of the noise.

We make two simplifying assumptions that, while im-
plausible in practice, greatly simplify exposition in the
main manuscript and reduce the notational overhead.
First, we assume that the noise is one-sided, which
rules out the case of “false arrests.”

Assumption 1. �(x, a, 0) = 0 for all x and a.

This allows us to drop the dependency on Y ⇤ in the
notation of �, and rewrite E[Y |X = x,A = a] as
(1� �(x, a))E[Y ⇤

|X = x,A = a]. That is, the discrep-
ancy between Y and Y ⇤ is due to the presence of “hid-
den recidivists”. Table 1 describes the general setup
for this setting. The left table represents the observed
confusion matrix expressed in terms of the cell fre-
quencies pij = P(Y = i, Ŷ = j); the right table intro-

duces the parameters ↵j := P(Y ⇤ = 1, Y = 0, Ŷ = j).
Large values of ↵1 indicate that hidden recidivists are
more likely to be classified as high risk, while large
values of ↵0 indicate that hidden recidivists are less
likely to be classified as high risk. We also define
↵ := ↵0 + ↵1 = EY ⇤

� EY that corresponds to the
overall proportion of “hidden recidivists” in the ob-
served data.

Second, in the main paper we suppose that one of the
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Ŷ = 0 Ŷ = 1
Y = 0 p00 p01
Y = 1 p10 p11

Ŷ = 0 Ŷ = 1

Y ⇤ = 0 p00 � ↵0 p01 � ↵1

Y ⇤ = 1 p10 + ↵0 p11 + ↵1

Table 1: Observed (left) and true (right) confusion
matrices for arrest/o↵ense and predicted risk.

groups is being observed without bias.

Assumption 2. �(x, b, 1) = 0 for all x.

That is, for A = b we assume that Y ⇤ = Y . In the
running COMPAS example, this amounts to operat-
ing as though we observed the true o↵enses for the
black population. One could also think of � as cap-
turing the additional degree of hidden recidivism in
the white population relative to the black population.
Again, this assumption is made solely to simplify ex-
position, and it does not qualitatively a↵ect the pre-
sented results. 1 In Supplement §B.3 we show how
all results are readily extensible to the case where this
assumption is removed.

As we shall show next in Section 3, most of the
bounds in our sensitivity analysis correspond to the
case where the hidden recidivists correspond to the
highest/lowest-scoring (↵0 or ↵1 = 0) defendants for
whom we observed Y = 0. While these extreme cases
may seem unlikely in practice, they generally cannot
be ruled out on the basis of the observed data alone
without further assumptions. In such settings, exist-
ing methods typically (1) assume some data generat-
ing mechanism to conduct sensitivity analysis (Heck-
man, 1979; Little and Rubin, 2019; Robins et al., 2000;
Molenberghs et al., 2014), (2) assume parametric mod-
els and estimate the noise by EM algorithms (Rubin,
1976; Bekker and Davis, 2018), or (3) impose stronger
conditions on the noise processes. For instance, �
may be assumed to depend only on a subset of X
(Bekker and Davis, 2018) or be a monotonic function
of E[Y |X = x] (Menon et al., 2016; Scott, 2018).

In this paper we are primarily interested in
what can be said about the predictive bias
properties of an RAI without untestable struc-
tural assumptions on the noise process. We note,
however, that our results can be adapted to incorpo-
rate structural assumptions when reasonable ones are
available. For instance, an assumption tailored to our
setting might be Y ?? X | (Y ⇤, A).2 This would as-
sume that the noise process is constant within groups.

1For this reason, in the paper we typically denote ↵ :=
E[Y ⇤|A = w]� E[Y |A = w] := ↵w.

2This is a slight modification of label-dependent noise,
or noise at random. In the PU learning and missing
data literature, the latter is known as selected at random

(SAR) (Bekker and Davis, 2018) and missing not at ran-

dom (MNAR) (Rubin, 1976) respectively.

Such an assumption probabilistically rules out extreme
cases for ↵0 and ↵1, and, as we show in Supplement
§A.2.2, it allows us to obtain tighter estimation re-
sults. There we also demonstrate how a range of re-
sults from the label-dependent noise literature can be
easily adapted to our setting.

2.1 Data and background

In May 2016 an investigative journalism team at ProP-
ublica released a report on a proprietary risk as-
sessment instrument called COMPAS, developed by
Northpointe Inc (now Equivant)(Angwin et al., 2016).
The investigation found that the COMPAS instrument
had significantly higher false positive rates and lower
false negative rates for black defendants than for white
defendants. This evidence led the authors to conclude
that COMPAS is biased against black defendants. The
report was met with a critical response challenging its
central conclusion (Flores et al., 2016; Dieterich et al.,
2016; Corbett-Davies et al.). Error rate imbalance,
critics argued, is not an indication of racial bias. In-
stead, RAI’s should be assessed for properties such as
predictive parity (Dieterich et al., 2016) and calibra-
tion(Flores et al., 2016), which COMPAS was shown
to satisfy. A series of papers reflecting on the debate
showed that when recidivism prevalence varies across
groups, as is observed to be the case in ProPublica’s
Broward County data, a tool cannot simultaneously
satisfy both predictive parity (calibration) and error
rate balance (resp. balance for the positive and nega-
tive class) (Kleinberg et al., 2016; Chouldechova, 2017;
Berk et al., 2017).

One popular interpretation of such “impossibility re-
sults” is that error rate imbalance is a (perhaps incon-
sequential) artifact of di↵erences in recidivism (rear-
rest) prevalence across groups. That is, if one were
to assess the instrument on a population where preva-
lence was equal, the RAI could (might be expected
to) achieve parity on all of the metrics simultaneously.
Applying our framework to reanalyse the data in the
setting where true o↵ense rates are assumed to be the
same across groups, we show that disparities with re-
spect to Y ⇤ (reo↵ense) may in fact be greater than
those observed for Y (rearrest).

We also analyze a second private data set provided
by the Pennsylvania Sentencing Commission for the
purpose of research. This dataset contains informa-
tion on all o↵enders sentenced in the state’s crimi-
nal courts between 2004-2006. In reports published
by the Commission, they observe that the risk assess-
ment tool they constructed appeared to overestimate
risk for white o↵enders. While we do not have access
to their tool, the tool we construct by applying regu-
larized logistic regression to their data evidences the
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same miscalibration issues. Our empirical results are
based on applying this score to a held out set of 55031
o↵enders, of whom 65.4% are white.

3 Sensitivity analysis under target
variable bias

This section presents our main technical results, cou-
pled with experiments that demonstrate how the re-
sults may be used in practice. All proofs are con-
tained in Supplement §B.1. Given observations (Y, S)
and a classification threshold sHR, we want to un-
derstand how the relationship between the observed
(M) and unobserved (M⇤) performance metrics de-
pends on the noise level ↵ in the problem setup out-
lined in Section 2. Superscripts w and b denote within-
race group estimates. We present sensitivity analysis
results for predictive parity, error rate balance (aka
equalized odds (Hardt et al., 2016)), accuracy par-
ity, and two tests of di↵erential calibration. Supple-
ment §C presents experiments on the COMPAS data
set for two fairness-promoting algorithms. All code is
available at https://github.com/ricfog/Fairness-tvb.

3.1 Error rate balance and predictive parity

We begin by presenting results for the false positive
rate (FPR), the false negative rate (FNR), and the
positive predicted value (PPV ). Our first result shows
that the observed values FPR and FNR impose con-
straints on the true error rates even if no assumptions
are made on the magnitude of the noise.

Proposition 3.1. Suppose that 1 � FPR < FNR.
Then FNR  FNR⇤ and FPR � FPR⇤ cannot both
hold. If 1� FPR > FNR, then the opposite inequali-
ties can not both hold.

Proposition 3.1 permits us to rule out one of the pos-
sible relations between observed and true error rates
based solely on observed quantities.

Example: COMPAS. In ProPublica’s COM-
PAS analysis, we observe that FPRw = 0.23 and
FNRw = 0.48. We are thus in the case where
1�FPR > FNR, and therefore either FNRw =
0.48  FNR⇤w or FPRw = 0.23 � FPR⇤w, or
both.

The next set of results directly relate the observed met-
rics M to the target quantities M⇤ based on the noise
level ↵. Table 1 summarizes the relationship between
the observed and target confusion tables used to derive
these relationships. While a version of the FPR re-
sults was previously reported in (Claesen et al., 2015),
the case of PPV and FNR are novel.

Theorem 3.2. Under the setup of Table 1, the tar-
get values FPR⇤, FNR⇤, and PPV ⇤ can be sharply
related to observed quantities as follows:

p01 � ↵

p00 + p01 � ↵
 FPR⇤(↵0,↵1) 

p01
p00 + p01 � ↵

(1)

p10
p10 + p11 + ↵

 FNR⇤(↵0,↵1) 
p10 + ↵

p10 + p11 + ↵
(2)

PPV  PPV ⇤(↵0,↵1) 
p11 + ↵

p01 + p11
(3)

Example: COMPAS. This result allows us
to reanalyse ProPublica’s COMPAS data to an-
swer the question: If the reo↵ense rate was equal
across races, would disparities disappear? Fig-
ure 1a shows the possible values of PPV (↵0,↵1),
FPR(↵0,↵1), and FNR(↵0,↵1) for fixed ↵ =
0.12. At this choice of ↵, the true reo↵ense rate
among white defendants is assumed equal to the
rate observed for black defendants. Since ↵ is
fixed, ↵0 = 0.12 � ↵1 and hence the metrics are
a function of just ↵1. We see that for most val-
ues of ↵1 disparities are even greater than what is
observed. Furthermore, while there exist values
of ↵1 under which the true metric for white de-
fendants would equal the observed (and assumed
true) metric for black defendants, the equalizing
value of ↵1 di↵ers across the metrics.

Figure 1b shows the theoretical bounds (orange
lines) provided by Theorem 3.2 as functions of ↵
for the white population, and the observed met-
rics for the black population (grey lines) on the
COMPAS data. We highlight the regions high-
lighted in red, which indicate areas where the true
disparity in metrics could be of a di↵erent sign
than what is observed. This plot also shows that
parity on the true FPR and FNR is infeasible
in this data at the given choice of classification
threshold.

As a corollary of this result we can also study the ques-
tion: Under what level of label noise could we expect
disparities on a given metric to be smaller in truth
than what was observed? First, note that when the
observed recidivism rate is greater in group b than w,
as in the case of the COMPAS example, we will gen-
erally observe FPRw

 FPRb and FNRw
� FNRb.

A necessary condition for the disparity between the
true error rates to be no larger than that for the ob-
served rates is thus that FNRw

� FNR⇤w(↵0,↵1)
and FPRw

 FPR⇤w(↵0,↵1). The following corol-
lary characterizes when this occurs.

https://github.com/ricfog/Fairness-tvb
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Figure 1: Analysis of predictive parity and error rates for COMPAS across di↵erent TVB scenarios. Orange lines
show values of FPR⇤w, FNR⇤w, and PPV ⇤w. Grey lines show corresponding values for the black population.

Corollary 3.2.1. In the notation of Theorem 3.2,

FPR �

↵1

↵
() FPR  FPR⇤(↵,↵1) (4)

FNR �

↵0

↵
() FNR � FNR⇤(↵,↵1), (5)

with equality on LHS i↵ there is equality on RHS.

The condition in (5) turns out to be equivalent to the
odds ratio:3

P(Ŷ = 1|Y ⇤ = 1, Y = 0)/P(Ŷ = 0|Y ⇤ = 1, Y = 0)

P(Ŷ = 1|Y = 1)/P(Ŷ = 0|Y = 1)
� 1.

(6)

This condition tells us that (5) holds precisely when
the odds of correctly classifying a hidden recidivist to
Ŷ = 1 are greater than the odds of correctly classifying
an observed recidivist, which seems unlikely to hold in
practice. A similar interpretation can be derived for
FPR: condition (4) holds when the odds of misclassi-
fying a hidden recidivist to Ŷ = 0 are higher than those
of correctly classifying an observed non-recidivist.

Example: COMPAS. Conditions (4) and (5) in
Corollary 3.2 require ↵1  0.3↵0 and ↵1 � 1.09↵0

respectively. Note, however, that both conditions
cannot simultaneously hold, as formally shown in
Proposition 3.1.

In practice, if the predicted risk for hidden recidivists
was generally low, condition (6) would likely not hold.
Consequently, we would thus have FNRw

� FNRb


FNR⇤w(↵,↵1) � FNRb, which says that the true

3(Kallus and Zhou, 2018) obtain similar expressions in
their study of “residual unfairness” in the context of a re-
lated data bias problem. They consider the setting where
we fail to observe outcomes entirely for a fraction of the
population (e.g., defendants who are not released on bail,
and thus do not have the opportunity to recidivate). When
viewed as functions of the underlying classification thresh-
old sHR, these odds ratios are interpreted in (Kallus and
Zhou, 2018) as a type of stochastic dominance condition.

FNR disparity between groups would be greater than
the observed FNR disparity.

3.2 Accuracy equity

In their response to the ProPublica investigation, Di-
eterich et al. (2016) demonstrated that COMPAS sat-
isfies predictive parity (equality of PPV and NPV
across groups), and what they term accuracy equity
(equality of AUC). Menon et al. (2015) and Jain et al.
(2017) previously considered estimation of the AUC
under label noise, but in the simpler setting of label-
dependent noise. Here we obtain bounds for the true
AUC in the general instance-dependent noise setting
through its relation to the Mann-Whitney U-statistic.

Let ny = #{Yi = y} denote the number of observa-
tions with outcome Y = y 2 {0, 1}. We will assume
that there are k = dn↵e hidden recidivists present
in the observed data, with k < min(n0, n1). Let ri
denote the adjusted4 rank of observation i when or-
dered in ascending order of the score S. Lastly, let
R1 =

P
i:Yi=1 ri denote the sum of the ranks for obser-

vations in class Y = 1. In this notation, the observed
AUC of S is given by

AUC =
R1

n1(n� n1)
�

n1 + 1

2(n� n1)
(7)

Let L0,k denote the indexes of the lowest-ranked (i.e.,
lowest-scoring) observations in class Y = 0. Likewise,
let H0,k denote the indexes of the highest-ranked (i.e.,
highest-scoring) observations in class Y = 0.

Proposition 3.3. In the presence of k hidden recidi-
vists, the target value AUC is bounded as follows:

R1 +
P

i2L0,k
ri � �k

(n0 � k)(n1 + k)
 AUC⇤



R1 +
P

i2H0,k
ri � �k

(n0 � k)(n1 + k)

(8)

4In the case of ties among the scores, the U-statistic is
calculated using fractional ranks.
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(a) Calibration analysis on COMPAS data.
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(b) Calibration analysis on Sentencing comm. data.

Figure 2: Sensitivity analysis for the race coe�cient in a logistic regression test of calibration as described in
Section 3.3. Green region indicates the race coe�cient is not statistically significant for testing calibration wrt
o↵ense. Red (resp., orange) region indicates statistically significant bias against the black (resp., white) group.

where �k = (n1 + k)(n1 + k + 1)/2.

It is easy to see that the upper and lower bounds cor-
respond to the settings where the hidden recidivists
are, respectively, the highest and lowest scoring defen-
dants with Y = 0. This result tells us, for instance,
that if the hidden recidivists are more likely to have
high scores, then the true AUC will be greater than
the observed AUC. One key di↵erence between the
AUC result and the previous analysis of error metrics
is that now the impact of label noise depends on the
ranks of the hidden recidivists, and not only on the
dichotomized version of the risk score.

Example: COMPAS. The observed AUC for
both the black and white defendant population
is around 0.69. Evaluating the bounds from the
proposition for the white population, we find that
for ↵ = 0.05 and ↵ = 0.12, the AUC⇤w is bounded
between [0.63, 0.76] and [0.51, 0.84], respectively.
These bounds are very wide, but they can be nar-
rowed if we are willing to make further assump-
tions on the likely ranks of the hidden recidivists.

3.3 Calibration testing via logistic regression

One of the most common metrics for assessing predic-
tive bias of RAI’s is a test of calibration or di↵erential
prediction (Skeem and Lowenkamp, 2015). Formally,
we say that a risk score S is well-calibrated with re-
spect to A if

E[Y | S = s,A = w] = E[Y | S = s,A = b]. (9)

for all values of S. This is equivalent to requiring
that Y ?? A | S. Typically calibration is assessed
by running a logistic regression and testing for sta-
tistical significance of A in Y ⇠ S vs. Y ⇠ S + A or
Y ⇠ S+A+SA using a Wald or likelihood ratio test.5

5We adopt the shorthand Y ⇠ X1 +X2 + · · ·Xp

to refer to the logistic regression model

Other covariates are occasionally also included in the
regression. When the coe�cients of A are not statis-
tically significant, S is deemed to be well-calibrated
with respect to A. This approach was taken by Flores
et al. (2016) to confirm racial calibration for the COM-
PAS RAI. Note that in the presence of TVB, such tests
provide evidence that S is well-calibrated as a predic-
tor of Y (rearrest). We wish to understand what this
means about S as a predictor of the true outcome Y ⇤

(reo↵ense). Our main result is as follows.

Proposition 3.4. Under a mild technical assumption
on the design matrix,6 for a logistic regression model
of the form Y ⇠ S +A, for fixed ↵, the bounds for the
coe�cients of S and A are achieved when the dnw↵e
white defendants with the highest and lowest values of
S are hidden recidivists.

This result allows us to answer the question: What
level of label noise ↵ is su�cient to contradict the
observed findings that an RAI is (or is not) well-
calibrated across groups? We provide two illustrative
examples, one where the RAI is observed to be well-
calibrated as a predictor of arrest, and the other where
it is not.

Example: COMPAS. Figure 2 (a) shows the
feasible values for the coe�cient of A = w in the
COMPAS data for 0  ↵  0.16. The green
and red areas correspond, respectively, to regions
where the race coe�cient is not and is statisti-
cally significant. Recall that non-significance of
the race coe�cient indicates that the model is
well-calibrated. In this analysis, we find that a
TVB level as low as ↵ = 0.07 might be su�cient

log(p(X)/(1� p(X)) = �0 + �1X1 + �2X2 + · · ·+ �pXp,
where p(X) = P(Y = 1 | X).

6The explanation of the assumption is deferred to the
proof in the Supplement. While the assumption needs to be
empirically verified case by case, in the COMPAS dataset
it holds at every level of ↵w that we considered.
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(a) Observed COMPAS.
T = 9.36, p-value= 0.49.
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(b) Minimal shift to break
calibration under proportion-
ality constraint. Nh = 30,
T = 19.4, p-value = 0.035.
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(c) Observed SC score.
. T = 164, p-value ⇡ 0
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(d) Minimal shift to achieve
calibration, unconstrained.
Nh = 1001, T = 18.2, p-value
= 0.051

Figure 3: Sensitivity analysis for the race coe�cient in a chi-squared nonparametric test of calibration as described
in Section 3.4. Orange bars show white defendant data; grey bars are black defendant data. Error bars show
95% confidence intervals. Plots (a) and (b) correspond to the COMPAS data example where a small amount of
TVB is su�cient to lead to miscalibration. Plots (c) and (d) are the sentencing commission (SC) example where
a small amount of TVB can account for observed miscalibration in predicting arrest.

for COMPAS to fail the calibration test across all
possible noise realizations of that magnitude. At
a noise level of only ↵ = 0.04, calibration might
also fail for some noise realizations of this mag-
nitude. Note that our analytic results present
bounds not just on the race coe�cient but also on
the score coe�cient in the model. We present the
two-dimensional bounds for the COMPAS tool in
Supplement §B.4.

Example: Sentencing commission. Figure
2 (b) shows the results of the same experiment
on sentencing commission (SC) data described in
Section 2.1. In absence of TVB, Figure 2 (b)
shows that this tool, unlike the COMPAS RAI, is
not observed to be well-calibrated across groups.
Indeed, the coe�cient for A = w is statistically
significantly negative, indicating the RAI over-
estimates risk for white o↵enders. Our analysis
showns that TVB as low as ↵ = 0.03 is su�cient
to admit calibration. More generally, we see that
for 0.03  ↵  0.13 calibration might be possible
for some realizations of the noise process. For a
larger magnitude of TVB, the coe�cient might be
significant and positive; in other words, it would
be possible for the instrument to underestimate
the reo↵ense risk for the white population.

3.4 Calibration testing via chi-squared test

We also consider the general test of conditional inde-
pendence Y ?? A | S in the setting where S is either
assumed to be discrete, or has been binned for the pur-
pose of analysis. When S is categorical, testing the
saturated logistic model Y ⇠ S + A + SA vs. Y ⇠ S
is precisely testing the conditional independence of

Y ?? A | S. This section thus extends the analy-
sis from the previous section beyond the (likely mis-
specified) simple shift-alternative considered therein.
There are several asymptotically equivalent tests that
can be applied to test this hypothesis (Hinkley and
Cox, 1979). We use the Pearson chi-squared test, as it
is the most straightforward to analyse.

The general setup for assessing the sensitivity of the
chi-squared conditional independence test to TVB is
described by Table 2. Our goal is to understand the
behavior of the chi-squared test statistic,

T (h) =

|S|X

k=1

X

a,y

⇣
O(k)

ay � E(k)
ay

⌘2
/E(k)

ay (10)

as a function of the hidden recidivist counts h =
(h1, . . . , h|S|). The notations O and E denote the
“observed” and “expected” cell counts for calculat-
ing the chi-squared statistic. Expected counts are es-
timated from the data assuming the null hypothesis
Y ⇤

?? A | S is true. These quantities evaluate to

O(k)
ay = n(k)

ay + hk a=w(2y � 1), and

E(k)
ay =

⇣
n(k)
wy + n(k)

by + (2y � 1)hk

⌘⇣
n(k)
a0 + n(k)

a1

⌘
/n(k).

The key observation is that, when viewed as a function

of hk, the numerator terms (O(k)
ay � E(k)

ay )2 are convex

quadratics in hk, and the denominator terms E(k)
ay are

linear functions in hk, constrained to be positive.

We address two basic questions: (1) When S appears
racially well-calibrated for the observed Y , how large
would Nh, the number of hidden recidivists, have to be
for S to fail the calibration test for Y ⇤? (2) When
S appears to underestimate risk for the one racial
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S = k Y ⇤ = 0 Y ⇤ = 1

A = w n(k)
w0 � hk n(k)

w1 + hk

A = b n(k)
b0 n(k)

b1

Table 2: Contingency table for rearrest outcome in
score level S = k 2 {1, . . . , |S|} for testing H0 : Y ⇤

??

A | S with the chi-squared test. Here hk denotes the
number of “hidden recidivists” in the white defendant
population in score level S = k.

group, how large would Nh have to be for S to ap-
pear racially well-calibrated for Y ⇤? Answering (1)
entails maximizing the test statistic T over h subject
to

P
hk  Nh. Answering (2) entails minimizing the

test statistic. Note that each inner summand of equa-
tion (10) is a quadratic-over-linear function, which is
strongly convex (Boyd and Vandenberghe, 2004). The
test statistic T as a function of h thus has the form
T (h) =

P|S|
k=1 fk(hk), where each fk is a strongly con-

vex function. Since T (h) is a strongly convex sepa-
rable function of the hk’s, the minimization can be
performed with a numerical convex solver. Note that
it is also straightforward to incorporate convex con-
straints into the optimization. The maximization task
is a case of a separable nonlinear optimization prob-
lem, for which general tools exist. For our analysis we
instead present a practical greedy algorithm in Sup-
plement §B.1.4.

Example: COMPAS. Figure 3(a) shows the
observed recidivism rates for black and white de-
fendants across the range of the COMPAS decile
score. When we apply the chi-squared test to
test for calibration, we find that the COMPAS
instrument appears well-calibrated with respect
to race (T = 9.36, p-value = 0.49). However, ap-
plying our method to maximize the test statistic,
we find that the presence of just Nh = 20 hidden
recidivists is su�cient to break calibration. This
is achieved when all Nh = 20 hidden recidivists
are located in score level 8. Looking at the data,
this is unsurprising. Score level 8 already has the
largest observed discrepancy with the black de-
fendant recidivism rate. Pushing this discrepancy
further will rapidly cause the test to reject. Figure
3(b) shows the minimal shift necessary to break
calibration when we impose a proportionality con-
straint that prohibits allocations that concentrate
too much on a single bin. Specifically, we require

that hk  ✏n(k)
w1 . This ensures that the proportion

of true recidivists that are hidden in any score
bin is no greater than ✏. For our experiment we
take ✏ = 0.1. Under this constraint, we find that
Nh = 30 are su�cient to break calibration. These

are allocated as h = (0, 0, 0, 0, 0, 12, 9, 9, 0, 0).

Example: Sentencing commission. The right
panel of Figure 3 shows the observed recidivism
rates for black and white defendants across the
range of the decile score we constructed based
on the sentencing commission data. Unlike in
the COMPAS example, we find that the SC
score shows clear evidence of poor calibration
(T = 164, p-value ⇡ 0). The RAI underesti-
mates risk of rearrest for white o↵enders relative
to black o↵enders across the range of score lev-
els. This e↵ect is especially pronounced in the
highest scores. Applying our method to minimize
the test statistic, we find that just Nh = 1001
hidden recidivists are su�cient to achieve cali-
bration. While this may seem like a large num-
ber, there are nw = 31607 white o↵enders in the
data, of which nw1 = 13552 are observed to re-
o↵end. Thus the minimizing allocation requires
only that 1001/(13552 + 1001) = 6.9% of all true
recidivists go unobserved. The minimizing allo-
cation, represented in the left panel of Figure 3,
is h = (41, 35, 46, 0, 0, 224, 186, 197, 170, 102).

4 Conclusion

When target variable bias is a concern, the sensitivity
analysis framework presented in this paper can be used
to quantify the level of bias su�cient to call into ques-
tion conclusions about the fairness of a model obtained
from biased observed data. In the sentencing commis-
sion example, for instance, we find that a small gap
in the likelihood of arrest could fully account for the
observed miscalibration. Such observations may help
inform deliberations of whether to correct for observed
predictive bias when doing so would further increase
outcome disparities. Furthermore, as our reanalysis of
the ProPublica COMPAS data shows, the racial dis-
parity story goes deeper than an imbalance in observed
recidivism rates. Even if o↵ense rates are equal across
groups, the disparities could be worse with respect to
o↵ense than what is observed for arrest.

The sensitivity analysis approach outlined in this work
has generally avoided making assumptions about how
the likelihood of getting caught might depend on ob-
servable features, at a cost of producing fairly wide
bounds. Existing work on self-report studies, wrong-
ful arrests, and wrongful convictions may provide some
insight into reasonable structural assumptions that
may be incorporated to further refine the analysis
(Huizinga and Elliott, 1986; Hindelang et al., 1979;
Gilman et al., 2014).
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