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A GRADIENT-BASED BOED

We begin with the proof of Theorem 1, which we restate
for convenience.
Theorem 1. For any model p(θ)p(y|θ, ξ) and inference
network qφ(θ|y), we have the following:

1. IACE is a lower bound on I(ξ) and we can charac-
terize the error term as an expected KL divergence:

I(ξ)− IACE(ξ, φ, L)

= Ep(y|ξ)

[
KL

(
P (θ0:L|y)

∣∣∣∣∣
∣∣∣∣∣∏
`

qφ(θ`|y)
)]
≥ 0,

P (θ0:L|y) = 1
L+ 1

L∑
`=0

p(θ`|y, ξ)
∏
k 6=`

qφ(θk|y).

2. As L→∞, we recover the true EIG:
limL→∞ IACE(ξ, φ, L) = I(ξ).

3. The ACE bound is monotonically increasing in L:
IACE(ξ, φ, L2) ≥ IACE(ξ, φ, L1) for L2 ≥ L1 ≥ 0.

4. If the inference network equals the true posterior
qφ(θ|y) = p(θ|y, ξ), then IACE(ξ, φ, L) = I(ξ),∀L.

We add the further technical assumption that
p(θ)p(y|θ, ξ)/qφ(θ|y) is bounded.

Proof. To begin with 1., we have the error term δ =
I(ξ)− IACE(ξ, φ, L) which can be written

δ = E

log
1

L+1
∑L
`=0

p(θ`)p(y|θ`,ξ)
qφ(θ`|y)

p(y|ξ)

 (21)

= E

[
log

1
L+1

∑L
`=0 p(θ`|y)

∏
k 6=` qφ(θk|y)∏L

`=0 qφ(θ`|y)

]
(22)

= E

[
log P (θ0:`|y)∏L

`=0 qφ(θ`|y)

]
(23)

where the expectation is over
p(y|ξ)p(θ0|y, ξ)

∏L
`=1 qφ(θ`|y). Note that the in-

tegrand is symmetric under a permutation of the
labels 0, ..., L, so its expectation will be the same over
the distribution p(y|ξ)p(θ`|y, ξ)

∏
k 6=` qφ(θk|y). Since

P (θ0:L) is a mixture of distributions of this form, this
then implies that the expectation will be the same if it
is taken over the distribution p(y|ξ)P (θ0:L), yielding

δ = Ep(y|ξ)P (θ0:L|y)

[
log P (θ0:L|y)∏L

`=0 qφ(θ`|y)

]
(24)

which is the expected KL divergence required. We
therefore have δ ≥ 0.

For 2., we use that p(θ)p(y|θ, ξ)/qφ(θ|y) is bounded.
The ACE denominator is a consistent estimator of the
marginal likelihood. Indeed,

1
L+ 1

p(θ0)p(y|θ0, ξ)
qφ(θ0|y) → 0 (25)

and

1
L+ 1

L∑
`=1

p(θ`)p(y|θ`, ξ)
qφ(θ`|y) → p(y|ξ) a.s. (26)

as L→∞ by the Strong Law of Large Numbers, since

Eqφ(θ|y)

[
p(θ)p(y|θ, ξ)
qφ(θ|y)

]
= p(y|ξ). (27)

This establishes the a.s. pointwise convergence of
the ACE integrand to log p(y|θ0, ξ)/p(y|ξ). Hence by
Bounded Convergence Theorem,

ÎACE(ξ, φ, L)→ I(ξ) (28)

as L→∞.

To establish 3., we use a similar approach to 1. We let
ε = IACE(ξ, φ, L2)− IACE(ξ, φ, L1). Then

ε = E

log
1

L1+1
∑L1
`=0

p(θ`)p(y|θ`,ξ)
q(θ`|y)

1
L2+1

∑L2
`=0

p(θ`)p(y|θ`,ξ)
q(θ`|y)

 (29)

= E

[
log Q(θ0:L2 |y)

1
L2+1

∑L2
`=0 p(θ`|y)

∏
k 6=` q(θk|y)

]
(30)

where the expectation is over
p(y|ξ)p(θ0|y, ξ)

∏L2
`=1 q(θ`|y) and

Q(θ0:L2 |y) = 1
L1 + 1

L1∑
`=0

p(θ`|y)
L2∏
k 6=`

q(θk|y). (31)

As in 1., the integrand is unchanged if we permute
the labels 0, ..., L1. By this symmetry, the expecta-
tion is the same when taken over the distribution
p(y|ξ)Q(θ0:L2 |y). We therefore recognise ε as the ex-
pectation of a KL divergence. Hence ε ≥ 0 as required.

4. follows by Bayes Theorem, i.e.
p(θ)p(y|θ, ξ)
p(θ|y, ξ) = p(y|ξ). (32)

which completes the proof.

We also present the proof of Theorem 2.
Theorem 2. Consider a model p(θ)p(y|θ, ξ) and in-
ference network qφ(θ|y). Let fψ(θ, y) ≥ 0 be an unnor-
malized likelihood approximation. Then,

I(ξ) ≥ E

log fψ(θ0, y)
1

L+1
∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)

 (14)

where the expectation is over p(θ0)p(y|θ0, ξ)qφ(θ1:L|y).
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Proof. Initially, we note that the contrastive samples
θ1, ..., θL do not carry additional information about θ0.
Formally, we consider the mutual information between
θ0 and the random variable (y, θ1, ..., θL). Using the
Chain Rule for mutual information we have

MI(θ0; (y, θ1, ..., θL))
= MI(θ0; y) + MI(θ0; (θ1, ..., θL)|y)

(33)

Now MI(θ0; (θ1, ..., θL)|y) = 0 since θ` (` > 0) are
conditionally independent of θ0 given y. Therefore

MI(θ0; (y, θ1, ..., θL)) = MI(θ0; y) = I(ξ). (34)

We now use the Donsker-Varadhan representation of
mutual information (Donsker and Varadhan, 1975).
Specifically, for random variables A,B with joint dis-
tribution p(a, b) and any measurable function T (a, b)
we have

MI(A;B)

≥ Ep(a,b)[T (a, b)]− logEp(a)p(b)

[
eT (a,b)

]
.

(35)

We now use this representation with a = θ0, b =
(y, θ1, ..., θL) and T (a, b) the integrand

T (θ0, (y, θ1:L)) = log fψ(θ0, y)
1

L+1
∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)

. (36)

We compute the second term in (35), Z =
Ep(a)p(b)

[
eT (a,b)].

Z = Ep(θ0)p(y|ξ)qφ(θ1:L|y)

 fψ(θ0, y)
1

L+1
∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)


(37)

= Ep(y|ξ)qφ(θ0:L|y)

 p(θ0)fψ(θ0,y)
qφ(θ0|y)

1
L+1

∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)

 (38)

= Ep(y|ξ)qφ(θ0:L|y)

 1
L+1

∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)

1
L+1

∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)

 (39)

= 1 (40)

where the second to last line follows by symmetry. This
establishes that logZ = 0, and so (14) constitutes a
valid lower bound on I(ξ). That is

I(ξ) ≥ E

log fψ(y, θ0)
1

L+1
∑L
`=0

p(θ)fψ(y,θ`)
qφ(θ`,y)

 (41)

which completes the proof.

The following theorem establishes a condition under
which the maximum of the ACE objective converges
to the maximum of the EIG as L→∞.

Theorem 3. Consider a model p(θ)p(y|θ, ξ) such that

C , sup
ξ∈Ξ

inf
φ∈Φ

Ep(θ)p(y|θ,ξ)
[
p(θ|y, ξ)
qφ(θ|y, ξ)

]
<∞. (42)

and I∗ , supξ∈Ξ I(ξ) <∞. Let qφ(θ|y) be an inference
network and let

IL = sup
ξ∈Ξ,φ∈Φ

IACE(ξ, φ, L). (43)

Then,
0 ≤ I∗ − IL ≤

C − 1
L+ 1 (44)

and in particular IL → I∗ as L→∞.

Proof. We have 0 ≤ I∗ − IL since IACE is a lower
bound on I(ξ) by Theorem 1.

Next, we consider ∆(ξ, φ, L) = I(ξ) − IACE(ξ, φ, L).
We have

∆ = Ep(θ0)p(y|θ0,ξ)qφ(θ1:L|y)

[
log YL

p(y|ξ)

]
(45)

where

YL = 1
L+ 1

L∑
`=0

w` and w` = p(θ`)p(y|θ`, ξ)
qφ(θ`|y) ; (46)

we write (45) as

∆ = E
[
log
(

1 + YL − p(y|ξ)
p(y|ξ)

)]
(47)

and we apply the inequality log(1 + x) ≤ x to give

∆ ≤ E
[
YL − p(y|ξ)
p(y|ξ)

]
. (48)

We now observe that for ` > 0, Eqφ(θ`|y)[w`] = p(y|ξ)
and hence, taking a partial expectation over θ1:L we
have

∆ ≤ Ep(θ0)p(y|θ0,ξ)

[
w0 − p(y|ξ)

(L+ 1)p(y|ξ)

]
(49)

≤ 1
L+ 1

(
Ep(θ0)p(y|θ0,ξ)

[
p(θ0|y, ξ)
qφ(θ0|y)

]
− 1
)

(50)

Hence

I∗ − IL = sup
ξ∈Ξ

I(ξ)− sup
ξ∈Ξ,φ∈Φ

IACE(ξ, φ, L)] (51)

≤ sup
ξ∈Ξ

[I(ξ)− sup
φ∈Φ

IACE(ξ, φ, L)] (52)

≤ sup
ξ∈Ξ

inf
φ∈Φ

[∆(ξ, φ, L)] (53)

≤ C − 1
L+ 1 (54)

as required.
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A.1 Double reparametrization

We have the φ-gradient of the ACE objective

∂IACE
∂φ

= Ep(θ0)p(y|θ0,ξ)

[
−∂L
∂φ

∣∣∣∣
θ0,y

]
(55)

where L is our estimate of the marginal likelihood with
gradient

∂L
∂φ

∣∣∣∣
θ0,y

= ∂

∂φ
Eqφ(θ1:L|y)

[
log
(

L∑
`=0

w`

)∣∣∣∣∣ θ0, y

]
(56)

where

w` = p(θ`)p(y|θ`, ξ)
qφ(θ`|y) . (57)

If qφ(θ|y) is reparameterizable as a function of φ, then
we can apply double reparameterization to this gradient.
Indeed, were it not for the w0 term, this would be
exactly the IWAE of Burda et al. (2015). We exploit
the double reparameterization of Tucker et al. (2018)
with a minor variation to account for w0 to obtain a
low variance gradient estimator.

The doubly reparametrized gradient for ACE takes the
form

∂IACE
∂φ

= Ep(θ0)p(y|θ0,ξ)qφ(θ1:L|y)

[
L∑
`=0

v`

]
(58)

where

v0 = w0∑L
m=0 wm

∂

∂φ
log qφ(θ0|y) (59)

and for ` > 0

v` = −
(

w`∑L
m=0 wm

)2
∂ logw`
∂θ`

∂θ`
∂φ

. (60)

A.2 Alternative gradient

We begin with an observation: the true integrand when
computing the EIG as an expectation over p(θ)p(y|θ, ξ)
is given by

g∗(y, θ, ξ) = log p(y|θ, ξ)
p(y|ξ) . (61)

Recall the score function identity

Ep(x|ξ)
[
∂

∂ξ
log p(x|ξ)

]
= 0. (62)

We have

Ep(θ)p(y|θ,ξ)
[
∂g∗
∂ξ

]
(63)

= Ep(θ)p(y|θ,ξ)
[
∂

∂ξ
log p(y|θ, ξ)

p(y|ξ

]
(64)

= Ep(θ)
(
Ep(y|θ,ξ)

[
∂

∂ξ
p(y|θ, ξ)

])
− Ep(y|ξ)

[
∂

∂ξ
log p(y|ξ)

] (65)

= 0 (66)

by two applications of the score function identity. This
suggests that, as g becomes close to g∗, the ∂g/∂ξ term
in (16) has expectation close to zero, and primarily
contributes variance to the gradient estimator.

Theorem 2 shows that if we remove the ∂g/∂ξ term, the
resulting algorithm still optimizes a valid lower bound
on I(ξ). Specifically, removing this term is equivalent
to the following gradient-coordinate algorithm. First,
we choose the family fψ(θ, y) to be p(y|θ, ψ). Then at
time step t we do the following

1. Set ψt = ξt

2. Take a gradient step with respect to (ξ, φ) to up-
date ξt, φt

Importantly, the new gradient does not include a ∂g/∂ξ
term, but is the gradient of a valid lower bound on
EIG. In practice, this alternative gradient did not yield
substantially different performance from the standard
approach of including the ∂g/∂ξ term. All our experi-
ments used the standard approach for simplicity.

B EXPERIMENTS

B.1 Implementation

All experiments were implemented in PyTorch
1.4.0 (Paszke et al., 2019) and Pyro 0.3.4 (Bing-
ham et al., 2018). Supporting code can be found
at https://github.com/ae-foster/pyro/tree/
sgboed-reproduce, see ‘README.md‘ for details on
how to run the experiments.

B.2 Death process

We place the prior θ ∼ LogNormal(0, 1) on the infection
rate and have the likelihood

I1 ∼ Binomial(N, e−θξ1)
I2 ∼ Binomial(N − I1, e−θξ2).

(67)

We also have the constraint ξ1, ξ2 ≥ 0.
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Table 3: Death process. We present the final EIG for each
method (computed using NMC with 200000 samples).

Method EIG mean ±1 s.e.
ACE 0.9830 ± 0.0001
PCE 0.9822 ± 0.0001
BA 0.9822 ± 0.0002
ACE without RB 0.9789 ± 0.0006
PCE without RB 0.9710 ± 0.0025
BA without RB 0.9322 ± 0.0045
BO with NMC 0.9732 ± 0.0009

For each method, we fixed a computational budget of
120 seconds, and did 100 independent runs. For gra-
dient methods, we used the Adam optimizer (Kingma
and Ba, 2014) with learning rate 10−3 and the default
momentum parameters. The inference network made a
separate Gaussian approximation to the posterior for
each of the 66 outcomes. To evaluate I(ξ) for compar-
ison we used NMC with a large number of samples:
20000 for Figure 2 and 200000 for the final values in
the caption and in Table 3. For the BO, we used a
Matern52 kernel with variance 1 and lengthscale 0.25,
and the GP-UCB1 algorithm (Srinivas et al., 2009) for
acquisition.

We used the following number of samples for our Rao-
Blackwellized estimators

Method Number of samples
ACE 10 + 660
PCE 10
BA 10
NMC 2000

B.3 Regression

We consider the following prior on θ = (w, σ)

wj
i.i.d.∼ Laplace(1) for j = 1, ..., p (68)

σ ∼ Exponential(1) (69)

with the likelihood

yi ∼ N

 p∑
j=1

ξijwj , σ

 for i = 1, ...n. (70)

This represents a standard regression model, although
with non-Gaussian prior distributions we cannot com-
pute the posterior or true EIG analytically. To ensure
the EIG has a finite maximum, we impose the following
constraint ∑

j

|ξij | = 1 for i = 1, ..., n. (71)

In practice, we set n = p = 20.

Figure 6: The EIG against time for the death pro-
cess: comparing Rao-Blackwellization against no Rao-
Blackwellization. Each method had a 120 second time
budget.

For each of our five methods, we fixed the computa-
tional budget to 15 minutes and did 10 independent
runs. For gradient methods, we used a learning rate of
10−3 and the Adam optimizer with default momentum
parameters. The inference network used the following
variational family

w ∼ N(µ, sΣ0) (72)
σ ∼ Γ(α, β) (73)

and we used a neural network with the following archi-
tecture

Operation Size Activation
Input → H1 64 ReLU
H1 → H2 64 ReLU
H2 → µ 20 -
H2 → (α, β) 2 Softplus
H2 → s 1 Softplus
Σ0 20× 20 -

For BO and random search, point evaluations of I(ξ)
were made using VNMC. Each VNMC evaluation took
1000 steps, with the optimization as above (but with
ξ fixed). We used a GP with Matern52 kernel with
lengthscale 5, variance 10. We used a GP-UCB1 ac-
quisition rule, and terminated once 15 minutes had
passed. For random search, we sampled designs using
a standard unit Gaussian.

We used the following number of samples

Method Inner samples L Outer samples N
ACE 10 10
PCE 10 10
BA n/a 100
VNMC 10 10

To evaluate designs, we used ACE/VNMC. We first
trained ACE using the same procedure as above, for
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20000 steps. Then we made the final ACE/VNMC
evaluations using the fixed inference network and L =
2.5× 103 inner samples, N = 105 outer samples.

B.4 Advertising

We introduce a LogNormal likelihood and a D-
dimensional latent variable θ governed by a Normal
prior, the joint density of our model is

p(y,θ|ξ) = LN (y|θ � ξ, σ2ξ)N (θ|0,Λ0) (74)

where σ controls the observation noise, Λ0 is a non-
diagonal precision matrix and � denotes the Hadamard
product. Since there are correlations among the D
regions, the optimal advertising budget (w.r.t. gaining
information about θ) allocates more money to the
regions that are tightly correlated.

Throughout we assume that the number of regions D
is even. We set the budget to scale with the number
of dimensions, B = D

2 , set σ = 1 and choose the prior
precision matrix to be

Λ0 = (1 + 1
D )ID − 1

Duu
T uT ≡ (α, ..., α, 1, ..., 1)

where the first D
2 components of u equal α and the

last D
2 components equal 1. We shall see that α = 0.1

controls the degree of asymmetry in the optimal design.
Discarding an irrelevant constant, we can compute the
exact EIG using the formula:

I(ξ) = 1
2 log det Λpost Λpost = Λ0 + 1

σ2 diag(ξ)

Using the matrix determinant lemma for rank-1 matrix
updates we can then compute

log det Λpost =
D∑
i=1

log(1 + 1
D + ξi)+

log

1−

D
2∑
i=1

{
α2

1+ 1
D+ξi

}
−

D∑
i=1+D

2

{
1

1+ 1
D+ξi

} .

By symmetry the optimum (it is easy to check that
it is a maximum) of EIG(ξ) will satisfy ξi = ξi+1 for
i = 1, ..., D2 −1, D2 +1, ..., D. In other words ξ is entirely
specified by ξ1 and ξD, which must satisfy ξ1 + ξD = 1
because of the constraint on the budget B = D

2 . Thus
we have reduced the EIG maximization problem to
a univariate optimization problem that can easily be
solved to machine precision, for example by gradient
methods or brute force bisection. This analytic solution
gives us the ground truth EIG, used within BO and
for evaluation, and the true optimal design, used for
evaluation.

For each of the four methods (ACE, PCE, BA and BO)
we fix the computational budget to 120 seconds per
design optimization. For the gradient-based methods
this corresponds to 1 × 104, 2 × 104, and 1.8 × 104

gradient steps for ACE, PCE, and BA, respectively.
For the BO baseline, we run 110 steps of a GP-UCB-
like algorithm (Srinivas et al., 2009) in batch-mode,
resulting in a total budget of 1650 function evaluations
of the EIG oracle. Note that for all four methods the
runtime dependence on the dimension D is negligible
in the regime in which we are operating; consequently
we use the same number of gradient or BO steps for
all D.

For the gradient-based methods, we use the Adam
optimizer with default momentum hyperparameters
and an initial learning rate of `0 = 0.1 that is expo-
nentially decayed towards a final learning rate `f that
depends on the particular method. In particular we set
`f = 1×10−4, `f = 1×10−5, and `f = 3×10−4 for the
ACE, PCE, and BA methods, respectively. For the BO
baseline, we used a Matérn kernel with a fixed length
scale ` = 0.2. These hyperparameters were chosen by
running a grid search with D = 16 and choosing hy-
perparameters that minimized the mean absolute EIG
error.

Finally we note that in Fig. 3 at each dimension D we
normalize the EIG by the factor

Z = EIG(ξ∗)− EIG(ξuniform) (75)

where ξ∗ and ξuniform are the optimal and uniform
budget designs, respectively. Consequently after nor-
malization the absolute error for the uniform budget
design ξuniform is equal to 1.

B.5 Biomolecular docking

For the docking model, we used the following indepen-
dent priors

top ∼ Beta(25, 75) (76)
bottom ∼ Beta(4, 96) (77)

ee50 ∼ N(−50, 152) (78)
slope ∼ N(−0.15, 0.12). (79)

For the design ξ = (ξ1, ..., ξ100) we had 100 binary
responses

yi ∼ Bern
(
bottom + top− bottom

1 + e−(ξi−ee50)×slope

)
. (80)

For gradient methods, we used the Adam optimizer
with learning rate 10−3 and default momentum pa-
rameters. For each method, we took 5× 105 gradient
steps (each method converged within this number of
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steps). The inference network was mean-field with the
same distributional families as the prior. We used the
following neural architecture

Operation Size Activation
Input → H1 64 ReLU
H1 → H2 64 ReLU
H2 → top 2 Softplus
H2 → bottom 2 Softplus
H2 → ee50 mean 1 -
H2 → ee50 s.d. 1 Softplus
H2 → slope mean 1 -
H2 → slope s.d. 1 Softplus

We used the following number of samples

Method Inner samples L Outer samples N
ACE 10 10
PCE 10 10
BA n/a 100

For the expert method, the design of Lyu et al. (2019),
which comprised 580 compounds, was subsampled to
comprise 100 compounds for a fair comparison.

For evaluation, we used ACE/VNMC, first training
ACE for 25000 steps using the same learning rate as
above. With the fixed inference network, we made
ACE and VNMC evaluations using L = 2× 103 inner
samples, N = 4× 106 outer samples.

B.6 Constant elasticity of substitution

We used the exact set-up of Foster et al. (2019). Specif-
ically, we take U(x) = (

∑
i x

ρ
iαi)

1/ρ and place the
following priors on ρ,α, u

ρ ∼ Beta(1, 1) (81)
α ∼ Dirichlet([1, 1, 1]) (82)

log u ∼ N(1, 3) (83)
µη = u · (U(x)− U(x′)) (84)
ση = τu · (1 + ‖x− x′‖) (85)
η ∼ N(µη, σ2

η) (86)
y = f(η) (87)

where f is the censored sigmoid function and τ = 0.005.
All designs ξ = (x,x′) were constrained to [0, 100]6.

For gradient methods, we used the Adam optimizer
with learning rate 10−3 and default momentum param-
eters. To make the design process 120 seconds per step,
we used the following number of gradient steps

Method Number of steps
ACE 1500
PCE 2500
BA 5000

We found that there was insufficient time to effectively
train a neural network guide. Instead we used a mean-
field variational family with the same distributional
families as the prior, and a linear model using the
following features: logit(y), log |logit(y)|,1(y > 0.5).

We used the following number of samples

Method Inner samples L Outer samples N
ACE 10 10
PCE 10 10
BA n/a 100

For the baseline, we used the marginal upper bound of
Foster et al. (2019) with the same variational family
used in that paper—an f -transformed Normal with
additional point masses at the end-points. We used a
GP with a Matérn52 kernel, lengthscale 20, variance
set from data, and a GP-UCB1 algorithm to make
acquisitions which were done in batches of 8.

At each stage of the sequential experiment, the poste-
rior was fitted using mean-field variational inference
using the same distributional families as the prior.

C FUTURE WORK

In this paper, we have focused on continuous design
spaces in which gradient methods are applicable. One
possible extension of our work would be to facilitate a
unified one-stage approach to experimental design over
discrete design spaces. In this case, the lower bounds
IBA, IACE and IPCE remains valid, and performing a
joint maximization over (ξ, φ) on any of these objec-
tives may be an attractive choice, although gradient
optimization would no longer be appropriate for ξ. We
envisage that one could apply existing methods for
discrete optimization to the joint optimization problem
over design and variational parameters. For instance,
a continuous relaxation of the discrete variables, or
MCMC-style updates on the discrete variables might
be used. Future work might further explore this direc-
tion.
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