
Approximate Inference with Wasserstein Gradient Flows

A Duality

Proposition 1 (Strong duality). Let ν ∈ P(X ) and
f : P(X ) → [0,+∞) a convex, lower semicontinuous
and proper functional. Define P γ,τν as in (7) and Dγ,τ

ν

as in (9). Assume γ > 0. Then

inf
µ∈P(X )

P γ,τν (µ) = sup
g∈L2(X ),h∈L2(X )

Dγ,τ
ν (g, h). (16)

Suppose f is strictly convex and let g∗, h∗ maximize
Dγ,τ
ν . Then

µ∗ = ∇f∗(−1

τ
g∗) (17)

minimizes P γ,τν .

Proof. The domain of the primal problem is P(X ),
the space of probability measures, which is a closed
subset of M(X ), the Radon measures. M(X ) is the
topological dual of Cb(X ), the space of continuous,
bounded functions. This duality defines a product

〈µ, g〉 ,
∫
X
g(x)dµ(x), (18)

for µ ∈M(X ) and g ∈ Cb(X ).

For Wγ(·, ν) and f both convex, lower semicontinuous
and proper, Fenchel’s duality theorem (Rockafellar,
1970) has that

inf
µ∈P(X )

Wγ(µ, ν) + τf(µ)

= sup
g∈Cb(X )

−Wγ(·, ν)∗(g)− τf∗(−1

τ
g),

(19)

with Wγ(·, ν)∗ and f∗ the convex conjugates,

Wγ(·, ν)∗(g) = sup
µ∈P(X )

〈µ, g〉 −Wγ(µ, ν),

(τf)∗(−g) = τf∗(−1

τ
g) = sup

µ∈P(X )

−〈µ, g〉 − τf(µ).

(20)

Let U(ν) be the set of joint probability measures on
X × X having second marginal equal to ν,

U(ν) ,

{π ∈ P(X × X ) : π(X , A) = ν(A) ∀ Borel A ⊆ X}.
(21)

By expanding the term Wγ(·, ν), we can rewrite
Wγ(·, ν)∗ as an optimization over U(ν),

Wγ(·, ν)∗(g) = − inf
U(ν)
〈π, c− g〉+ γR(π). (22)

The Lagrangian dual for Wγ(·, ν)∗ is

Wγ(·, ν)∗(g) =

− sup
h∈Cb(X ),ε∈C+

b (X×X )

inf
π∈M(X×X )

〈c− g, π〉+ γR(π)− 〈ε, π〉+ 〈ν − π, h〉.
(23)

Here C+
b (X×X ) is the space of nonnegative, continuous,

bounded functions.

The regularization functional R is differentiable in the
sense of measures (Santambrogio, 2015), meaning that
for any π ∈ P(X ×X ) there exists a function ∇R(π) ∈
Cb(X × X ) such that, for all ξ1, ξ2 ∈ P(X × X ) and
t > 0,

R(π+t(ξ2−ξ1)) = R(π)+〈ξ2−ξ1,∇R(π)〉+O(t). (24)

Because R is Legendre, ∇R is a bijection between
int domR and int domR∗ whose inverse is ∇R∗, de-
fined by

∇R∗(z) = argmax
π∈P(X )

〈π, z〉 −R(π), (25)

for any z ∈ Cb(X ×X ) (Bernhard and Rapaport, 1995,
Theorem C.1).

Necessary conditions for optimality of (23) (Luenberger,
1997, Section 9) are

c− g + γ∇R(π)− ε− h = 0

ε, π ≥ 0

ε(x,y) = 0 ∀ (x,y) ∈ suppπ.

The first condition implies

∇R(π) =
1

γ
(g + h− c+ ε)

⇒π = ∇R∗
(

1

γ
(g + h− c+ ε)

)
.

The third condition (complementary slackness) then
guarantees, for any optimal (g, h, ε),

ε(x,y) > 0 ⇒ (x,y) /∈ supp∇R∗
(

1

γ
(g + h− c+ ε)

)
.

(26)
And the second condition (nonnegativity) then implies

∇R∗
(

1

γ
(g + h− c+ ε)

)
(A)

= ∇R∗
(

max

{
1

γ
(g + h− c),∇R(0)

})
(A),

∀ Borel A ⊆ X × X ,
(27)
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with 0 the zero measure. Note that we’ve abused
notation slightly, with ∇R(0) here referring to the
natural extension of ∇R to the nonnegative measures,
whose range lies in C(X × X ), the continuous (but
possibly unbounded) functions.

By definition of the convex conjugate,

R (∇R∗(ξ)) = 〈ξ,∇R∗(ξ)〉 −R∗(ξ),

so plugging optimal π into the Lagrangian dual for
Wγ(·, ν)∗, we get

Wγ(·, ν)∗(g) = − sup
h∈Cb(X )

〈h, ν〉 − γR∗
(

max

{
1

γ
(g + h− c),∇R(0)

})
.

(28)
From (19), then we get the Fenchel dual

Dγ,τ
ν (g, h) =

− τf∗
(
−1

τ
g

)
+ 〈h, ν〉

− γR∗
(

max

{
1

γ
(g + h− c),∇R(0)

})
.

(29)

Suppose g∗, h∗ ∈ Cb(X ) optimize the dual objective
Dγ,τ
ν . Then µ∗ optimal for P γ,τν satisfies

µ∗ ∈ ∂(τf)∗(−g∗).

When f is strictly convex, this is µ∗ = ∇(τf)∗(−g∗) =
∇f∗(− 1

τ g∗).

B Representer theorem

Proposition 2 (Representation for general RKHS).
Let ν ∈ P(X ) and γ, τ,N > 0. Let {(x(i),y(i)}Ni=1 ⊂
X × X . Then there exist g∗, h∗ ∈ H maximizing (14)
such that

(g∗, h∗) =

N∑
i=1

(
α(i)
g κ(x(i), ·), α(i)

h κ(y(i), ·)
)
,

for some sequences of scalar coefficients {α(i)
g }Ni=1 and

{α(i)
h }Ni=1, with κ : X × X → R the reproducing kernel

for H.

Proof. Let H be the RKHS having kernel κ, and let
〈·, ·〉H : H ×H → R be the associated inner product.
Let g ∈ H. From the reproducing property of H, we
have that pointwise evaluation is a linear functional
such that g(x) = 〈g, κ(x, ·)〉H, for all x ∈ X .

Let HN ⊂ H be the linear span of the functions
κ(x(i), ·), and H⊥N its orthogonal complement. For

any g ∈ H, we can decompose it as g = g‖ + g⊥,
with g‖ ∈ HN and g⊥ ∈ H⊥N . Moreover, Dγ,τ

ν,N (g, h) =

Dγ,τ
ν,N (g‖, h), as Dγ,τ

ν,N depends on its first argument only
via the evaluation functional at each point,

g(x(i)) = 〈κ(x(i), ·), g〉H = 〈κ(x(i), ·), g‖〉H.

Hence if Dγ,τ
ν,N is maximized by g∗, it is also maximized

by g
‖
∗ ∈ HN . The same argument holds for h∗.

C Consistency

We make the following assumptions.

A1 X × X is compact.

A2 µ0 and ν0 are bounded away from zero: µ0(x) ≥
Umin

0 > 0, ν0(y) ≥ V min
0 > 0, for all x,y ∈ X .

A3 G is compact and convex, with ‖g‖H ≤ H for all
g ∈ G.

A4 H has reproducing kernel κ that is bounded:
maxx∈X

√
κ(x,x) = K <∞.

A5 f̄∗ is convex and Lf∗ -Lipschitz.

A6 dom R̄∗ = R.

The assumptions guarantee that the Monte Carlo dual
objective (14) is L-Lipschitz.

Proposition 4 (Lipschitz property for dγ,τν ). Let dγ,τν
be defined as in (13) and suppose Assumptions A1-

A6 hold. Let Umax = maxx∈X ,g∈H
∇f∗(− 1

τ g(x))

µ0(x) and

V max = maxy∈X
ν(y)
ν0(y) . Then for all g, g′, h, h′ ∈ H,

dγ,τν satisfies

|dγ,τν (x,y, g, h)− dγ,τν (x,y, g′, h′)|
≤ L‖(g(x), h(y))− (g′(x), h′(y))‖1

(30)

with constant L defined by L =

max

{
Umax, V max,

∇R̄∗( 2
γKH)

Umin
0 V min

0

}
.

Proof. Note that Umax and V max are finite by assump-
tions A2 and A5.

By A3-A4, we have that K = minx∈X
√
κ(x,x) <

∞, and G × G is bounded, such that ‖g‖H, ‖h‖H ≤
H. Therefore |g(x)|, |h(y)| ≤ KH, because by the
reproducing property

|g(x)| = |〈κ(x, ·), g〉H|
≤ ‖κ(x, ·)‖H‖g‖H
≤ K‖g‖H,
≤ KH,
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with the second step from Cauchy-Schwarz. The anal-
ogous result holds for |h(y)|.

Let q(g(x), h(y)) = 1
γ (g(x) + h(y) − d2(x,y)). Then

dγ,τν has subderivatives

∂dγ,τν
∂g(x)

=
∇f̄∗(− 1

τ g(x))

µ0(x)

− γ

µ0(x)ν0(y)



1
γ∇R̄

∗ (q(g(x), h(y)))

if q(g(x), h(y)) > ∇R̄(0)
[0, 1

γ∇R̄
∗(q(g(x), h(y)))]

if q(g(x), h(y)) = ∇R̄(0)
0 otherwise

(31)
in g(x) and

∂dγ,τν
∂h(y)

=
ν(y)

ν0(y)

− γ

µ0(x)ν0(y)



1
γ∇R̄

∗ (q(g(x), h(y)))

if q(g(x), h(y)) > ∇R̄(0)
[0, 1

γ∇R̄
∗(q(g(x), h(y)))]

if q(g(x), h(y)) = ∇R̄(0)
0 otherwise

(32)
in h(y). In both cases, the second term subtracts a
nonnegative quantity while the first term is nonnegative.
As g(x) and h(y) are bounded, q is bounded from above,
with

q(g(x), h(y)) ≤ 2

γ
KH.

∇R̄∗ is monotonic, so it is bounded above by

∇R̄∗
(

2
γKH

)
. We therefore have

∣∣∣∣ ∂dγ,τν∂g(x)

∣∣∣∣ ≤ max

Umax,
∇R̄∗

(
2
γKH

)
Umin

0 V min
0

 , Lg

∣∣∣∣ ∂dγ,τν∂h(y)

∣∣∣∣ ≤ max

V max,
∇R̄∗

(
2
γKH

)
Umin

0 V min
0

 , Lh.

R̄∗ is smooth on int dom R̄∗, and 2
γKH ∈ int dom R̄∗

by Assumption A6, so ∇R̄∗
(

2
γKH

)
is finite.

Letting L = max{Lg, Lh}, this implies

|dγ,τν (x,y, g, h)− dγ,τν (x,y, g′, h′)|
≤ L‖(g(x), h(y))− (g′(x), h′(y))‖1,

(33)

for all (g, h), (g′, h′) ∈ G × G and (x,y) ∈ X × X .

Note that assumption A5 is satisfied by an advection-
diffusion, so long as we assume w is bounded below,

as

max
g∈G,x∈X

∣∣∣∣∇f∗(−1

τ
g(x))

∣∣∣∣
= max
g∈G,x∈X

exp(−β
τ
g(x)− w(x))

≤ exp(
β

τ
KH − βW )

(34)

with W = minx∈X w(x).

Under the assumptions, then, we get uniform conver-
gence of the stochastic dual objective (14) to its expec-
tation (12), and this suffices to guarantee consistency.

Proposition 3 (Consistency of stochastic program).
Let Dγ,τ

ν and Dγ,τ
ν,N be defined as in (12) and (14),

respectively, with γ, τ,N > 0, and suppose Assump-
tions A1-A6 hold. Let (gN , hN ) optimize Dν,N and
(g∞, h∞) optimize Dγ,τ

ν . Then for any δ > 0, with
probability at least 1− δ over the sample of size N ,

Dγ,τ
ν (g∞, h∞)−Dγ,τ

ν (gN , hN )

≤ O

(√
(HKL)2 log(1/δ)

N

)
.

(35)

Proof. Note that dγ,τν is jointly convex in g(x) and h(y),
and these are in linear in g and h, respectively. They
can be written g(x) = 〈g, κ(x, ·)〉H with ‖κ(x, ·)‖H ≤
K and ‖g‖H ≤ H, and similarly for h(y), with the
same bounds.

From (Shalev-Shwartz et al., 2009) Thm. 1, then, we
have uniform convergence of the empirical functional
to its expectation, such that with probability 1− δ

sup
g,h∈H

∣∣∣Dγ,τ
ν (g, h)−Dγ,τ

ν,N (g, h)
∣∣∣

≤ O

(√
(HKL)2 log(1/δ)

N

)
,

(36)

for any g, h ∈ G. This implies

Dγ,τ
ν (g∞, h∞)−Dγ,τ

ν,N (g∞, h∞)

+Dγ,τ
ν,N (g, h)−Dγ,τ

ν (g, h)

≤ O

(√
(HKL)2 log(1/δ)

N

)
⇒Dγ,τ

ν (g∞, h∞)−Dγ,τ
ν (g, h)

≤
(
Dγ,τ
ν,N (g∞, h∞)−Dγ,τ

ν,N (g, h)
)

+O

(√
(HKL)2 log(1/δ)

N

)
≤
(
Dγ,τ
ν,N (gN , hN )−Dγ,τ

ν,N (g, h)
)

+O

(√
(HKL)2 log(1/δ)

N

)

(37)
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for any g, h ∈ G. In particular, it’s true for g = gN and
h = hN , which yields the statement.

D Gradient flow approximates exact
diffusion

In Figure 1, the diffusion is an Ornstein-Uhlenbeck
process with potential w(x) = x2 and dispersion β =
1. The exact solution for the probability density is
computed by Chang and Cooper’s method on a grid of
400 points on the interval [−3, 3]. The initial condition
is a mixture of two Gaussians, centered at ±1, and each
having standard deviation 1. The Wasserstein gradient
flow is computed using a Gaussian kernel supported
at 40 points chosen uniformly at random from [−3, 3],
with bandwidth 5·10−2. The objective is approximated
with 3 · 104 Monte Carlo samples. We use an entropic
regularizer for the Wasserstein distance, with γ = 10−2,
and set timestep τ = 1 · 10−2. The figure shows the
density at times t = 0.05, 0.2, 0.5.

E Accuracy in High Dimensions:
Ornstein-Uhlenbeck Process

The process we are approximating in Figure 2a is an
Ornstein-Uhlenbeck process, having potential w(x) =
(x − b)A(x − b), with A ∈ Rd×d and b ∈ Rd chosen
randomly: A is a diagonal matrix with diagonal ele-
ments gamma distributed with shape 2 and scale 0.5,
while b has independent normally distributed elements
with standard deviation 0.5. The process has disper-
sion β = 1, and initial density a delta function at 0.
Its density is computed exactly, in closed form, at time
∆t = 1.

Our baseline is a particle simulation. For each particle,
we forward simulate from time t = 0, using the Euler-
Maruyama method with timestep 10−3. We use N =
1000, 10000 particles.

For the Wasserstein gradient flow, we approximate the
objective using 2 · 104 Monte Carlo samples. We use a
polynomial kernel of degree three, and an L2 regularizer
for the Wasserstein distance, with γ = 10−6. We set
timestep τ = 0.2.

To evaluate the accuracy, we estimate the symmetric
KL divergence between the estimated and exact densi-
ties by Monte Carlo, sampling 4 · 104 points randomly
from the exact solution distribution at t = 1. For both
estimation methods, we care about the accuracy up
to normalization of the estimated distribution. Before
computing the divergence, we choose the normaliza-
tion constant that minimizes the sum of squared errors
between the estimated and exact distribution.

We repeat the experiment 20 times, for 20 different
random potentials, with Figure 2a showing the median
and 95% interval for each method.

F Nonlinear filtering

F.1 Problem Setup and Data Generation

Latent state trajectories in R are generated from the
SDE model

dxt = −
(

2 cos(2πxt) +
1

2
xt

)
dt+ dWt

which is an advection-diffusion with potential w(x) =
1
π sin(2πx) + 1

4x2
t and inverse dispersion coefficient β =

1. The latent system is observed at a time interval of
∆t = 1, with additive Gaussian noise having standard
deviation σ = 1. State trajectories are generated by
simulating the SDE using an Euler-Maruyama method
with timestep 10−3, starting from x0 = 0.

F.2 Baselines

Discretized numerical integration. We construct
a regularly-spaced grid of 1000 points on the interval
[−4, 4], and use Chang and Cooper’s method (Chang
and Cooper, 1970) to integrate the Fokker-Planck equa-
tion for the dynamics. We use a timestep of 10−3 for
the integration.

When filtering, we obtain the posterior state distribu-
tion by first propagating forward the posterior at the
previous observation time, via integrating the Fokker-
Planck equation, then multiplying the resulting dis-
tribution pointwise by the observation likelihood and
normalizing to sum to one.

Extended Kalman filter. The extended Kalman
filter is implemented as described in (Brown and Hwang,
1997). We use Scipy’s odeint to integrate the ODE
for the mean and covariance. The EKF is initialized
with a Gaussian of whose mean is drawn from a normal
distribution having mean 0 and standard deviation 0.1,
and whose variance is 10−4.

Unscented Kalman filter. The unscented Kalman
filter is implemented as described in (Sarkka, 2007).
We use Scipy’s odeint to integrate the ODE for the
mean and covariance. The UKF is initialized with
a Gaussian of mean 0 and variance 10−4. We use
parameters α = 1

2 , β = 2, κ = 1. (β here refers to the
parameter in (Sarkka, 2007), rather than the inverse
dispersion coefficient in the main text.)

Gaussian sum filter. We implement a Gaussian sum
filter as described in (Alspach and Sorenson, 1972). The
filter is initialized with a mixture of eight Gaussians,
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having means drawn independently from a normal dis-
tribution with mean 0 and standard deviation 1, and
each having variance 10−4.

Bootstrap particle filter. The bootstrap particle fil-
ter is implemented as described in (Gordon et al., 1993).
For propagating particles forward in time, we simu-
late the system dynamics using an Euler-Maruyama
method with timestep 10−3. We resample trajectories
after each observation. To extrapolate the posterior to
new points, we use Gaussian kernel density estimation
on sampled support points with bandwidth chosen by
Scott’s rule.

F.3 Example Posterior Evolution

Figure 3 shows an example of the evolution of the
posterior distribution for consecutive timesteps. We
simulate system trajectories and observations as de-
scribed above and use the stochastic program for the
Wasserstein gradient flow (Section 4) to propagate the
posterior at one observation time to the next. The
resulting distribution is multiplied pointwise by the
likelihood to obtain an unnormalized posterior. The
sampling distribution for the stochastic program is uni-
form on the interval [−4, 4]. We use an L2 regularizer
with γ = 10−6, a Gaussian kernel with bandwidth 0.1,
and 104 samples for approximating the stochastic pro-
gram objective. We solve the stochastic program using
L-BFGS (from scipy.optimize), stopping when the
norm of the gradient is less than 10−8.

We additionally overlay posterior distributions for the
baseline algorithms. The distribution obtained from
discretized numerical integration is shaded in blue. For
visualization, all distributions are sampled on a grid
and normalized to sum to one.

F.4 Quantitative Comparison of Methods

We simulate 100 independent latent state trajectories
and their observations. For each we obtain posterior
distributions for the proposed Wasserstein gradient flow
approximation and the baseline methods, as described
above. We sample the resulting distributions on the
same grid as was used for discretized numerical inte-
gration and normalize to sum to one. We compute
the symmetric KL-divergence between the exact distri-
bution from discretized numerical integration and the
approximate distribution from the given method.
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Figure 3: Filtering in a sine potential with noisy observations (σ = 1). Evolution of the posterior density, with
estimates from the various methods overlaid. Shaded region is the exact solution.
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