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Abstract

We present a novel approximate inference
method for diffusion processes, based on the
Wasserstein gradient flow formulation of the
diffusion. In this formulation, the time-
dependent density of the diffusion is derived
as the limit of implicit Euler steps that fol-
low the gradients of a particular free energy
functional. Existing methods for computing
Wasserstein gradient flows rely on discretiza-
tion of the domain of the diffusion, prohibit-
ing their application to domains in more than
several dimensions. We propose instead a
discretization-free inference method that com-
putes the Wasserstein gradient flow directly in
a space of continuous functions. We character-
ize approximation properties of the proposed
method and evaluate it on a nonlinear filter-
ing task, finding performance comparable to
the state-of-the-art for filtering diffusions.

1 INTRODUCTION

Diffusion processes are ubiquitous in science and engi-
neering. They arise when modeling dynamical systems
driven by random fluctuations, such as action poten-
tials in neuroscience, interest rates and asset prices
in finance, reaction dynamics in chemistry, and popu-
lation dynamics in ecology. In signal processing and
machine learning, diffusion processes provide the dy-
namics underlying classic filtering methods such as the
Kalman filter (Kalman and Bucy, [1961)).

Inference for general diffusions is an outstanding chal-
lenge. Each diffusion process defines a probability
distribution that evolves in continuous time; inference
involves solving for the distribution at a future time
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given an initial distribution at the current time. Exact,
closed-form solutions are typically unavailable, and nu-
merous approximations have been proposed, including
parametric approximations (Kalman and Bucy, [1961;
Julier et al., [1995), particle or sequential Monte Carlo
methods (Crisan and Lyons| |1999; Fearnhead et al.,
2008), MCMC methods (Roberts and Stramer], |2001;
Golightly and Wilkinson/ [2008)) and variational approx-
imations (Archambeau et al.l [2007} |Vrettas et al.l 2015}
Sutter et al., |2016)). Each poses a different tradeoff be-
tween fidelity of the approximation and computational
burden.

In this paper, we investigate a novel approximate in-
ference method for nonlinear diffusions. It is based on
a characterization, due to Jordan, Kinderlehrer and
Otto (Jordan et all [1998), of the diffusion process as
following a gradient flow with respect to a Wasser-
stein metric on probability measures. Concretely, they
define a time discretization of the diffusion process in
which the approximate probability density pp at the
kth timestep solves a variational problem,

pi. = argmin W3 (p, pr—1) + 27 f(p) (1)
pEP(X)

with Wy : P(X) x P(X) — R being the 2—Wasserstein
distance, f : P(X) — R a free energy functional defin-
ing the diffusion process, and 7 > 0 the size of the
timestep [ﬂ This discrete process is shown to converge,
as 7 — 0, to the exact diffusion process.

Exact computation of the time-discretized gradient
step in is intractable in general. Existing numerical
methods rely on discretization of the domain of the dif-
fusion, which restricts their application to spaces with
very few dimensions — typically three or fewer. In this
work, we propose a novel method for computing the
gradient flow that avoids discretization, opting instead
to operate directly on continuous functions lying in a re-
producing kernel Hilbert space. Specifically, we derive a
dual problem to that uses a regularized Wasserstein
distance in place of the unregularized one in . We

179(/1’) is the space of probability measures defined on
domain X.
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Figure 1. Regularized Wasserstein gradient ow (Section 3) approximates closely an Ornstein-Uhlenbeck di usion,
initialized with a bimodal density. Both the regularization and the discrete timestep are sources of error. Shaded

region is the true density.

show that, for a general strictly convex, smooth regular-
izer, this dual problem is an unconstrained stochastic
program, which admits a tractable nite-dimensional
RKHS approximation. This approach is motivated by
a similar observation for the case of entropic regular-
ization of optimal transport in (Genevay et al., 2016).
Our proposed approximation yields an approximate
inference method for di usions that is computationally
tractable in settings where domain discretization is
impractical.

For reasonable values of the timestep , the approxi-
mate inference method described in this paper can give
a close approximation to the density of the di usion.
In Figure 1, for example, we compute the Wasserstein
gradient ow for an Ornstein-Uhlenbeck di usion, ini-
tialized with a bimodal density. We see that it follows
the exact density closely.

The rest of this paper is organized as follows. In Sec-
tion 2 we review di usion processes and discuss related
work. In Section 3 we derive a smoothed dual formula-
tion of the Wasserstein gradient ow, and in Section
4 we use this dual formulation to derive a novel infer-
ence algorithm. In Section 5 we investigate theoretical
properties. In Section 6 we characterize empirical per-
formance of the proposed algorithm, before concluding.

2 BACKGROUND AND RELATED
WORK

2.1 Diusions, Free Energy, and the
Fokker-Planck Equation

We consider a continuous-time stochastic procesX
taking values in a smooth manifold X, for t 2 [t;;t¢],
and having single-time marginal densities ; : X ! R
with respect to a reference measure oX . We are specif-
ically interested in di usion processes whose single-time
marginal densities obey a di usive partial di erential

equation,
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with f : P(X)! R a functional on densities andf °its

gradient for the L2(X) metric.

f is the free energyand de nes the di usion entirely.
An important example, which will be our primary focus,
is the advection-di usion process, which is typically
characterized as obeying an It6 stochastic di erential
equation,

dX; = r w(Xy)dt+ 2dw, (3)
with r w being the gradient of a potential function
w: X ! R, determining the advection or drift of the
system, and 72 > 0 the magnitude of the di usion,
which is driven by a Wiener process having stochastic
increments dW ; (see (Kloeden and Platen, 2013) for
a formal introduction) 2. The advection-di usion has
marginal densities obeying aFokker-Planck equation,
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which is a di usive PDE with free energy functional

f()=hw iLzxy+ h;log i 2(x), for scalar po-
tential w 2 L2(X). The advection-di usion is linear

wheneverr w is linear in its argument.

Hdiv 1wl

(4)

We note that the current work applies to those dif-
fusions that can be rendered into the form(2) via
a change of variables. In particular, in the case of
advection-di usion, these are the reducible di usions
and include nearly all di usions in one dimension (Ad-
Sahalia, 2008).

2We assume su cient conditions for existence of a strong
solution to (3) are ful lled (Oksendal, 2013) Thm. 5.2.1.
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