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Input: Operator L : RS
! RS and accuracy ✏ > 0

Set v0 = 0, v1 = Lv0, n = 0

1. While sp(vn+1 � vn) > ✏ do

(a) n = n+ 1
(b) vn+1 = Lvn

2. Return: gn = 1
2

�
maxs{vn+1(s)� vn(s)}+mins{vn+1(s)� vn(s)}

�
and vn

Figure 3: EVI.

A Policy Evaluation with Uncertainties

Consider a bounded parameter MDP M defined by a compact set Br(s, a) ✓ [0, rmax] and Bp(s, a) 2 �S :

M = {M = (S,A, r, p), r(s, a) 2 Br(s, a), p(·|s, a) 2 Bp(s, a), 8(s, a) 2 S ⇥A} (16)

In this paper, we consider confidence sets Br and Bp that are polytopes. We are interested in building a
pessimistic (robust) estimate of the performance of a policy ⇡ 2 ⇧SD in M. This robust optimization problem
can be written as:

g⇡ := inf
M2M

{g⇡(M)} (17)

where g⇡(M) is the gain of policy ⇡ in the MDP M . Lemma 5 shows that there exists a solution to this problem
that can be computed using EVI when the set M contains an ergodic MDP.

We recall that any bounded parameter MDP admits an equivalent representation as an extended MDP (Jaksch
et al., 2010) with identical state space S but compact action space. For a deterministic policy ⇡ 2 ⇧SD, the
extended (pessimistic) Bellman operator L⇡ is defined as:

8v 2 RS , 8s 2 S, L⇡v(s) := min
r2Br(s,⇡(s))

r + min
p2Bp(s,⇡(s))

{pTv} (18)

Lemma 5. Let M be a bounded-parameter MDP defined as in Eq. 16 such that exists an ergodic MDP M 2 M

w.h.p. Consider a policy ⇡ 2 ⇧SD
, then:

1. There exists a tuple (eg,eh) 2 R⇥ RS
such that:

8s 2 S, eg + eh(s) = L⇡
eh(s)

where L⇡ is the Bellman operator of the extended MDP M
+

associated to M (see Eq. 18).

2. In addition, we have the following inequalities on the pair (g̃, h̃):

g̃  g⇡(M) and sp(h̃)  max
⇡2⇧SD(M)

max
s 6=s0

E⇡

M
(⌧(s0)|s) := ⌥ < +1

where E⇡

M
is the expectation of using policy ⇡ in the MDP M and ⌧(s0) is the minimal number of steps to

reach state s0.

Proof. Point 1. We show that this policy evaluation problem is equivalent to a planning problem in an extended
MDP M

� with negative reward. Consider the extended MDP M
� = (S,A�, p�, r�) such that A�

s
= {⇡(s)}⇥

Br(s,⇡(s))⇥Bp(s,⇡(s)). For any state s 2 S and action a� = (⇡(s), r(s,⇡(s)), p(·|s,⇡(s))) 2 As,

r�(s, a�) = �r(s,⇡(s))

p�(·|s, a�) = p(·|s,⇡(s))

Denote by L
� the optimal Bellman operator of M�. Since Br(s,⇡(s)) and Bp(s,⇡(s)) are polytopes, L� can

be interpreted as an optimal Bellman operator with finite number of actions. A su�cient condition for the
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existence of a solution of the optimality equations is that the MDP is weakly communicating (Puterman, 1994,
Chap. 8-9). Note that M� contains the model defined by P⇡, i.e., the Markov chain induced by ⇡ in M .7 Since
P⇡ is ergodic, M� is at least communicating and thus L� converges to a solution of the optimality equations.
Extended value iteration (Jaksch et al., 2010) on L

� converges toward a gain and bias (g�, h�) such that:

g� + h�(s) = L�h�(s) = max
a2A�

s

{r�(s, a) + p�(·|s, a)Th�
}

= max
r2Br(s,⇡(s))

{�r}+ max
p2Bp(s,⇡(s))

pTh�

= �min{Br(s,⇡(s))}+ max
p2Bp(s,⇡(s))

pTh�

By rearranging, we have that:

�g� + (�h�)(s) = min{Br(s,⇡(s))}+ min
p2Bp(s,⇡(s))

pT(�h�)

= L⇡(�h�)(s)

Thus follows that eg = �g� and eh = �h�. This shows the relationship between maximizing over policies in the
extended MDP M

� and minimizing over the set of models induced by ⇡.

Point 2. Let’s begin by bounding the span of the bias h̃. Thanks to Theorem 4 of Bartlett and Tewari (2009),
we have that the span of h̃ is upper-bounded by the diameter of the extended MDP M

�, i.e:

sp
�
h̃
�
 max

s 6=s0
inf

⇡�2⇧SD(M�)
E⇡� (⌧(s0)|s)

where E⇡� is the expectation of using policy ⇡� in the extended MDP M
� and ⌧(s0) is the hitting time of state

s0. But let’s define the policy ⇡? in the extended MDP M
� such that for a state s, it chooses the action:

⇡?(s) = (⇡(s), r?(s,⇡(s)), p?(.|s,⇡(s)))

with r? and p? the true parameter of the MDP M , this is possible because w.h.p the MDP M⇡
2 M

� with M⇡

the Markov chain induced by using policy ⇡ in the MDP M . Thus for any pair of states (s, s0):

E⇡? (⌧(s0)|s) = E⇡

M
(⌧(s0)|s)

with E⇡

M
the expectation of using policy ⇡ in the MDP M . Therefore:

sp(h̃)  max
s 6=s0

inf
⇡�2⇧SD(M�)

E⇡� (⌧(s0)|s)

 E⇡

M
(⌧(s0)|s)  ⌥ := max

⇡2⇧SD(M)
max
s 6=s0

E⇡

M
(⌧(s0)|s)

And ⌥ < +1 because M is assumed to be ergodic.

Let’s show that the gain g̃ is a lower bound on the gain of the policy ⇡ in the MDP M . Indeed, because
the operator L

� converges toward solution of the optimality equations for negative rewards, we have that,
see (Puterman, 1994, Th. 8.4.1):

g� � �g⇡(M)

because reversing the sign of the rewards in the MDP M changes the sign of the gain of a policy. Thus,
g̃  g⇡(M).

As a consequence, we can use EVI on L⇡ to compute a solution for problem 17. EVI generates a sequence
of vectors (vi) such that vi+1 = L⇡vi and v0 = 0. If the algorithm is stopped when sp(vn+1 � vn)  ✏ we
have (Puterman, 1994, Sec. 8.3.1) that:

|gn � eg|  ✏/2 and kL⇡vn � vn � gnek1  ✏ (19)

where e = (1, . . . , 1) and gn = 1
2 (maxs{vn+1(s)� vn(s)}+mins{vn+1(s)� vn(s)}). The following lemma shows

how we can use the value produced by EVI to lower bound the expected sum of rewards under a policy ⇡.

7We abuse of language since M
! is not formally a set. We should formally refer to the bounded parameter MDP

associated to M
! , i.e., built considering Bp(s,⇡(s)) and Br(s,⇡(s)). Note that p(·|s,⇡(s)) 2 Bp(s,⇡(s)) w.h.p.
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Lemma 6. Let (gn, vn) the values computed by EVI using L⇡ and an accuracy ✏. Then, the cumulative reward

collected by policy ⇡ in M after t steps can be lower bounded by:

8y 2 S, EM

"
tX

i=1

ri|s1 = y,⇡

#
� t(gn � ✏)� sp(vn)

In addition,

sp(vn)  ⌥

Proof. Using the inequalities in (19) we can write that:

vn(s) + gn  L⇡vn(s) = min
r2Br(s,⇡(s))

r + min
p2Bp(s,⇡(s))

{pTv}+ ✏

 r(s,⇡(s)) + p(·|s,⇡(s))Tvn + ✏

since r(s,⇡(s)) 2 Br(s,⇡(s)) and p(·|s,⇡(s)) 2 Bp(s,⇡(s)) w.h.p. By iterating this inequality, we get that for all
t > 0 and state s :

vn(s) + tgn  (t� 1)"+ pt(·|s,⇡(s))|vn + E
"

tX

i=1

ri (si,⇡(si)) |s1 = s

#

The statement follows by noticing that

sp(vn) = max
s

vn(s)�min
s

vn(s) � pt(·|y,⇡(y))|vn| {z }
maxs vn(s)

� vn(y)| {z }
�mins vn(s)

, 8y 2 S

The last statement is a direct consequence of the argument developed in section 4.3.1 of Jaksch et al. (2010).
This reasoning relies on the fact that the initial vector used in EVI is a zero span vector.

B Regret Bound for CUCRL

Lemma 7. The regret of CUCRL2 can be upper-bounded for some � > 0, with probability at least 1� 2�
5 , by:

R(CUCRL2, T )  � ·

0

@R(UCRL2, T |⇤T ) + (g? � g⇡b)
X

k2⇤c
T

Tk +max{rmax, sp (h
⇡b)}

p
SAT ln(T/�)

1

A

Proof. Recall that kt = sup{k > 0 : t > tk} is the episode at time t and that the regret is defined as

R(CUCRL2, T ) =
P

T

t=1

⇣
g? � rt(st, at)

⌘
.

Since the baseline policy ⇡b may be stochastic, as a first step we replace the observed reward by its expectation.
As done in (Fruit et al., 2018b) we use Azuma’s inequality that gives, with probability at least 1� �

5 :

8T � 1, �

TX

t=1

rt  �

TX

t=1

X

a2A
⇡kt(st, a)r(st, a) + 2rmax

s

T ln

✓
5T

�

◆
(20)

We denote by ⇤T = ⇤kT [ {kT } ·1(Eq. 15) the set of episodes where the algorithm played an UCRL policy. Note
that we cannot directly consider ⇤kT since the set is updated at the end of the episode and the last episode may
not have ended at T . Similarly we denote by ⇤c

T
= ⇤c

kT
[ {kT } · 1(¬Eq. 15). Then, the regret of CUCRL2 can be
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decomposed as follow:

R(CUCRL2, T ) =
TX

t=1

 
g? �

X

a2A
⇡kt(st, a)r(st, a)

!
+ 2rmax

s

T ln

✓
5T

�

◆

= 2rmax

s

T ln

✓
5T

�

◆
+

kTX

k=1

1(k2⇤T )

tk+1�1X

t=tk

(g? � r(st, at))

| {z }
:=R(UCRL2,T |⇤T )

+
kTX

k=1

1(k2⇤c
T )

 
(g? � g⇡b) (tk+1 � tk) +

tk+1�1X

t=tk

 
g⇡b �

X

a2A
⇡b(st, a)r(st, a)

!

| {z }
:=�c

k

!

(21)

Moreover, note that the UCRL2 policy is deterministic so we hate that
P

a2A ⇡kt(st, a)r(st, a) = r(st, at) when
kt 2 ⇤T . The second term, denoted R(UCRL2, T |⇤kT ), is the regret su↵ered by UCRL2 over

P
k2⇤kT

Tk steps.

The only di↵erence with the orginal analysis (Jaksch et al., 2010) is that the confidence intervals used by UCRL
are updated when using the baseline policy, however it does not a↵ect the regret of UCRL because it only means
the confidence intervals used shrinks faster for some state-action pairs. We will analyze this term in Lem. 9. To
decompose �c

k
we can use the Bellman equations (g⇡be = L⇡bh⇡b � h⇡b):

X

k2⇤c
T

�c

k
=

X

k2⇤c
T

tk+1�1X

t=tk

X

a

⇡b(st, a)p(·|st, a)
|h⇡b � h⇡b(st)

=
X

k2⇤c
T

tk+1�1X

t=tk

X

a2A
⇡b(s, a)

⇣
p(·|st, a)

|h⇡b

⌘
� h⇡b(st+1)

| {z }
:=�c,p

k,t

+
X

k2⇤c
T

tk+1�1X

t=tk

(h⇡b(st+1)� h⇡b(st))

| {z }
:=�c,2

k

But, �c,2
k

can be bounded using a telescopic sum argument and the number of episodes:

X

k2⇤c
T

�c,2
k

=
X

k2⇤c
T

h⇡b(stk+1)� h⇡b(stk)  |⇤c

T
|sp (h⇡b)

Then it is easy to see that (�c,p

k,t
)k,t is a Martingale Di↵erence Sequence with respect to the filtration (Ft)t2N

which is generated by all the randomness in the environment and in the algorithm up until time t: |�c,p

k,t
| 

2kh⇡bk1  2sp(h⇡b) and E[�c,p

k,t
|Ft] = 0. Thus with probability 1� �

5 :

X

k2⇤c
kT

tk+1�1X

t=tk

�c,p

k,t
 4sp (h⇡b)

s

T ln

✓
5T

�

◆

Therefore putting all the above together, we have that with probability at least 1� 2�
5 :

R(CUCRL2, T )  2rmax

s

T ln

✓
5T

�

◆
+R(UCRL2, T |⇤T ) + (g? � g⇡b)

kTX

k=1

1(k2⇤c
T )
(tk+1 � tk)

+sp (h⇡b)

 
|⇤c

T
|+ 4

s

T ln

✓
5T

�

◆!

As shown in (Ouyang et al., 2017, Lem. 1), kT 

p
2SAT ln(T ) thus we can simply write that |⇤c

T
| p

2SAT ln(T ).

In the next lemma, we bound the total number of steps where CUCRL2 used the baseline policy.
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Lemma 8. For any, � > 0, the total length of episodes where the baseline policy is played by CUCRL after T
steps is upper-bounded with probability 1� 2�/5 by:

X

l2⇤c
kT

Tl 2
p
SAT ln(T ) +

16
q
TL�

T

↵g⇡b

h
(D +⌥)

p

SA+ rmax +
p

SAsp(h⇡b)
i
+

112SAL�

T

(↵g⇡b)2
(1 + S(D +⌥)2)

with L�

T
:= ln

�
5SAT

�

�
a logarithmic term in T .

Proof. Let ⌧ be the last episode played conservatively: ⌧ = sup{k > 0 : k 2 ⇤c

k
}. At the beginning of episode ⌧

the conservative condition is not verified that is to say:
X

l2⇤⌧�1

Tl

�
g⇡b � g�

l
+ "l

�

| {z }
:=�1

⌧

+sp(h⇡b)
�
|⇤c

⌧�1|+ (1� ↵)
�
+

X

l2⇤⌧�1[{⌧}

sp
�
h�
l

�
+

+(T⌧�1 + 1)
�
(1� ↵)g⇡b � g�

⌧
+ ✏⌧

�
1{(1�↵)g⇡b�g

�
⌧ +✏⌧} � ↵

⌧�1X

l=1

Tlg
⇡b (22)

Let’s proceeding by analysing each term on the RHS of Eq. 22. First, we have that |⇤c

⌧�1|  kT 

p
2SAT ln(T ),

thus:

sp(h⇡b)
�
|⇤c

⌧�1|+ (1� ↵)
�


⇣p
2SAT ln(T ) + 1

⌘
sp(h⇡b) (23)

On the other hand, thanks to Lem. 6, we have:
X

l2⇤⌧�1[{⌧}

sp
�
h�
l

�
 (|⇤⌧�1|+ 1)⌥  2

p
2SAT ln(T )⌥ (24)

Before analysing �1
⌧
, let’s bound the contribution of episode ⌧ :

(T⌧�1 + 1)
�
(1� ↵)g⇡b � g�

⌧
� ✏⌧

�
1{(1�↵)g⇡b�g

�
⌧ +✏⌧}  (1� ↵)g⇡bkT  (1� ↵)rmax

p
2SAT ln(T ) (25)

where we used the fact that for all episode k, we have Tk  k. Indeed the dynamic episode condition is such
that for an episode k, Tk  Tk�1 + 1 thus by iterating this inequality, Tk  T0 + k = k. At this point using
equations 22, 24 and 25 we have:

�1
⌧
+
⇣p

2SAT ln(T ) + 1
⌘
sp(h⇡b) + 2

p
2SAT ln(T )⌥+ (1� ↵)rmax

p
2SAT ln(T ) � ↵

⌧�1X

l=1

Tlg
⇡b

Let’s finish by analysing �1
⌧
. Let’s define the event, � =

(
9T > 0, 9k � 1, s.t M 62 Mk

)
, by definition of Bk

r

and Bk

p
, P (�)  �/5, see (Lazaric et al., 2019, App. B.2) for a complete proof. We have that on the event �c,

for any l 2 ⇤⌧�1, (g
�
l
, h�

l
) = EVI(L⇡l

l
, "l) is such that |g⇡l � g�

l
|  ✏l (see App. A) where g⇡l is the true gain:

g⇡l + h⇡l = L
⇡l
l
h⇡l . Thus, since "l  rmax/

p
tl:

�1
⌧
=

X

l2⇤⌧�1

Tl

�
g⇡b � g�

l
+ ✏l

�
 2

X

l2⇤⌧�1

Tl"l +
X

l2⇤⌧�1

Tl(g
⇡b � g⇡l)

 4rmax

p

T +
X

l2⇤⌧�1

Tl(egl � g⇡l)

where egl is the optimistic gain at episode l (see Lazaric et al. (2019)) thus the last inequality comes from

g⇡b  g?  egl for every episode l. We can also define the optimistic bias at episode l, ehl, the pair (egl,ehl) is such
that:

8s 2 S, egl + ehl(s) := L
+
l
ehl := max

a

(
max

r2Bl
r(s,a)

r + max
p2Bl

p(s,a))
pTehl

)
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Recall that e⇡l 2 ⇧SD is the optimistic policy at episode l and when l 2 ⇤⌧�1, ⇡l = e⇡l. Then, by using Bellman
equations:

X

l2⇤⌧�1

Tl(egl � g⇡l) =
X

l2⇤⌧�1

tl+1�1X

t=tl

(egl � g⇡l) =
X

l2⇤⌧�1

tl+1�1X

t=tl

( L
+
l
ehl(st)| {z }

:=L+,⇡l
l

!hl(st)

,�ehl(st)� L
⇡l
l
h⇡l(st) + h⇡l(st))

=
X

l2⇤⌧�1

tl+1�1X

t=tl

max
r2Bl

r(st,at)
r � min

r2Bl
r(st,at)

r + max
p2Bl

p(st,at)
pTehl � min

p2Bl
p(st,at)

pTh⇡l
� ehl(st) + h⇡l(st)



X

l2⇤⌧�1

tl+1�1X

t=tl

2 max
r2Bl

r(st,at)
r + max

q2Bl
p(st,at)

(q � p?)|ehl

� min
q2Bl

p(st,at)
(q � p?)|h⇡l + p?(·|st, at)

T
⇣
ehl � h⇡l

⌘
� (ehl(st+1)� h⇡l(st+1))

+ (ehl(st+1)� ehl(st) + h⇡l(st+1)� h⇡l(st))

where p? is the transition probability of the true MDP, M?. By a simple telescopic sum argument, we have:

X

l2⇤⌧�1

tl+1�1X

t=tl

ehl(st+1)� ehl(st) + h⇡l(st+1)� h⇡l(st) = |⇤⌧�1|
�
sp
�ehl

�
+ sp

�
h⇡l

��

At this point we need to explicitly define the concentration inequality used to construct the confidence sets Bl

r

and Bl

p
. For every (s, a) 2 S ⇥A, we define �k

l
(s, a) such that:

8l � 1, Bl

r
(s, a) ⇢ [erl(s, a)� �l

r
(s, a), erl(s, a) + �l

r
(s, a)]

where brl(s, a) is the empirical average of the reward received when visiting the state-action pairs (s, a) at the
beginning of episode l. For every (s, a) 2 S ⇥A, we define �l

p
(s, a) as:

Bl

p
(s, a) =

�
p 2 �S : kp(·|s, a)� bpl(·|s, a)k1  �l

p
(s, a)

 

with bpl is the empirical average of the observed transitions. Choosing those �l

r
and �l

p
is done thanks to

concentration inequalities such that event �c holds with high enough probability. In the following, we use:

8s, a �l

r
(s, a) =

s
7SAL�

T

2max{1, Nl(s, a)}
and �l

p
(s, a) = S

s
14AL�

T

max{1, Nl(s, a)}

where L�

T
= ln

�
5SAT

�

�
. For other choices of �l

r
and �l

p
refer to (Lazaric et al., 2019). Similarly to what done

in (Jaksch et al., 2010, Sec. 4.3.1 and 4.3.2), by using Holder’s inequality and recentering the bias functions, we
write:

X

l2⇤⌧�1

Tl(egl � g⇡l)  |⇤⌧�1|
�
sp
�ehl

�
+ sp

�
h⇡l

��
+

X

l2⇤⌧�1

tl+1�1X

t=tl

2�l

r
(st, at) + �l

p
(st, at)

�
sp
�ehl

�
+ sp

�
h⇡l

��

| {z }
:=(a)

+
X

l2⇤⌧�1

tl+1�1X

t=tl

p?(·|st, at)
T
⇣
ehl + h⇡l

⌘
� (ehl(st+1)� h⇡l(st+1))

| {z }
:=(b)

To finish, the proof of this lemma, we need to bound the term (a) and (b). In the following, we use the fact that

sp
�ehl

�
+ sp

�
h⇡l

�
 D + ⌥ (see Lem. 6) and again that |⇤⌧�1|  kT 

p
2SAT ln(T ). Let’s begin with (a), by

definition of the radius of the confidence sets, we have:

X

l2⇤⌧�1

tl+1�1X

t=tl

�l

r
(st, at) =

r
7SAL�

T

2

X

l2⇤⌧�1

tl+1�1X

t=tl

s
1

max{1, Nl(st, at)}


r
7SAL�

T

2

vuut
⌧�1X

l=1

Tl
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and,

X

l2⇤⌧�1

tl+1�1X

t=tl

�l

p
(st, at)  S

q
14L�

T
A

vuut
⌧�1X

l=1

Tl

The second term (b) is easy to bound because it is a Martingale Di↵erence Sequence with respect to the filtration
generated by all the randomness in the algorithm and the environment before the current step. For any time
t, the �-algebra generated by the history up to time t included is Ft = �(s1, a1, r1, . . . , st, at, rt, st+1). Define

Xt = 1(kt2⇤T )(p(·|st,⇡kt(st))
Tukt �ukt(st+1)) with ukt = ehkt �h⇡kt . Since ⇡kt is Ft measurable, E[Xt|Ft�1] = 0

and |Xt|  2(D + ⌥). Then (Xt,Ft)t is an MDS and nothing change compared to the analysis of UCRL2.
Therefore using Azuma-Hoe↵ding inequality, we have, with probability 1� �

5 that:

(b)  2(D +⌥)
q

2TL�

T

! Algorithmically, it is possible to evaluate the gain of the policies played in the past episodes at the beginning
of the current episode. While this will provide a better estimate for the conservative condition, it will break the
MDS structure in (b) since h⇡l will be not measurable w.r.t. Fl since it is computed with samples collected after
episode l. Thus putting the bound for (a) and (b) together, we have:

X

l2⇤⌧�1

Tl(egl � g⇡l)  (D +⌥)
p
2SAT ln(T ) +

q
14SAL�

T

vuut
⌧�1X

l=1

Tl +
�
D +⌥

�
S
q

14L�

T
A

vuut
⌧�1X

l=1

Tl

+ 2(D +⌥)
q
2TL�

T

That is to say,

4rmax

p

T + (D +⌥)
p
2SAT ln(T ) + 2(D +⌥)

q
2TL�

T

+
⇣p

2SAT ln(T ) + 1
⌘
sp(h⇡b) +

p
2SAT ln(T )⌥+ (1� ↵)rmax

p
2SAT ln(T )

+
q

14SAL�

T

vuut
⌧�1X

l=1

Tl +
�
D +⌥

�
S
q
14L�

T
A

vuut
⌧�1X

l=1

Tl � ↵
⌧�1X

l=1

Tlg
⇡b

:= bT

Rearranging the terms and calling X =
P

⌧�1
l=1 Tl, we have:

↵g⇡bX  bT +

✓q
14SAL�

T
+
�
D +⌥

�
S
q
14L�

T
A

◆
p

X

We have a quadratic equation and thus:

⌧�1X

l=1

Tl 
2bT
↵g⇡b

+
56SAL�

T

(↵g⇡b)2
(2 + 2S(D +⌥)2)

Therefore, as ⌧ is the last episode where CUCRL2 played the policy ⇡b, we have
P

l2⇤c
T
Tl =

P
l2⇤c

⌧
Tl. Also,

because of the condition on the length of an episode Tk  k for every k, therefore:

X

l2⇤c
T

Tl =
X

l2⇤c
⌧

Tl 

⌧�1X

l=1

Tl + T⌧  kT +
2bT
↵g⇡b

+
56SAL�

T

(↵g⇡b)2
(2 + 2S(D +⌥)2)

The following lemma states the regret of the UCRL2 algorithm conditioned on running only the episodes in the
set ⇤T .
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Lemma 9. For any � > 0, we have that after T , the regret of UCRL2 is upper bounded with probability at least

1� �/5 by:

R(UCRL2, T |⇤T )  �DS

s

AT ln

✓
5T

�

◆
+ �DS2A ln

✓
5T

�

◆

with � a numerical constant.

Proof. The same type of bound has been shown in numerous work before Jaksch et al. (2010); Lazaric et al.
(2019), however the proof presented in those works can not be readily applied to our setting. Indeed, when
the algorithm chooses to play the baseline policy for an episode, then the confidence sets used in CUCRL2 are
updated for the state-action pairs encountered during this episode. However, in the classic proof for the UCRL2

algorithm the confidence sets are the same between the end of one episode and the beginning of the next one are
the same. This may not be the case for CUCRL2.

Fortunately, when using the baseline policy during an episode, the confidence sets for every state-action pairs
are either the same as the previous episode or are becoming tighter around the true parameters of the MDP M?.
Thus, proving Lemma 9 is similar to the proof presented in Lazaric et al. (2019), the only di↵erence resides in

bounding the sum,
P

k2⇤kT

P
tk+1�1
t=tk

1/
q

N+
k
(st, at), which is bounded by the square root of the total number

of samples in the proof of Lazaric et al. (2019) whereas in the case CUCRL2 it is bounded by the square root
of the total number of samples gathered while exploring the set of policies plus the number of samples collected
while playing the baseline policies. Therefore, at the end of the day both quantities are bounded by a constant
times the square root of T .

A doubt someone could have is on controlling the term

kTX

k=1

1(k2⇤T )

tk+1�1X

t=tk

�
p(·|st,⇡k(st))

Tuk � uk(st)
�

=
kTX

k=1

1(k2⇤T )

tk+1�1X

t=tk

�
p(·|st,⇡k(st))

Tuk � uk(st+1)
�

| {z }
�p

k

+
kTX

k=1

1(k2⇤T )

tk+1�1X

t=tk

uk(st+1)� uk(st)

=
kTX

k=1

1(k2⇤T )�
p

k
+
�
uk(stk+1)� uk(stk)

�
| {z }

sp(wk)D

For any time t, the �-algebra generated by the history up to time t included is Ft = �(s1, a1, r1, . . . , st, at, rt, st+1).
Define Xt = 1(kt2⇤T )(p(·|st,⇡kt(st))

Tuk�uk(st+1)). Since ⇡kt is Ft measurable, E[Xt|Ft�1] = 0 and |Xt|  2D.
Then (Xt,Ft)t is an MDS and nothing change compared to the analysis of UCRL2.

Finally, plugging Lemmas 8 and 9 into Lem. 7, we have that there exists a numerical constant C1 such that with
probability 1� �:

R(CUCRL2, T )  C1

 
DS

q
ATL�

T
+ (g? � g⇡b)

 
p
SAT ln(T ) +

q
TSAL�

T

↵g⇡b
max{sp(h⇡b), D +⌥}

+
S2AL�

T

(↵g⇡b)2
(D +⌥)2

!
+max{rmax, sp (h

⇡b)}
p
SAT ln(T/�)

!
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C Conservative Exploration in Finite Horizon Markov Decision Processes

In this section, we show how the conservative setting can be applied to finite horizon MDPs. Let’s consider a
finite-horizon MDP (Puterman, 1994, Chp. 4) M = (S,A, p, r,H) with state space S and action space A. Every
state-action pair is characterized by a reward distribution with mean r(s, a) and support in [0, 1] and a transition
distribution p(·|s, a) over next state. We denote by S = |S| and A = |A| the number of states and actions, and
by H the horizon of an episode. A Markov randomized decision rule d : S ! P (A) maps states to distributions
over actions. A policy ⇡ is a sequence of decision rules, i.e., ⇡ = (d1, d2, . . . , dH). We denote by ⇧MR (resp.
⇧MD) the set of Markov randomized (resp. deterministic) policies. The value of a policy ⇡ 2 ⇧MR is measured
trough the value function

8t 2 [H], 8s 2 S V ⇡

t
(s) = E⇡

"
HX

l=t

rl(sl, al) | st = s

#

where the expectation is defined w.r.t. the model and policy (i.e., al ⇠ dl(sl)). This function gives the expected
total reward that one could get by following policy ⇡ starting in state s, at time t. There exists an optimal policy
⇡?

2 ⇧MD (Puterman, 1994, Sec. 4.4) for which V ?

t
= V ⇡

?

t
satisfies the optimality equations:

8t 2 [H], 8s 2 S, V ?

t
(s) = max

a2A

�
rt(s, a) + p(·|s, a)TV ?

t+1

 
:= L?

t
V ?

t
(26)

where V ?

H+1(s) = 0 for any state s 2 S. The value function can be computed using backward induction (e.g.,
Puterman, 1994; Bertsekas, 1995) when the reward and transitions are known. Given a policy ⇡ 2 ⇧MD, the
associated value function satisfies the evaluation equations V ⇡

t
(s) := L⇡

t
V ⇡

t+1(s) = r(s, dt(s)) + p(·|s, dt(s))TV ⇡

t+1.
The optimal policy is thus defined as ⇡? = arg max

⇡2⇧MD{L⇡

t
V ?

t
}, 8t 2 [H].

In the following we assume that the learning agent known S, A and rmax, while the reward and dynamics are
unknown and need to be estimated online. Given a finite number of episode K, we evaluate the performance of
a learning algorithm A by its cumulative regret

R(A,K) =
KX

k=1

V ?

1 (sk,1)� V ⇡k
1 (sk,1)

where ⇡k is the policy executed by the algorithm at episode k.

Conservative Condition Designing a conservative condition, in this setting is much easier than in the average
reward case as evaluating a policy can be done through the value function which gives an estimation of the
expected reward over an episode. Thus, we can use this evaluation of a policy to use in place of rewards in the
bandits condition. Formally, denote by ⇡b 2 ⇧MR the baseline policy and assume that V ⇡b

t
is known. In general,

this assumption is not restrictive since the baseline performance can be estimated from historical data. Given a
conservative level ↵ 2 (0, 1), we define the conservative condition as:

8k 2 [K],
kX

l=1

V ⇡l
1 (sl,1) � (1� ↵)

kX

l=1

V ⇡b
1 (sl,1) w.h.p (27)

where ⇡l is the policy executed by the algorithm at episode l and sl,1 is the starting state of episode l before
policy ⇡l is chosen. The initial state can be chosen arbitrarily but should be revealed at the beginning of each
episode. Note that this condition is random due the choice of the policies (⇡l)l and also because of the starting
states thus the condition is required to hold with high probability.

Note that Eq. 27 requires to evaluated the performance of policy ⇡l on the true (unknown) MDP. In order derive
a practical condition, we need to construct an estimate of V ⇡l

1 . In order to be conservative, we are interesting in
deriving a lower bound on the value function of a generic policy ⇡ which can be used in Eq. 27.

Pessimistic value function estimate. We recall that OFU algorithms (e.g., UCB-VI and EULER) builds
uncertainties around the rewards and dynamics that are used to perform an optimistic planning. Formally,
denote by bpk(·|s, a) and brk(s, a) the empirical transitions and rewards at episode k. Then, with high probability

|(p(·|s, a)� bpk(·|s, a))Tv|  �p

k
(s, a) and |r(s, a)� brk(s, a)|  �r

k
(s, a)
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for all (s, a) 2 S ⇥ A and v 2 [0, H]S . This uncertainties are used to compute an exploration bonus bk(s, a) =
�v

k
(s, a) + �r

k
(s, a) that can be used to compute an optimistic estimate of the optimal value function. Formally,

at episode k, optimistic backward induction (e.g., Azar et al., 2017, Alg. 2) computes an estimate value function
v̄k,h such that v̄k,h � V ?

t
for any state s. The same approach can be used to compute a pessimistic estimate

of the optimal value function by subtracting the exploration bonus to the reward (e.g., Zanette and Brunskill,
2019).

The only di↵erence in the conservative setting is that we are interesting to compute a pessimistic estimate for
a policy di↵erent from the optimal one. We thus define the pessimistic evaluation equations for any episode k,
step h, state s and policy ⇡ 2 MR as:

v⇡
k,h

(s) := L⇡

k,h
v⇡
k,h+1 =

X

a

⇡k,h(s, a)
�
brk(s, a)� bk(s, a) + bpk(·|s, a)Tv⇡k,h+1

�
(28)

with v⇡
k,H+1(s) = 0 for all states s 2 S. This value function is pessimistic (see Lem. 10) and can be computed

using backward induction with L⇡

k
.

Lemma 10. Let ⇡ = (d1, . . . , dH) 2 MR and (v⇡
k,h

)h2[H] be the value function given by backward induction

using Eq. 28 then with high probability:

8(h, s) 2 [H]⇥ S, V ⇡

h
(s) � v⇡

k,h
(s)

Proof. On the event that the concentration inequalities holds, let brk(s, a) be the empirical reward at episode k
and bpk(.|s, a) the empirical distribution over the next state from (s, a) at episode k. We proceed with a backward
induction. At time H the statement is true. For h < H :

v⇡
k,h

(s)� V ⇡

h
(s) =

X

a

dh(s, a)
�
brk(s, a)� bk(s, a) + bpk(·|s, a)Tv⇡k,h+1

�
� L⇡

h
V ⇡

h+1(s)

=
X

a

dh(s, a)

0

B@brk(s, a)� r(s, a)� �r

k
(s, a)| {z }

0

1

CA

+
X

a

dh(s, a)
�
bpk(·|s, a)Tv⇡k,h+1 � p(·|s, a)TV ⇡

h+1 � �p

k
(s, a)

�



X

a

dh(s, a)
�
bpk(·|s, a)Tv⇡k,h+1 � p(·|s, a)TV ⇡

h+1 � �p

k
(s, a)

�



X

a

dh(s, a)
�
(bpk(·|s, a)� p(·|s, a))TV ⇡

h+1 � �p

k
(s, a)

�
 0

where the first inequality is true because of the confidence intervals on the reward function and the penultimate
inequality is true because of the backward induction hypothesis.

Thanks to this result, we can formulate a condition that the algorithm can check, at the beginning of episode k
to decide if a policy is safe to play or not :

X

l2Sk�1[{k}

v⇡l
l,1(sl,1) +

X

l2Sc
k�1

V ⇡b
l,1 (sl,1) � (1� ↵)

kX

l=1

V ⇡b
l,1 (sl,1) (29)

where Sk�1 is the set of episodes where the algorithm previously played non-conservatively, Sc

k�1 = [k�1]\Sk�1

is the set of episodes played conservatively and (⇡l)l is the policies that the OFU algorithm (e.g., UCB-VI)
would execute without the conservative constraint.

Alg. 4 shows the generic structure of any conservative exploration algorithm for MDPs. First, it computes an
optimistic policy by leveraging on an OFU algorithm and the collected history. Then it checks the conservative
condition. When Eq. 29 is verified it plays the optimistic policy otherwise it plays conservatively by executing
policy ⇡b. This allows to build some budget for playing exploratory actions in the future.



Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric, Matteo Pirotta

Input: Policy ⇡b, � 2 (0, 1), rmax, S, A, ↵"
2 (0, 1), H

Initialization: Set H = ;, S0 = ; and S
c
0 = ;

For episodes k = 1, 2, ... do

1. Compute optimistic policy ⇡k using any OFU algorithm on history H.

2. Compute pessimistic estimate v
⇡k
k as in Eq. 28.

3. if Equation (29) not verified: then

(a) ⇡k = ⇡b, S
c
k+1 = S

c
k [ {k} and Sk+1 = Sk

else:

(a) Sk+1 = Sk [ {k} and S
c
k+1 = S

c
k

4. for h = 1, . . . , H do

(a) Execute ak,h = ⇡k(sk,h), obtain reward rk,h, and observe sk,h.
(b) if ⇡k 6= ⇡b then: add (sk,h, ak,h, rk,h, sk,h+1) to H

Figure 4: CUCB-VI algorithm.

Regret Guarantees We analyse Alg. 4 with UCB-VI. Before to introduce the upper-bound to the regret of
CUCB-VI we introduce the following assumption on the baseline policy.

Assumption 3. The baseline policy ⇡b 2 ⇧MR
is such that rb := mins{V

⇡b
1 (s)} > 0.

We can now state the main results:

Proposition 1. For � > 0, the regret of conservative UCB-VI (CUCB-VI) is upper-bounded with probability

at least 1� � by:

R(CUCB-VI,K) 2H
p
SAHKLK + 8HSAL2

K
+H

p
2KLK + 2HS

p
AHKLK

+
1

4↵rb(�b
+ ↵rb)

 
16H3LK +

�
200H5S2A+ 128H5SA

�
L2
K

!
, (30)

where LK = max{ln (3KHSA/�) , 1} and �
b
= mins2S{V ?

1 (s)� V ⇡b
1 (s)}.

Proof. Let’s define the high probability event, E , that is such that in this event, all the concentration inequalities
holds and the Martingale Di↵erence Sequence concentration inequalities also holds :

E1,� :=
\

(s,a)2S⇥A

\

k2[K]

(
||p(.|s, a)� p̂k(.|s, a)||1 

s
2S ln (3KSA/�)

max{1, Nk(s, a)}

)

\
(
|r̂k(s, a)� r(s, a)|  2rmax

s
ln (3KSA/�)

max{1, Nk(s, a)}

)

E2,� :=
\

k2[K]

(
X

l2Sk

HX

h=1

"k,h  H3/2
p

2#Sk ln (3KH/�)

)

and finally, E := E1,� \ E2,�, then E holds with probability at least 1� �. Indeed,

P(Ec) 
HKX

t=1

�

3HK
+
X

s,a

X

k

2�

3KSA
 �

Under this event, we have that for all episode k 2 SK :

vk,1(sk,1)� v⇡k
k,1(sk,1) 

HX

h=1

"k,h + 5�p

k
(sk,h, d

k

h
(sk,h)) + 2�r

k
(sk,h, d

k

h
(sk,h)),
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where ("k,h)k2SK ,h2[H] is a martingale di↵erence sequence with respect to the filtration (Fk,h)k2SK ,h2[H] that
is generated by all the randomness before step h of episode k. Indeed, for an episode k, let ⇡k = (dk1 , . . . , d

k

H
),

decomposing ⇡k into successive decision rules.

vk,1(sk,1)� v⇡k
k,2 2�r

k
(sk,1, d

k

1(sk,1)) + p̂k(. | sk,1, d
k

1(sk,1))
|(vk,2 � v⇡k

k,2) + 2�p

k
(sk,1, d

k

1(sk,1))

Thus by defining, Bk,h := 3�p

k
(sk,h, dkh(sk,h)) + 2�r

k
(sk,h, dkh(sk,h)), we have :

vk,1(sk,1)� v⇡k
k,1(sk,1) Bk,1 + (p̂k(. | sk,1, d

k

1(sk,1)� p(.|sk,1, d
k

1(sk,1))
|(vk,2 � v⇡k

k,2) + (vk,2(sk,2)� v⇡k
k,2(sk,2))

� (vk,2(sk,2)� v⇡k
k,2(sk,2)) + p(.|sk,1, d

k

1(sk,1)
|(vk,2 � v⇡k

k,2)

 p(.|sk,1, d
k

1(sk,1)
|(vk,2 � v⇡k

k,h
)� (vk,2(sk,2)� v⇡k

k,2(sk,2)) + 2�p

k
(sk,1, d

k

1(sk,1)) +Bk,1

+ (vk,2(sk,2)� v⇡k
k,2(sk,2))

But let’s define "k,h := p(.|sk,h, dkh(sk,h))
|(vk,h � v⇡k

k,h
)� (vk,h(sk,h+1)� v⇡k

k,h
(sk,h+1)) then ("k,h)k2[K],h2[H] is a

Martingale Di↵erence Sequence with respect to the filtration Fk,h which is generated by all the randomness in
the environment and the algorithm before step h of episode k . Then, by recursion, we have :

vk,1(sk,1)� v⇡k
k,1(sk,1) 

HX

h=1

Bk,h + "k,h + 2�p

k
(sk,h, d

k

h
(sk,h))

The regret of algorithm CUCB-VI can be decomposed as :

R(CUCB-VI,K) =
X

k2Sc
K

V ?

1 (sk,1)� V ⇡b
1 (sk,1) +

X

k2SK

V ?

1 (sk,1)� V ⇡k
1 (sk,1)

 |S
c

K
|�b +R(UCB-VI, |SK |)

where �b = maxs2S V ?(s) � V ⇡b(s). Therefore bounding the regret amounts to bound the number of episode
played conservatively. To do so, let’s consider, ⌧ the last episode played conservatively, then before the beginning
of episode ⌧ , the condition 29 is not verified and thus :

↵
⌧X

k=1

V ⇡b
1 (sk,1) 

X

k2S⌧�1[{⌧}

V ⇡b
1 (sk,1)� v⇡k

k,1(sk,1)| {z }
=�k,1

Thus, let’s finish this analysis by bounding �k,1 = V ⇡b
1 (sk,1)� v⇡k

k,1(sk,1) for all k 2 SK . But:

�k,1 = V ⇡b
1 (sk,1)� V ?

1 (sk,1) + V ?

1 (sk,1)� v⇡k
k,1(sk,1)  ��

b
+ vk,1(sk,1)� v⇡k

k,1(sk,1),

where �
b
:= mins V ?

1 (s)� V ⇡b
1 (s). Now, we need to bound the sum over all the non-conservative episodes of the

di↵erence between the optimistic and pessimistic value function. That is to say :

X

l2S⌧�1

HX

h=1

�r

k
(sk,h, d

k

h
(sk,h)) =

X

l2S⌧�1

HX

h=1

2Hrmax

s
2 ln (3KSA/�)

max{1, Nk(sk,h, dkh(sk,h))

 2rmaxH
2
p

2SAH|S⌧�1|(1 + ln(|S⌧�1|H)) ln (3KSA/�)

Also :

X

l2S⌧�1

HX

h=1

�p

k
(sk,h, d

k

h
(sk,h)) =

X

l2S⌧�1

HX

h=1

H

s
2S ln (3KSA/�)

max{1, Nk(sk,h, dkh(sk,h))

 H2S
p
2AH#S⌧�1(1 + ln(#S⌧�1H)) ln (3KSA/�)

and, under the event E ,
P

l2S⌧�1

P
H

h=1 "k,h  2H3/2
p
2|S⌧�1| ln(3KH/�). On the other hand, for the episode

⌧ , we can only bound the di↵erence in value function by H. Finally, we have that ⌧ = 1 + |S
c

⌧�1| + |S⌧�1| and
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thus if we assume that rb := mins V ⇡b(s) > 0 :

↵rb(|S
c

⌧�1|+ 1)  ↵
⌧X

k=1

V ⇡b
1 (sk,1)  �(�

b
+ ↵rb)|S⌧�1|+ 2H3/2

p
2|S⌧�1| ln(3KH/�)

+5H2S
p

2AH|S⌧�1|(1 + S⌧�1|H)) ln (3KSA/�)

+4rmaxH
2
p
2SAH|S⌧�1|(1 + ln(|S⌧�1|H)) ln (3KSA/�)

Thus, the function on the RHS in bounded and using lemma 8 of Kazerouni et al. (2017), we have :

↵rb(|S
c

⌧�1|+ 1) 
1

4(�
b
+ ↵rb)

 
16H3 ln

✓
3KH

�

◆
+
�
200H5S2A+ 128r2maxH

5SA
�
⇥

⇥(1 + ln (HK)) ln

✓
3KSA

�

◆!

But by definition, |Sc

⌧�1|+ 1 = |S
c

K
|. Hence the result.

Experiments Finally, we end this presentation of conservativeness in finite horizon MDPs with some exper-
iments. We consider a classic 3 ⇥ 4 gridworld problem with one goal state, a starting state and one trap state,
we set H = 10, and the reward of any action in all the state to �2, the reward in the goal state to 10 and the
reward of falling in the trapping state to �20. We normalize the rewards to be in [0, 1]. The baseline policy
is describing a path around the pit, see Fig 5. On the two position adjacent to the goal the baseline policy is

S

G

X

Figure 5: Illustration of the baseline policy. S is the starting state, X is the pit a,d G is the goal state.

stochastic with a probability of reaching the goal of 1/2 for the position on the right of the goal and below the
goal, respectively. On the last line the probability of going up or right is also uniform. Figure 6 shows the impact
of the conservative constraint on the regret of UCB-VI for a conservative coe�cient ↵ = 0.05. Fig 6 also shows
the constraint as a function of the time for UCB-VI and CUCB-VI that is to say:

P
t

l=1 V
⇡l(s0)�(1�↵)V ⇡b(s0)

as a function of episode t with s0 the starting state of the gridworld. In the first 10% episodes (i.e until episode
300) the condition was violated by UCB-VI 83% of the time.

0 50 100 150 200 250 300

0

50

100

150

200

Time

C
on

se
rv

at
iv

e
C

on
di

tio
n

UCB-VI
CUCB-VI 0 .05

0 500 1,000 1,500 2,000 2,500 3,000
0

100

200

300

Time

C
u
m
u
la
ti
ve

R
eg
re
t

UCB-VI
CUCB-VI 0.05

Figure 6: Regret and Conservative Condition for the gridworld problem
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Figure 7: Regret of UCRL2 and CUCRL2 on the Cost-Based Maintenance problem described in D

D Experiments

For average reward problems we consider “simplified” Bernstein confidence intervals given by:

�k

r
(s, a) = �r(s, a)

s
ln(SA/�)

N+
k
(s, a)

+ rmax
ln(SA/�)

N+
k
(s, a)

and �k

p
(s, a, s0) = �p(s, a, s

0)

s
ln(SA/�)

N+
k
(s, a)

+
ln(SA/�)

N+
k
(s, a)

where N+
k
(s, a) = max{1, Nk(s, a)}, �r(s, a) is the empirical standard deviation and �p(s, a, s0) =p

bp(s0|s, a)(1� bp(s0|s, a)).

D.1 Single-Product Stochastic Inventory Control

Maintaining inventories is necessary for any company dealing with physical products. We consider the case of
single product without backlogging. The state space is the amount of products in the inventory, S = {0, . . . ,M}

where M is the maximum capacity. Given the state st at the beginning of the month, the manager (agent) has
to decide the amount of units at to order. We define Dt to be the random demand of month t and we assume a
time-homogeneous probability distribution for the demand. The inventory at time t+ 1 is given by

st+1 = max{0, st + at �Dt}

The action space is As = {0, . . . ,M � s}. As in (Puterman, 1994), we assume a fixed cost K > 0 for placing

orders and a varible cost c(a) that increases with the quantity ordered: O(a) =

(
K + c(a) a > 0

0 otherwise
. The

cost of maintaining an inventory of s items is defined by the nondecreasing function h(s). If the inventory is
available to meet a demand j, the agent receives a revenue of f(j). The reward is thus defined as r(st, at, st+1) =
�O(at)� h(st + at) + f(st + at � st+1). In the experiments, we use K = 4, c(x) = 2x, h(x) = x and f(x) = 8x.

In all the experiments, we normalize rewards such that the support is in [0, 1] and we use noise proportional to
the reward mean: rt(s, a) = (1 + c⌘t)r(s, a) where ⌘t ⇠ N (0, 1) (we set c = 0.1).

D.2 Cost-Based Maintenance

The system is composed by N components in an active redundant, parallel setting, which are subject to economic
and stochastic dependence through load sharing. Each component j 2 [N ] is described by its operational level
xj = {0, . . . , L}. The level L denotes that the component has failed. The deterioration process is modelled using
a Poisson process. If all components have failed, the system is shut down and a penalty cost p is paid. The
replacement of a failed component cost cc, while the same operation on an active component cost cp (usually
cc � cp). There is also a fixed cost for maintenance cs. At each time step, it is possible to replace simultaneously
multiple components. Please refer to (Olde Keizer, 2016) for a complete description of dynamics and rewards.

We terminate the analysis of CUCRL2 with a more challenging test. We consider the condition-based main-
tenance problem (CBM, Olde Keizer, 2016) a multi-component system subject to structural, economic and
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stochastic dependences. We report a complete description of the problem in App. D. The resulting MDP has
S = 121 states and A = 4 actions. The maintenance policy is often implemented as a threshold policy based on
the deterioration level. Such a threshold policy is not necessarily optimal for a system with economic dependence
and redundancy. We simulate this scenario by considering a strong (almost optimal) threshold policy for CBM
without economic dependence as baseline. We make it stochastic by selecting with probability 0.3 a random
action. As a result we have that the optimal gain g? = 0.89 while the baseline gain is g⇡b = 0.82. Fig. 7 shows the
cumulative regret for UCRL2 and CUCRL2 with ↵ = 0.001. UCRL2 explores faster than CUCRL2 but violates
the conservative condition 53% of times in the initial phase (up to t = 140000), incurring in multiple complete
system failures. On the other hand, CUCRL2 never violates the conservative condition.


