
Explaining the explainer

Supplementary material for:

Explaining the Explainer: A First Theoretical
Analysis of LIME

In this supplementary material, we provide the proof of Theorem 3.1 of the main paper. It is a simplified version
of Theorem 10.1. We first recall our setting in Section 7. Then, following Section 5 of the main paper, we study
the covariance matrix in Section 8, and the right-hand side of the key equation (5.1) in Section 9. Finally, we
state and prove Theorem 10.1 in Section 10. Some technical results (mainly Gaussian integrals computation) and
external concentration results are collected in Section 11.

7 Setting

Let us recall briefly the main assumptions under which we prove Theorem 3.1. Recall that they are discussed in
details in Section 2.2 of the main paper.
H1 (Linear f). The black-box model can be written aJx� b, with a P Rd and b P R fixed.
H2 (Gaussian sampling). The random variables x1, . . . , xn are i.i.d. N

�
µ, σ2Id

�
.

Also recall that, for any 1 ¤ i ¤ n, we set the weights to

πi :� exp
�
� ‖xi � ξ‖2

2ν2

�
. (7.1)

We will need the following scaling constant:

Cd :�
�

ν2

ν2 � σ2


d{2
� exp

�
� ‖ξ � µ‖2

2pν2 � σ2q

�
, (7.2)

which does not play any role in the final result. One can check that Cd Ñ 1 when ν " σ, regardless of the
dimension.

Finally, for any 1 ¤ j ¤ d, recall that we defined

αj :�
�

1
2erf

�
x� µ̃j

σ̃
?

2


�qj�

qj�

, (7.3)

and
θj :�

�
σ̃?
2π

exp
��px� µ̃jq2

2σ̃2


�qj�

qj�

, (7.4)

where qj� are the quantile boundaries of ξj . These coefficients are discussed in Section 5 of the main paper. Note
that all the expected values are taken with respect to the randomness on the x1, . . . , xn.

8 Covariance matrix

In this section, we state and prove the intermediate results used to control the covariance matrix pΣ. The goal of
this section is to obtain the control of

∥∥∥pΣ�1 � Σ�1
∥∥∥

op
in probability. Intuitively, if this quantity is small enough,

then we can inverse Eq. (5.1) and make very precise statements about pβ.
We first show that it is possible to compute the expected covariance matrix in closed form. Without this result, a
concentration result would still hold, but it would be much harder to gain precise insights on the βjs.
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Lemma 8.1 (Expected covariance matrix). Under Assumption 2, the expected value of pΣ is given by

Σ :� Cd

�����
1 α1 � � � αd
α1 α1 αiαj
...

. . .
αd αiαj αd

����
 .

Proof. Elementary computations yield

pΣ � 1
n

�����
°n
i�1 πi

°n
i�1 πizi1 � � � °n

i�1 πizid°n
i�1 πizi1

°n
i�1 πizi1

°n
i�1 πizikzi`

...
. . .°n

i�1 πizid
°n
i�1 πizikzi`

°n
i�1 πizid

����
 .

Reading the coefficients of this matrix, we have essentially three computations to complete: E rπis, E rπiziks, and
E rπizikzi`s.

Computation of E rπis. Since the xis are Gaussian (Assumption 2) and using the definition of the weights
(Eq. (7.1)), we can write

E rπis �
»
Rd

exp
�
� ‖xi � ξ‖2

2ν2

�
exp

�
� ‖xi � µ‖2

2σ2

�
dxi1 � � �xid
p2πσ2qd{2 .

By independence across coordinates, the last display amounts to

d¹
j�1

» �8
�8

exp
��px� ξjq2

2ν2 � �px� µjq2
2σ2



dx

σ
?

2π
.

We then apply Lemma 11.1 to each of the integrals within the product to obtain

d¹
j�1

ν?
ν2 � σ2

� exp
��pξj � µjq2

2pν2 � σ2q


� νd

pν2 � σ2qd{2 � exp
�
� ‖ξ � µ‖2

2pν2 � σ2q

�
.

We recognize the definition of the scaling constant (Eq. (7.2)): we have proved that E rπis � Cd.

Computation of E rπiziks. Since the xis are Gaussian (Assumption 2) and using the definition of the weights
(Eq. (7.1)),

E rπis �
»
Rd

exp
�
� ‖xi � ξ‖2

2ν2

�
exp

�
� ‖xi � µ‖2

2σ2

�
1φpxiqk�φpξqk

dxi1 � � �xid
p2πσ2qd{2 .

By independence across coordinates, the last display amounts to» qk�

qk�

exp
��px� ξkq2

2ν2 � �px� µkq2
2σ2



dx

σ
?

2π
�
d¹
j�1
j�k

» �8
�8

exp
��px� ξjq2

2ν2 � �px� µjq2
2σ2



dx

σ
?

2π
.

Using Lemma 11.1, we obtain

νd

pν2 � σ2qd{2 � exp
�
� ‖ξ � µ‖2

2pν2 � σ2q

�
�
�

1
2erf

�
ν2px� µkq � σ2px� ξkq

νσ
a

2pν2 � σ2q

��qk�

qk�

.

We recognize the definition of the scaling constant (Eq. (7.2)) and of the αk coefficient (Eq. (7.3)): we have
proved that E rπiziks � Cdαk.
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Computation of E rπizikzi`s. Since the xis are Gaussian (Assumption 2) and using the definition of the weights
(Eq. (7.1)),

E rπizikzi`s �
»
Rd

exp
�
� ‖xi � ξ‖2

2ν2

�
exp

�
� ‖xi � µ‖2

2σ2

�
1φpxiqk�φpξqk

1φpxiq`�φpξq`

dxi1 � � � dxid
p2πσ2qd{2 .

By independence across coordinates, the last display amounts to
d¹
j�1
j�k,`

» �8
�8

exp
��px� ξjq2

2ν2 � �px� µjq2
2σ2



dx

σ
?

2π
�
» qk�

qk�

exp
��px� ξkq2

2ν2 � �px� µkq2
2σ2



dx

σ
?

2π

�
» q`�

q`�

exp
��px� ξ`q2

2ν2 � �px� µ`q2
2σ2



dx

σ
?

2π
.

Using Lemma 11.1, we obtain

νd

pν2 � σ2qd{2 � exp
�
� ‖ξ � µ‖2

2pν2 � σ2q

�
�
�

1
2erf

�
ν2px� µkq � σ2px� ξkq

νσ
a

2pν2 � σ2q

��qk�

qk�

�
�

1
2erf

�
ν2px� µ`q � σ2px� ξ`q

νσ
a

2pν2 � σ2q

��q`�

q`�

.

We recognize the definition of the scaling constant (Eq. (7.2)) and of the alphas (Eq. (7.3)): we have proved that
E rπizikzi`s � Cdαkα`.

As it turns out, we show that it is possible to invert Σ in closed-form, therefore simplifying tremendously our
quest for control of

∥∥∥pΣ�1 � Σ�1
∥∥∥

op
. Indeed, in most cases, even if concentration could be shown, one would not

have a precise idea of the coefficients of Σ�1.
Lemma 8.2 (Inverse of the covariance matrix). If αj � 0, 1 for any j P t1, . . . , du, then Σ is invertible, and

Σ�1 � C�1
d

������
1�°d

j�1
αj

1�αj

�1
1�α1

� � � �1
1�αd

�1
1�α1

1
α1p1�α1q

0
...

. . .
�1

1�αd
0 1

αdp1�αdq

�����
 .

Proof. Define α P Rd the vector of the αjs. Set A :� 1, B :� αJ, C :� α, and

D :�

��� α1 αjαk
. . .

αjαk αd

��
 .

Then Σ is a block matrix that can be written Σ � Cd

�
A B
C D

�
. We notice that

D � CA�1B � Diag pα1p1� α1q, . . . , αdp1� αdqq .
Note that, since erf is an increasing function, the αjs are always distinct from 0 and 1. Thus D � CA�1B is an
invertible matrix, and we can use the block matrix inversion formula to obtain the claimed result.

As a direct consequence of the computation of Σ�1, we can control its largest eigenvalue.
Lemma 8.3 (Control of

∥∥Σ�1
∥∥

op). We have the following bound on the operator norm of the inverse covariance
matrix: ∥∥Σ�1∥∥

op ¤
3dAd
Cd

,

where Ad :� max1¤j¤d
1

αjp1�αjq
.
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Proof. We control the operator norm of Σ�1 by its Frobenius norm: Namely,∥∥Σ�1∥∥2
op ¤

∥∥Σ�1∥∥2
F

� C�2
d

��
1�

¸ αj
1� αj


2
�
¸ 1

p1� αjq2 �
¸ 1

αjp1� αjq

�
∥∥Σ�1∥∥2

op ¤ 6C�2
d d2

�
max 1

αjp1� αjq

2

,

where we used αj P p0, 1q in the last step of the derivation.

Remark 8.1. Better bounds can without doubt be obtained. A step in this direction is to notice that S :� CdΣ�1

is an arrowhead matrix (O’Leary and Stewart, 1996). Thus the eigenvalues of S are solutions of the secular
equation

1�
ḑ

j�1

αj
1� αj

� λ�
ḑ

j�1

αj
p1� αjqp1� λαjp1� αjqq � 0 .

Further study of this equation could yield an improved statement for Lemma 8.3.

We now show that the empirical covariance matrix concentrates around Σ. It is interesting to see that the
non-linear nature of the new coordinates (the zijs) calls for complicated computations but allows us to use simple
concentration tools since they are, in essence, Bernoulli random variables.
Lemma 8.4 (Concentration of the empirical covariance matrix). Let pΣ and Σ be defined as before. Then,
for every t ¡ 0,

P
�∥∥∥pΣ� Σ

∥∥∥
op
¥ t



¤ 4d2 expp�2nt2q .

Proof. Recall that ‖�‖op ¤ ‖�‖F: it suffices to show the result for the Frobenius norm. Next, we notice that the
summands appearing in the entries of pΣ, Xp1q

i :� πi, Xp2,kq
i :� πizik, and Xp3,k,`q

i :� πizikzi`, are all bounded.
Indeed, by the definition of the weights and the definition of the new features, they all take values in r0, 1s.
Moreover, for given k, `, they are independent random variables. Thus we can apply Hoeffding’s inequality
(Theorem 11.1) to Xp1q

i , Xp2,kq
i , and Xp3,k,`q

i . For any given t ¡ 0, we obtain$'&'%
P
�∣∣ 1
n

°n
i�1pπi � E rπisq

∣∣ ¥ t
� ¤ 2 expp�2nt2q

P
�∣∣ 1
n

°n
i�1pπizik � E rπisq

∣∣ ¥ t
� ¤ 2 expp�2nt2q

P
�∣∣ 1
n

°n
i�1pπizikzi` � E rπisq

∣∣ ¥ t
� ¤ 2 expp�2nt2q

We conclude by a union bound on the pd� 1q2 ¤ 2d2 entries of the matrix.

As a consequence of the two preceding lemmas, we can control the largest eigenvalue of Σ�1.

Lemma 8.5 (Control of
∥∥∥pΣ�1

∥∥∥
op
). For every t P

�
0, Cd

6dAd

�
, with probability greater than 1� 4d2 expp�2nt2q,

∥∥∥pΣ�1
∥∥∥

op
¤ 6dAd

Cd
.

Proof. Let t P p0, Cd{p6dAdqs. According to Lemma 8.3, λmaxpΣ�1q ¤ 3dAd{Cd. We deduce that

λminpΣq ¥ Cd
3dAd

.

Now let us use Lemma 8.4 with this t: there is an event Ω, which has probability greater than 1� 4d2 expp�2nt2q,
such that

∥∥∥pΣ� Σ
∥∥∥

op
¤ t. According to Weyl’s inequality (Weyl, 1912), on this event,∣∣∣λminppΣq � λminpΣq

∣∣∣ ¤ ∥∥∥pΣ� Σ
∥∥∥

op
¤ t .
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In particular,
λminppΣq ¥ λminpΣq � t ¥ Cd

6dAd
.

Finally, we deduce that ∥∥∥pΣ�1
∥∥∥

op
¤ 6dAd

Cd
.

We can now state and prove the main result of this section, controlling the operator norm of pΣ�Σ with high
probability.

Proposition 8.1 (Control of
∥∥∥pΣ�1 � Σ�1

∥∥∥
op
). For every t P

�
0, 3dAd

Cd

�
, we have

P
�∥∥∥pΣ�1 � Σ�1

∥∥∥
op
¥ t



¤ 8d2 exp

� �C4
dnt

2

162d4A4
d



.

Remark 8.2. Proposition 8.1 is the key tool to invert Eq. (5.1) and gain precise control over pβ. In the regime
that we consider, the dimension d as well as the number of bins p are fixed, and d,Cd, and Ad are essentially
numerical constants. We did not optimize these constant with respect to d, since the main message is to consider
the behavior for a large number of new examples (nÑ �8).

Proof. We notice that, assuming that pΣ is invertible, pΣ�1�Σ�1 � pΣ�1pΣ�pΣqΣ�1. Since ‖�‖op is sub-multiplicative,
we just have to control each term individually. Lemma 8.3 gives us∥∥Σ�1∥∥

op ¤
3dAd
Cd

.

Next, set t1 :� C2
dt

18d2A2
d

. According to Lemma 8.4, with probability greater than 1� 4d2 expp�2nt21q,∥∥∥pΣ� Σ
∥∥∥

op
¤ t1 .

Finally, set t2 :� t1. It is easy to check that t2 ¤ Cd{p6dAdq. Thus we can use Lemma 8.5: with probability
greater than 1� 4d2 expp�2nt21q, ∥∥∥pΣ�1

∥∥∥
op
¤ 6dAd

Cd
.

By the union bound, with probability greater than 1� 8d2 exp
�
�C4

dnt
2

162d4A4
d

	
,∥∥∥pΣ�1 � pΣ∥∥∥

op
¤ ∥∥Σ�1∥∥

op �
∥∥∥pΣ� Σ

∥∥∥
op
�
∥∥∥pΣ�1

∥∥∥
op

¤ 3dAd
Cd

� t1 � 6dAd
Cd

� t .

9 Right-hand side of Eq. (5.1)

In this section, we state and prove the results in relation to pΓ. We begin with the computation of Γ, the expected
value of pΓ.
Lemma 9.1 (Computation of Γ). Under Assumption 2 and 1, the expected value of pΓ is given by

Γ � Cd

�����
fpµ̃q

α1fpµ̃q � a1θ1
...

αdfpµ̃q � adθd

����
 ,
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where the θjs are defined by

θj :�
�

σ̃?
2π

exp
��px� µ̃jq2

2σ̃2


�qj�

qj�

.

Proof. Recall that pΓ � 1
nZ

JΠfpxq. Elementary computations yield

pΓ � 1
n

�����
°n
i�1 πifpxiq°n

i�1 πizi1fpxiq
...°n

i�1 πizidfpxiq

����
 .

Given the expression of pΓ, we have essentially two computations to manage: E rπifpxiqs and E rπizijfpxiqs.

Computation of E rπifpxiqs. Under Assumption 1, by linearity of the integral,

E rπifpxiqs � E
�
πipaJxi � bq� � bE rπis �

ḑ

j�1
ajE rπixijs . (9.1)

Now we have already seen in the proof of Lemma 8.1 that E rπis � Cd. Thus we can focus on the computation of
E rπixijs for fixed i, j. Under Assumption 2, we have

E rπixijs �
»
Rd

xj � exp
�
� ‖x� ξ‖2

2ν2 � � ‖x� µ‖2

2σ2

�
dx1 � � � dxd
p2πσ2qd{2 .

By independence, the last display amounts to» �8
�8

x � exp
��px� ξjq2

2ν2 � �px� µjq2
2σ2



dx

σ
?

2π
�
¹
k�j

» �8
�8

exp
��px� ξkq2

2ν2 � �px� µkq2
2σ2



dx

σ
?

2π
.

A straightforward application of Lemmas 11.1 and 11.2 yields

E rπixijs � Cd � ν
2µj � σ2ξj
ν2 � σ2 .

Back to Eq. (9.1), we have shown that

E rπifpxiqs � Cdb�
ḑ

j�1
aj � Cd ν

2µj � σ2ξj
ν2 � σ2 � Cdfpµ̃q .

Computation of E rπizijfpxisq. Under Assumption 1, by linearity of the integral,

E rπizijfpxiqs � bE rπizijs �
ḑ

k�1
ak � E rπizijxiks . (9.2)

We have already computed E rπizijs in the proof of Lemma 8.1 and found that

E rπizijs � Cdαj .

Regarding the computation of E rπizijxiks, there are essentially two cases to consider depending whether k � ` or
not. Let us first consider the case k � j. Then we obtain

E rπizijxiks �
»
Rd

xj exp
�
� ‖x� ξ‖2

2ν2 � � ‖x� µ‖2

2σ2

�
1φpxqj�φpξqj

dx1 � � � dxd
p2πσ2qd{2 .
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By independence, the last display amounts to» qj�

qj�

x � exp
��px� ξjq2

2ν2 � �px� µjq2
2σ2



dx

σ
?

2π
�
¹
k�j

» �8
�8

exp
��px� ξkq2

2ν2 � �px� µkq2
2σ2



dx

σ
?

2π
.

According to Lemma 11.2 and the definition of αj and θj (Eqs. (7.3) and (7.3)), we have

E rπizijxijs � Cd
σ2ξj � ν2µj
ν2 � σ2 αj � Cdθj .

Now if k � j, by independence, E rπizijxiks splits in three parts:

E rπizijxiks �
» �8
�8

x � exp
��px� ξkq2

2ν2 � �px� µkq2
2σ2



dx

σ
?

2π
�
» qj�

qj�

exp
��px� ξjq2

2ν2 � �px� µjq2
2σ2



dx

σ
?

2π
�

�
¹
`�j,k

» �8
�8

exp
��px� ξkq2

2ν2 � �px� µkq2
2σ2



dx

σ
?

2π
.

Lemma 11.1 and 11.2 yield

E rπizijxiks � Cd � σ
2ξk � ν2µk
ν2 � σ2 � αj .

In definitive, plugging these results into Eq. (9.2) gives

E rπizijfpxiqs � Cdαjb� aj

�
Cd
σ2ξj � ν2µj
ν2 � σ2 αj � Cdθj



�
¸
k�j

ak � Cdσ
2ξk � ν2µk
ν2 � σ2 αj

� Cdαjfpµ̃q � Cdajθj .

As a consequence of Lemma 9.1, we can control ‖Γ‖.
Lemma 9.2 (Control of ‖Γ‖). Under Assumptions 2 and 1, it holds that

‖Γ‖2 ¤ C2
d

�
3dfpµ̃q2 � dσ̃2 ‖∇f‖2

	
.

Proof. According to Lemma 9.1, we have

‖Γ‖2 � C2
d

�
fpµ̃q2 �

ḑ

j�1
pαjfpµ̃q � ajθjq2

�
.

Successively using px� yq2 ¤ 2px2 � y2q, αj P r0, 1s and θj P r�σ̃{
?

2π, σ̃{?2πs, we write

‖Γ‖2 ¤ C2
d

�
fpµ̃q2 �

ḑ

j�1
2pα2

jfpµ̃q2 � a2
jθ

2
j q
�

¤ C2
d

�
3dfpµ̃q2 � dσ̃2 ‖a‖2

	
,

which concludes the proof.

Finally, we conclude this section with a concentration result for pΓ.
Lemma 9.3 (Concentration of

∥∥∥pΓ∥∥∥). Under Assumptions 2 and 1, for any t ¡ 0, we have

P
�∥∥∥pΓ� Γ

∥∥∥ ¡ t
	
¤ 4d exp

�
�nt2

2 ‖∇f‖2
σ2

�
.
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Proof. Since the xi are Gaussian with variance σ2 (Assumption 2), the random variable aJxi� b is Gaussian with
variance ‖a‖2

σ2, and the Xp1q
i :� πixi are sub-Gaussian with parameter ‖a‖2

σ2. They are also independent,
thus we can apply Theorem 11.2 to the Xp1q

i :

P

�∣∣∣∣∣ 1
n

ņ

i�1
πifpxiq � E rπifpxiqs

∣∣∣∣∣ ¡ t

�
¤ 2 exp

�
�nt2

2 ‖a‖2
σ2

�
.

Furthermore, the zij are t0, 1u-valued. Thus the random variables Xpjq
i :� πizijfpxiq are also sub-Gaussian with

parameter ‖a‖2
σ2. We use Hoeffding’s inequality (Theorem 11.2) again, to obtain, for any j,

P

�∣∣∣∣∣ 1
n

ņ

i�1
πizijfpxiq � E rπizijfpxiqs

∣∣∣∣∣ ¡ t

�
¤ 2 exp

�
�nt2

2 ‖a‖2
σ2

�
.

By the union bound,

P
�∥∥∥pΓ� Γ

∥∥∥ ¡ t
	
¤ 2pd� 1q exp

�
�nt2

2 ‖a‖2
σ2

�
.

We deduce the result since d ¥ 1.

10 Proof of the main result

In this section, we state and prove our main result, Theorem 10.1. It is a more precise version than Theorem 3.1
in the main paper.
Theorem 10.1 (Concentration of pβ). Let η P p0, 1q and ε ¡ 0. Take

n ¥ max
�

288 ‖∇f‖2
σ2d2A2

d

ε2C2
d

log 12d
η
,

18d2A2
d

C2
d

log 24d2

η
,

648d5A4
dp3fpµ̃q2 � σ̃2 ‖∇f‖2q

C2
dε

2 log 24d2

η

�
.

Then, under assumptions 2 and 1, ∥∥∥pβ � Σ�1Γ
∥∥∥ ¤ ε ,

with probability greater than 1� η.

Proof. The main idea of the proof is to notice that∥∥∥pβ � Σ�1Γ
∥∥∥ � ∥∥∥pΣ�1pΓ� Σ�1Γ

∥∥∥
¤

∥∥∥pΣ�1ppΓ� Γq
∥∥∥� ∥∥∥ppΣ�1 � Σ�1qΓ

∥∥∥ ,

and then to control these two terms using the results of Section 8 and 9.

Control of
∥∥∥pΣ�1ppΓ� Γq

∥∥∥. We use the upper bound
∥∥∥pΣ�1ppΓ� Γq

∥∥∥ ¤
∥∥∥pΣ�1

∥∥∥
op
�
∥∥∥pΓ� Γ

∥∥∥. We then achieve
control of the operator norm of the empirical covariance matrix in probability with Lemma 8.5, and control of
the norm of pΓ� Γ in probability with Lemma 9.3. Set

t1 :� Cd
6dAd

and n1 :� 18d2

C2
d

log 12d2

η
.

According to Lemma 8.5, for any n ¥ n1, there is an event Ωn1 which has probability greater than 1�4d2 expp�2nt21q
such that ∥∥∥pΣ�1

∥∥∥
op
¤ 6dAd

Cd

on this event. It is easy to check that 4d2 expp�2n1t
2
1q � η{3, thus Ωn1 has probability greater than 1� η{3. Now
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Therefore, Ωn3 has probability greater than η{3 and, on this event,∥∥∥ppΣ�1 � Σ�1qΓ
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Conclusion. Set n ¥ maxpni, i � 1 . . . 4q. Define Ωn :� Ωn
1 X Ωn

2 X Ωn
3 , where the Ωn

i are defined as before.
According to the previous reasoning, on the event Ωn,∥∥∥pβ � Σ�1Γ
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Moreover, the union bound gives P pΩnq ¥ 1 � η. We conclude by noticing that n1 is always smaller than n3,
thus we just have to require n ¥ maxpn2, n3, n4q, as in the statement of our result.

11 Technical lemmas

11.1 Gaussian integrals

In this section, we collect some Gaussian integral computations that are needed in our derivations. We provide
succinct proof, since essentially any modern computer algebra system will provide these formulas. Our first result
is for zero-th order Gaussian integral.
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Lemma 11.1 (Gaussian integral, 0-th order). Let ξ, µ be real numbers, and ν, σ be positive real numbers.
Then, it holds that»
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by the more readable px� µ̃q{pσ̃?2q in the main text of the

paper.

Since f is assumed to be linear in most of the paper, we need first order computations as well:
Lemma 11.2 (Gaussian integral, 1st order). Let ξ, µ be real numbers, and ν, σ be positive numbers. Then it
holds that»
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Proof. For any a, b, c with a ¡ 0, it holds that»
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Finally we want to mention the following result.
Lemma 11.3 (Gaussian integral, 2nd order). Let ξ, µ be real numbers, and ν, σ be positive real numbers.
Then, it holds that» �8
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Remark 11.2. As a consequence of Lemma 11.3, it would be possible to further our analysis by adding second
degree terms to f . Indeed, quantities depending on ‖xi � ξ‖, which would have to be computed to extend the
proofs of Lemmas 9.1 and 9.3, can be computed with this lemma. For instance, one can show that

E
�
πi ‖xi � ξ‖2

�
� Cd �

�
ν4

pν2 � σ2q2 ‖ξ � µ‖2 � ν2σ2d

ν2 � σ2

�
.

Proof. We use the fact that»
x2 � e�ax2�bx�c dx �

?
πp2a� b2q

8a5{2 e b2
4a�c � erf

�
2ax� b

2
?
a



� ax� b

4a2 � e�ax2�bx�c .

11.2 Concentration results

In this section we collect some concentration results used throughout our proofs. Note that we use rather use the
two-sided version of these results.
Theorem 11.1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables such that Xi takes
its values in rai, bis almost surely for all i ¤ n. Then for every t ¡ 0,
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Proof. This is Theorem 2.8 in Boucheron et al. (2013) in our notation.

Theorem 11.2 (Hoeffding’s inequality for sub-Gaussian random variables). Let X1, . . . , Xn be inde-
pendent random variables such that Xi is sub-Gaussian with parameter s2 ¡ 0. Then, for every t ¡ 0,
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Proof. This is Proposition 2.1 in Wainwright (2019).


