Explaining the explainer

Supplementary material for:

Explaining the Explainer: A First Theoretical
Analysis of LIME

In this supplementary material, we provide the proof of Theorem 3.1 of the main paper. It is a simplified version
of Theorem 10.1. We first recall our setting in Section 7. Then, following Section 5 of the main paper, we study
the covariance matrix in Section 8, and the right-hand side of the key equation (5.1) in Section 9. Finally, we
state and prove Theorem 10.1 in Section 10. Some technical results (mainly Gaussian integrals computation) and
external concentration results are collected in Section 11.

7 Setting

Let us recall briefly the main assumptions under which we prove Theorem 3.1. Recall that they are discussed in
details in Section 2.2 of the main paper.

H1 (Linear f). The black-box model can be written a'z + b, with a € R? and b € R fixed.

H2 (Gaussian sampling). The random variables z1,...,z, are i.i.d. A/ (u, UzId).

Also recall that, for any 1 < ¢ < n, we set the weights to

2
;1= exp <—|x211/—25> . (7.1)

We will need the following scaling constant:
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which does not play any role in the final result. One can check that Cy — 1 when v » o, regardless of the
dimension.

Finally, for any 1 < j < d, recall that we defined

oo ()
o[ ()]

where gj+ are the quantile boundaries of £;. These coeflicients are discussed in Section 5 of the main paper. Note
that all the expected values are taken with respect to the randomness on the x1,...,x,.

and

8 Covariance matrix

In this section, we state and prove the intermediate results used to control the covariance matrix . The goal of

this section is to obtain the control of Hifl —»! H in probability. Intuitively, if this quantity is small enough,
op

then we can inverse Eq. (5.1) and make very precise statements about B

We first show that it is possible to compute the expected covariance matrix in closed form. Without this result, a
concentration result would still hold, but it would be much harder to gain precise insights on the 3;s.
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Lemma 8.1 (Expected covariance matrix). Under Assumption 2, the expected value ofi is given by
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Proof. Elementary computations yield
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Reading the coefficients of this matrix, we have essentially three computations to complete: E [m;], E[m;2:], and
E [ﬂ'izikzig].

Computation of E [7;]. Since the z;s are Gaussian (Assumption 2) and using the definition of the weights
(Eq. (7.1)), we can write

Blm] - | ex —llai =&Y, (=l = pl? dair i
1 ]Rd p 2y2 p 20_2 (27702)d/2 .

By independence across coordinates, the last display amounts to

(z—&)?  —(z—p)*) d
HJ exp( V2]) n ($202NJ)>09527T.

We then apply Lemma 11.1 to each of the integrals within the product to obtain

ﬁ v <—(€j—uj)2>: N e 5yl
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We recognize the definition of the scaling constant (Eq. (7.2)): we have proved that E[r;] = Cy.

Computation of E[m;z;;]. Since the x;s are Gaussian (Assumption 2) and using the definition of the weights

(Eq. (7.1),
— [l — €Il — [l2i — ) dzir - Tia
E[m]:fwe"p (2 I 7= R RO GO e

By independence across coordinates, the last display amounts to

" —(z = &) | —(z— p) —(—&)? | —(z—p)?\ da
Lk_ exp < 22 + 252 > 0’\/% HJ exp < 52 7/ 5o j ) Um'

J;ék

Using Lemma 11.1, we obtain

Vid-exp M . lerf Vi@ — ) + 0% (x — &) "
(V2 + o2) /2 202 +0?) ) |2 vor/2(7? + 02) B

qk

We recognize the definition of the scaling constant (Eq. (7.2)) and of the «y coefficient (Eq. (7.3)): we have
proved that E [m; 2] = Caay.
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Computation of E [m;z;,2,¢]. Since the z;s are Gaussian (Assumption 2) and using the definition of the weights
(Eq. (7.1)),

E [mizikzie] = f

— ||lo; — €]J° — [l — pa? 1 1 dwp -+ - dwgg
R exp 212 exXp 202 P(xi)e=d(E)r ~d(zi)e=0(E)e (27T02)d/2 :

By independence across coordinates, the last display amounts to

li[ J+7“ exp (‘(332—253')2 n —(z — Mj)2> dz b+ exp (_(Jc —&k)? n —(z - Mk)z) dz

202 o 271'- P 202 202 /2T

e —(z —&)? —(x—-udz> dz
. + .
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Using Lemma 11.1, we obtain

Vid-ex M . lerf V2(x_ﬂk)+0'2(a;‘—£k) 9k +
(V2 + 02)d/2 P 2(v2 4+ 02) 2 VU\/W )

k

Ny (V@) + 0@ — &) "
2 vo\/2(v? + o?) .

qe—

We recognize the definition of the scaling constant (Eq. (7.2)) and of the alphas (Eq. (7.3)): we have proved that
E [mzikzig] = CdOékOég. O

As it turns out, we show that it is possible to invert ¥ in closed-form, therefore simplifying tremendously our

quest for control of Hf]fl — 37| . Indeed, in most cases, even if concentration could be shown, one would not

op
have a precise idea of the coefficients of ¥ 1.
Lemma 8.2 (Inverse of the covariance matrix). Ifa; # 0,1 for any j € {1,...,d}, then ¥ is invertible, and
d _a —1 —1
L+ Zj:l 1—& T—a; T T—aq
Tor aan 0
2_1 _ C;l l1—aq a(l—a;
-1 1
o 0 aall—aq)

Proof. Define a € R? the vector of the ajs. Set A:=1, B := al, C:=a, and

(05} (671873
D =

(071877 aq

A B

Then X is a block matrix that can be written X = Cy [C D

]. We notice that

D —CA™'B =Diag(ai;(1 —a1),...,aq(1 — ag)) .

Note that, since erf is an increasing function, the a;s are always distinct from 0 and 1. Thus D — CA~!'B is an
invertible matrix, and we can use the block matrix inversion formula to obtain the claimed result. O

As a direct consequence of the computation of £~!, we can control its largest eigenvalue.

Lemma 8.3 (Control of HE’l Hop). We have the following bound on the operator norm of the inverse covariance

matric:
3dA,

Cq

1=, <

. 1
where Ad = 1MaXigji<d m
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Proof. We control the operator norm of X! by its Frobenius norm: Namely,

=715, < =711
) S D
1—aqj (1 —aj)? a;(1—ay)

2
—1/2 —2 52 1
HZ Hop<6C’d d (maxaj(l_aj)) ,

=C;?

where we used «; € (0,1) in the last step of the derivation. O

Remark 8.1. Better bounds can without doubt be obtained. A step in this direction is to notice that S := CyX !
is an arrowhead matrix (O’Leary and Stewart, 1996). Thus the eigenvalues of S are solutions of the secular
equation

d
(7] (7]
1+ I+ 2 =0.
Z 1 —aj JZ]:1 (1—04]‘)(1—)\04]‘(1—&]‘))

Further study of this equation could yield an improved statement for Lemma 8.3.

We now show that the empirical covariance matrix concentrates around ¥. It is interesting to see that the
non-linear nature of the new coordinates (the z;;s) calls for complicated computations but allows us to use simple
concentration tools since they are, in essence, Bernoulli random variables.

Lemma 8.4 (Concentration of the empirical covariance matrix). Let S and S be defined as before. Then,
for every t > 0,

P (Hi -3 = t) < 4d? exp(—2nt?) .
op
Proof. Recall that |||, < ||-[[p: it suffices to show the result for the Frobenius norm. Next, we notice that the
summands appearing in the entries of f], Xi(l) =Ty, Xi(Q’k) = T2k, and Xi(s’k’z) 1= T2k 20, are all bounded.

Indeed, by the definition of the weights and the definition of the new features, they all take values in [0, 1].

Moreover, for given k, /¢, they are independent random variables. Thus we can apply Hoeffding’s inequality
(Theorem 11.1) to Xl-(l), Xi(2’k)7 and X9 For any given t > 0, we obtain
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We conclude by a union bound on the (d + 1)? < 2d? entries of the matrix. O

As a consequence of the two preceding lemmas, we can control the largest eigenvalue of 71,

Lemma 8.5 (Control of Hfl_l

). For everyte (O, 65—&], with probability greater than 1 — 4d? exp(—2nt?),
op

< 6dA,4

ifl
o

Proof. Let t € (0,Cq/(6dAg)]. According to Lemma 8.3, Apax(X71) < 3dA4/Cy. We deduce that

Cq
. > .
)\mln(z) = 3dAd

Now let us use Lemma 8.4 with this ¢: there is an event 2, which has probability greater than 1 — 4d? exp(—2nt?),

such that Hf] —X|| < t. According to Weyl’s inequality (Weyl, 1912), on this event,

op

Amin(¥) — /\min(z)‘ < Hi _x
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In particular,

~ Cy
A1rr1in X = AInin X)—t = .
()2 Auin(D) — t > 54
Finally, we deduce that
Hi—l < 8dda
op Od

O

We can now state and prove the main result of this section, controlling the operator norm of $ — % with high
probability.

Proposition 8.1 (Control of Hf]fl — 7Y ). For everyte (O, 3é’jd], we have
op
N —C4nt?
P[E =57 =t) <saexn (00 )
( op P\ 1624743

Remark 8.2. Proposition 8.1 is the key tool to invert Eq. (5.1) and gain precise control over B . In the regime
that we consider, the dimension d as well as the number of bins p are fized, and d, Cy, and A, are essentially
numerical constants. We did not optimize these constant with respect to d, since the main message is to consider
the behavior for a large number of new examples (n — +00).

Proof. We notice that, assuming that 3 is invertible, 51— ~1 = $-1(£—5)% 1. Since [/l is sub-multiplicative,
we just have to control each term individually. Lemma 8.3 gives us

3dA
157, < =5
op Cd
2
Next, set t1 := 183732‘3. According to Lemma 8.4, with probability greater than 1 — 4d? exp(—2nt?),
Hi -3 <t.
op

Finally, set to := t;. It is easy to check that to < Cy/(6dA4). Thus we can use Lemma 8.5: with probability
greater than 1 — 4d? exp(—2nt?),

Hﬁ_l < 6dAd .
op Ca
By the union bound, with probability greater than 1 — 8d? exp ( @gﬁlﬁ ),
d
151 -8| <=, |E-2] -5
op op op op
dA dA
< 304a , BdAa_

Ca Ca

9 Right-hand side of Eq. (5.1)

In this section, we state and prove the results in relation to T. We begin with the computation of I', the expected
value of T'.

Lemma 9.1 (Computation of I'). Under Assumption 2 and 1, the expected value off is given by
f(i)
o1 f(fr) — axbs

. b

I'=0Cy

Oldf(ﬂ)._ aqf4q
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0; = [\/% exp <_(x2;2ﬁj)2>]zi '

Proof. Recall that = 1+ Z'1f(x). Elementary computations yield

2?21 ﬂ'if(xi)
Z?Zl mizin f(x4)

where the 0;s are defined by

-~ 1
==
n :
iy miziaf (@)
Given the expression of f‘, we have essentially two computations to manage: E [7; f(z;)] and E [m;2;; f(x;)].
Computation of E[r; f(x;)]. Under Assumption 1, by linearity of the integral,
d
E [sz(l'l)] =K [7‘(‘1‘(&—'—.’171‘ + b)] = bE [7‘(‘1] + 2 CL]‘E [7'('1'.’171‘]‘] . (91)
j=1

Now we have already seen in the proof of Lemma 8.1 that E [7;] = C4. Thus we can focus on the computation of
E [m;z;;] for fixed ¢, j. Under Assumption 2, we have

— =& | —llz—pl®\ des---deg
Elmz.] = . .
[ﬂ'z:l:zj] J-Rd X+ exp ( 9,2 + 902 (27T0'2)d/2

By independence, the last display amounts to

i —(z—&)* | —(z—puy) —(z—=&)*  —(z—m)*\ dz
J;L x-exp( 2u2j + 202 ’ ) o2 IQJ exp( 212 + 202 > o2r

A straightforward application of Lemmas 11.1 and 11.2 yields

Vz,uj' + 02§j

E|mzi;] = :
[mizi;] = Cq 2 1o

Back to Eq. (9.1), we have shown that

d 2, 4 526,
E[mif(z:)] = Cab+ > a;- S BRI NCNY

2 4 52
a1 vet+o
Computation of E [,z f(z;]). Under Assumption 1, by linearity of the integral,

d
k=1
We have already computed E [7;2;;] in the proof of Lemma 8.1 and found that
E [mzij] = CdOéj .

Regarding the computation of E [7;2;;2%], there are essentially two cases to consider depending whether k = £ or
not. Let us first consider the case k = j. Then we obtain

. _ =€l | =l —pl?) day - day
[mizijTin] = ra ZLj €eXp 9,2 + 952 d(z);j=0(£); (27T0.2)d/2 :
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By independence, the last display amounts to

dx

ot —(z=&)* | —(z— —(r—&)* | —(z—m)?\ do
L]-_ T - exp ( 22 + 202 5277 ,gf exp 22 252 T
According to Lemma 11.2 and the definition of a;; and 6; (Egs. (7.3) and (7.3)), we have
o2& + 12
E [m—zijmij] = Cdﬁa - Cde .
Now if k # j, by independence, E [m;z;;z;x] splits in three parts:
i —(x—&)*  —(z—p)*\ do (¥* —(x=§)* | —(lz—p)*
E[mzijxi] = J_ T - exp< 52 + 572 ) =" o eXp( 5 552 )
T — —(z — 2 dz
HJ exp< fk) 4 (22/%)) .
Pty 2v o o\2m
Lemma 11.1 and 11.2 yield
o*& + v
Elmizjea] =Ca-— 55— "ai-
In definitive, plugging these results into Eq. (9.2) gives
2 o2
§ v &+ V2,
E [mzijf(xi)] = Cdajb + a; <Cdé+2j aj — Cy (9 Z ag Od 2 1 o2 Qo

k#j
= Cdajf(ﬂ) — Cdajej .

As a consequence of Lemma 9.1, we can control [|T||.
Lemma 9.2 (Control of |I'||). Under Assumptions 2 and 1, it holds that

I0)* < €3 (3af (@)* + do® |V £1°) -

Proof. According to Lemma 9.1, we have

d
IT|* = C3 (f(ﬂ)2 + 2 (e f (B) ~ aj9j)2) :

Successively using (z — y)? < 2(2? + y?), o € [0,1] and 6; € [—5//2m,5//27], we write

d
I0|? < C? (f(ﬂ)2 + 72003 f(1)* + a?@?))
j=1
< O (34 (7)* + do” [ .

which concludes the proof.

Finally, we conclude this section with a concentration result for T

Lemma 9.3 (Concentration of HfH) Under Assumptions 2 and 1, for any t > 0, we have

~ 42
IF’(HF—FH>t) <ddexp | ——"0 ).
2V o2

0’\/271"
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Proof. Since the x; are Gaussian with variance ¢ (Assumption 2), the random variable a z; + b is Gaussian with

variance ||a||> 02, and the Xi(l) := m;x; are sub-Gaussian with parameter ||a||* 02. They are also independent,
1 n
i~ Z mif (i) — E 7 f ()]

v,
—nt?
P >t | <2exp + .
nic 2|la]|” 02

thus we can apply Theorem 11.2 to the X
Furthermore, the z;; are {0, 1}-valued. Thus the random variables X i(j )= m;izi; f(x;) are also sub-Gaussian with

parameter Ha||2 02, We use Hoeffding’s inequality (Theorem 11.2) again, to obtain, for any j,
—nt?
>t) <2exp| ——5— | .
2[jal” o®

~ —nt?
P(|0-r>¢) <26+ ven | 5 ).
2||all” o®

We deduce the result since d > 1. O

P <’711 3 mizij i) — B [mizi; f(2)]
=1

By the union bound,

10 Proof of the main result

In this section, we state and prove our main result, Theorem 10.1. It is a more precise version than Theorem 3.1
in the main paper.

Theorem 10.1 (Concentration of 3) Let n€ (0,1) and e > 0. Take

288 ||V fII> 02d2A2  12d 18d2A2 24d> 648d5AA(3f ()% + 52|V f|?), 24d>
n?max( 22 logT, c? log o 22 log .

Then, under assumptions 2 and 1,
s <
with probability greater than 1 —n.
Proof. The main idea of the proof is to notice that
|5 —=tr = et - =

)

< Hi—l(f - P)H + H(i—l —x Y

and then to control these two terms using the results of Section 8 and 9.

Control of Hi_l(f‘ - 1")‘ . We use the upper bound Hi_l(f‘ -I) ‘ < ‘ s Hf‘ — I‘H We then achieve
op

control of the operator norm of the empirical covariance matrix in probability with Lemma 8.5, and control of
the norm of I' — I' in probability with Lemma 9.3. Set

Cq 18d? 12d?
and nj = log — .

t1 1= —_—
1T 6dA, 2

According to Lemma 8.5, for any n > n, there is an event Qf which has probability greater than 1—4d? exp(—2nt?)
< 6dAy

such that
ifl
H op Cd

on this event. It is easy to check that 4d? exp(—2n1t3) = n/3, thus Q} has probability greater than 1 — /3. Now
set

st
12d A,

_ 288 a* 02d2A3 log 124
e2C? n

ty 1= and ng:
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According to Lemma 9.3, for any n > ng, there exists an event (2f which has probability greater than 1 —
2 ~
4d exp (%) such that HI‘ — FH < t9 on that event. One can check that

—nat3 ) 1
ddexp | —5— | = =,
<2||al o?) 3

thus Q% has probability greater than 1 — /3. On the event QF n QF, we have

GdAd g
“1a < 3

S o] <[,

,o[F-1] <
by definition of ¢s.

Control of H(fﬁl — Eil)FH. We use the upper bound H(f)’l - E’l)FH < Hf)’l - E’lH - |IT)|. We then
op

in probability with Proposition 8.1, whereas we can bound the norm of I'
op

almost surely with Lemma 9.2. If [|T'|] = 0, then there is nothing to prove. Otherwise, set

achieve control of Hi_l —y-!

e 3dAy 18d2A2% 2442 648d5 AL(3f ()2 + 62 |lal”) | 24d?
ts := min (, > , N3 1= log , and ny4:= log .
2|l ci U Coe?

According to Proposition 8.1, for any n > max(ngs,n4), there is an event Qf which has probability greater than

1 — 8d? exp (162(17254> such that

op

on this event. With the help of Lemma 9.2, one can check that

—C3nst? —C3nyt? n
8d2 d 3 8d2 d 3 < 2.
A ( P (162d2A§ o0 S\ 16242 41 3

Therefore, 2§ has probability greater than 7/3 and, on this event,

Q- _ S _ 9
[SREDEIIE e 1Hop-nrn <ts- T < ;.

Conclusion. Set n > max(n;,i = 1...4). Define Q" := QF n QF n QF, where the Q7 are defined as before.
According to the previous reasoning, on the event Q"

Moreover, the union bound gives P (Q") > 1 — 7. We conclude by noticing that n; is always smaller than ns,
thus we just have to require n > max(nq, n3,n4), as in the statement of our result. O

11 Technical lemmas

11.1 Gaussian integrals

In this section, we collect some Gaussian integral computations that are needed in our derivations. We provide
succinct proof, since essentially any modern computer algebra system will provide these formulas. Our first result
is for zero-th order Gaussian integral.
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Lemma 11.1 (Gaussian integral, 0-th order). Let &, v be real numbers, and v,o be positive real numbers.
Then, it holds that

In particular,

Lo ) i - (a)

Proof. For any reals a, b, and c, it holds that

Je—an-&-bw-‘rc dr = o eé+c i lerf 2ax — b )
a 2 24/a

3

We apply this formula with a = 2% + #, b = % + 45, and ¢ = — (25% + Z—Z) We then notice that
2 _ ——w?
b*/(4a) + ¢ = 5rTo7 and

2ax —b vz —p) +oi(z—¢§) .

NN RS

O

u2(z— )+02(r—§) ~ ~ . .
Remark 11.1. We often replace % by the more readable (x — ji)/(5+/2) in the main text of the
paper.

Since f is assumed to be linear in most of the paper, we need first order computations as well:

Lemma 11.2 (Gaussian integral, 1st order). Let &, u be real numbers, and v, o be positive numbers. Then it
holds that

a%—l—lﬂ,u_}erf <V2(x—u)+02(x—§)> vo exp _<V2(x—u)+02(x—§)>2

v2+02 2 vo/2(v? + o2) NN R voa/2(v? + o2)

In particular,

J+xx_exp<—(x—5>2+—(x—u)2) de__o%+viu, v eXp<w>'

o 202 202 o2 2 +o2 JPto® 2(v? + 02)
Proof. For any a,b, ¢ with a > 0, it holds that

fx . e—aI2+ba:+c dx = ﬁb eb2/(4a)+cerf 2ax — b _ ie—an-&-bw-‘rc )
4a’/? 2\/a 2a

Finally we want to mention the following result.

Lemma 11.3 (Gaussian integral, 2nd order). Let &y be real numbers, and v,o be positive real numbers.
Then, it holds that

T (@O —@—p?) o (%4 P+ 40 v Eon)
[ oo ) (550)

voexp 202 202 o2r (V2 + 02)2 N X 2(v2 4+ 02)

—L
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Remark 11.2. As a consequence of Lemma 11.3, it would be possible to further our analysis by adding second
degree terms to f. Indeed, quantities depending on ||z; — ||, which would have to be computed to extend the
proofs of Lemmas 9.1 and 9.3, can be computed with this lemma. For instance, one can show that
4 2 2
2 14 2 veéoed
E[m—\lxi—fll ] =Cq- |:(V2_"_0_2)2 1€ = pll™ + 1/2+02] .
Proof. We use the fact that

JxQ i e—aw2+bw+c dz = \/E(2a’ + b2)eg+c -erf 2ax — b _ ar + b i e—ax2+bw+c )
8ad/2 2\/a 4a?

11.2 Concentration results

In this section we collect some concentration results used throughout our proofs. Note that we use rather use the
two-sided version of these results.

Theorem 11.1 (Hoeffding’s inequality). Let X1,...,X,, be independent random variables such that X; takes
its values in [a;, b;] almost surely for all i < n. Then for every t > 0,

P (i N (X -E[X]) > t> < exp (Z‘flfﬁ)) |

i=1

Proof. This is Theorem 2.8 in Boucheron et al. (2013) in our notation. O

Theorem 11.2 (Hoeffding’s inequality for sub-Gaussian random variables). Let Xi,...,X,, be inde-
pendent random variables such that X; is sub-Gaussian with parameter s> > 0. Then, for every t > 0,

P 1ix E[X,]>t) <e —nt*
- i— i <exp| 455 | -
n 4= P 252

Proof. This is Proposition 2.1 in Wainwright (2019). O



